On Circular Critical Graphs

Document Type

Article

Publication Date

1984

Published In

Discrete Mathematics

Abstract

A graph on n vertices is called circular if its automorphism group contains an n-cycle. Let ω(G) and α(G) be, respectively, the clique number and the independence number of the graph G. A graph G with n vertices is called an (α, ω)-graph if 1. (1) n=α(G)ω(G)+1 2. (2) every vertex is in exactly α(G) maximum independent sets and α(G) maximum cliques, and 3. (3) each maximum clique intersects all but one maximum independent set, and vice versa. A graph is called critical if it is imperfect and all of its proper induced subgraphs are perfect. Lovasz and Padberg showed that all critical graphs are (α, ω)-graphs. Only one method is known for constructing circular (α, ω)-graphs. We show that the only critical graphs which arise from this construction are the odd, chordless cycles of length at least 5, and their complements.

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 15
  • Usage
    • Abstract Views: 9
  • Captures
    • Readers: 3
see details

Share

COinS