Document Type
Article
Publication Date
7-1-2020
Published In
The Astronomical Journal
Abstract
Small planets on close-in orbits tend to exhibit envelope mass fractions of either effectively zero or up to a few percent depending on their size and orbital period. Models of thermally driven atmospheric mass loss and of terrestrial planet formation in a gas-poor environment make distinct predictions regarding the location of this rocky/nonrocky transition in period–radius space. Here we present the confirmation of TOI-1235 b (P = 3.44 days, ${r}_{{\rm{p}}}={1.738}_{-0.076}^{+0.087}$ ${R}_{\oplus }$), a planet whose size and period are intermediate between the competing model predictions, thus making the system an important test case for emergence models of the rocky/nonrocky transition around early M dwarfs (R s = 0.630 ± 0.015 ${R}_{\odot }$, M s = 0.640 ± 0.016 ${M}_{\odot }$). We confirm the TESS planet discovery using reconnaissance spectroscopy, ground-based photometry, high-resolution imaging, and a set of 38 precise radial velocities (RVs) from HARPS-N and HIRES. We measure a planet mass of ${6.91}_{-0.85}^{+0.75}$ ${M}_{\oplus }$, which implies an iron core mass fraction of ${20}_{-12}^{+15}$% in the absence of a gaseous envelope. The bulk composition of TOI-1235 b is therefore consistent with being Earth-like, and we constrain an H/He envelope mass fraction to be <0.5% at 90% confidence. Our results are consistent with model predictions from thermally driven atmospheric mass loss but not with gas-poor formation, suggesting that the former class of processes remains efficient at sculpting close-in planets around early M dwarfs. Our RV analysis also reveals a strong periodicity close to the first harmonic of the photometrically determined stellar rotation period that we treat as stellar activity, despite other lines of evidence favoring a planetary origin ($P={21.8}_{-0.8}^{+0.9}$ days, ${m}_{{\rm{p}}}\sin i={13.0}_{-5.3}^{+3.8}$ ${M}_{\oplus }$) that cannot be firmly ruled out by our data.
Keywords
Radial velocity, M dwarf stars, Transit photometry, Exoplanet formation, Exoplanet structure
Recommended Citation
R. Cloutier et al.
(2020).
"TOI-1235 b: A Keystone Super-Earth For Testing Radius Valley Emergence Models Around Early M Dwarfs".
The Astronomical Journal.
Volume 160,
Issue 1.
DOI: 10.3847/1538-3881/ab9534
https://works.swarthmore.edu/fac-physics/403
Comments
This work is a preprint that is freely available courtesy of IOP Publishing and the American Astronomical Society. The final published version is available online.