Date of Award
Spring 2019
Document Type
Thesis
Terms of Use
© 2019 William N. Colgan. All rights reserved. This work is freely available courtesy of the author. It may only be used for non-commercial, educational, and research purposes. For all other uses, including reproduction and distribution, please contact the copyright holder.
Degree Name
Bachelor of Arts
Department
Biology Department
First Advisor
Alexis Leanza, '15
Second Advisor
Bradley Justin Davidson
Abstract
Mutations to gene regulatory networks drive evolutionary adaptation, but mutations can also occur without phenotypic change. These neutral mutations instead lead to developmental systems drift, evolutionary divergence in developmental systems that does not alter the traits produced. Here we examine developmental systems drift between two tunicate species, Corella inflata and Ciona robusta, in the cardiopharyngeal gene regulatory network. Through cross-species assays and functional enhancer analysis, we assess the amount of drift both in cis and in trans. Here we show that the trans-regulatory architecture of the cardiopharyngeal gene regulatory network is largely conserved between C. robusta and C. inflata, but cis-regulatory elements within this network exhibit distinct levels of conservation. These results suggest that the amount of drift cis-regulatory elements undergo is not governed by overarching principles but rather by distinct structural and functional constraints which are unique to each cis-regulatory element. We show that the enhancer for FoxF, a key cardiopharyngeal gene, is highly conserved and propose a model for the unique structural and functional constraints which this cis-regulatory element experiences.
Recommended Citation
Colgan, William N. , '19, "Comparison of the cardiopharyngeal gene regulatory networks in Corella inflata and Ciona robusta provides insights into developmental systems drift" (2019). Senior Theses, Projects, and Awards. 155.
https://works.swarthmore.edu/theses/155