Document Type
Article
Publication Date
11-1-2001
Published In
Physics Of Plasmas
Abstract
Results from the Swarthmore Spheromak Experiment (SSX) [M. R. Brown, Phys. Plasmas 6, 1717 (1999)] indicate that formation and partial merging of two spheromak plasmas can be described well by a magnetohydrodynamic (MHD) picture in which there is substantial evolution towards force free states within each vessel, while reconnection activity, also described reasonably well by MHD, occurs in the region of interaction. MHD simulations [V. S. Lukin , Phys. Plasmas 8, 1600 (2001)] support and provide further detail to this interpretation. In the present study, test particle equations are integrated using MHD data from SSX simulations to further understand the energetic particle fluxes that are observed experimentally. The test particle simulation is run with dimensionless parameters similar to the experiment, and particles are permitted to escape when they encounter the simulated SSX boundaries. MHD activity related to reconnection is responsible for accelerating charged particles. The process includes two phases-a strong but short duration direct acceleration in the quasi-steady reconnection electric field, and a weaker longer lived stochastic component associated with turbulence. (C) 2001 American Institute of Physics.
Recommended Citation
G. Qin et al.
(2001).
"Energetic Particles And Magnetohydrodynamic Activity In The Swarthmore Spheromak Experiment".
Physics Of Plasmas.
Volume 8,
Issue 11.
4816-4825.
DOI: 10.1063/1.1405015
https://works.swarthmore.edu/fac-physics/105
Comments
This work is freely available courtesy of the American Physical Society Division of Plasma Physics and the American Institute of Physics.