Document Type

Article

Publication Date

12-1-2010

Published In

Journal Of Vision

Abstract

It is known that the perceived slants of large distal surfaces, such as hills, are exaggerated and that the exaggeration increases with distance. In a series of two experiments, we parametrically investigated the effect of viewing distance and slant on perceived slant using a high-fidelity virtual environment. An explicit numerical estimation method and an implicit aspect-ratio approach were separately used to assess the perceived optical slant of simulated large-scale surfaces with different slants and viewing distances while gaze direction was fixed. The results showed that perceived optical slant increased logarithmically with viewing distance and the increase was proportionally greater for shallow slants. At each viewing distance, perceived optical slant could be approximately fit by linear functions of actual slant that were parallel across distances. These linear functions demonstrated a fairly constant gain of about 1.5 and an intercept that increased logarithmically with distance. A comprehensive three-parameter model based on the present data provides a good fit to a number of previous empirical observations measured in real environments.

Comments

This work is freely available courtesy of the Association for Research in Vision and Ophthalmology (ARVO).

Included in

Psychology Commons

Share

COinS