Document Type
Article
Publication Date
10-1-2020
Published In
Mathematical Biosciences
Abstract
Residential colleges and universities face unique challenges in providing in-person instruction during the COVID-19 pandemic. Administrators are currently faced with decisions about whether to open during the pandemic and what modifications of their normal operations might be necessary to protect students, faculty and staff. There is little information, however, on what measures are likely to be most effective and whether existing interventions could contain the spread of an outbreak on campus. We develop a full-scale stochastic agent-based model to determine whether in-person instruction could safely continue during the pandemic and evaluate the necessity of various interventions. Simulation results indicate that large scale randomized testing, contact-tracing, and quarantining are important components of a successful strategy for containing campus outbreaks. High test specificity is critical for keeping the size of the quarantine population manageable. Moving the largest classes online is also crucial for controlling both the size of outbreaks and the number of students in quarantine. Increased residential exposure can significantly impact the size of an outbreak, but it is likely more important to control non-residential social exposure among students. Finally, necessarily high quarantine rates even in controlled outbreaks imply significant absenteeism, indicating a need to plan for remote instruction of quarantined students.
Keywords
COVID-19, Coronavirus, SARS-CoV-2, Epidemics, Computational epidemiology, Agent-based modeling, Higher education, Post-secondary education
Recommended Citation
P. T. Gressman and Jennifer R. Peck.
(2020).
"Simulating COVID-19 In A University Environment".
Mathematical Biosciences.
Volume 328,
DOI: 10.1016/j.mbs.2020.108436
https://works.swarthmore.edu/fac-economics/506
Comments
This work has been provided to PubMed Central courtesy of Elsevier.