Document Type

Article

Publication Date

2002

Published In

Electronic Journal Of Combinatorics

Abstract

The wealth of beautiful combinatorics that arise in the representation theory of the symmetric group is well-known. In this paper, we analyze the representations of a related algebraic structure called the rook monoid from a combinatorial angle. In particular, we give a combinatorial construction of the irreducible representations of the rook monoid. Since the rook monoid contains the symmetric group, it is perhaps not surprising that the construction outlined in this paper is very similar to the classic combinatorial construction of the irreducible Sn-representations: namely, the Specht modules.

Included in

Mathematics Commons

Share

COinS