Document Type
Article
Publication Date
7-1-1996
Published In
Applied And Environmental Microbiology
Abstract
A plasmid containing a transcriptional fusion of the Escherichia coli katG promoter to a truncated Vibrio fischeri lux operon (luxCDABE) was constructed. An E. coli strain bearing this plasmid (strain DPD2511) exhibited low basal levels of luminescence, which increased up to 1,000-fold in the presence of hydrogen peroxide, organic peroxides, redox-cycling agents (methyl viologen and menadione), a hydrogen peroxide-producing enzyme system (xanthine and xanthine oxidase), and cigarette smoke. An oxyR deletion abolished hydrogen peroxide-dependent induction, confirming that oxyR controlled katG'::lux luminescence. Light emission was also induced by ethanol by an unexplained mechanism. A marked synergistic response was observed when cells were exposed to both ethanol and hydrogen peroxide; the level of luminescence measured in the presence of both inducers was much higher than the sum of the level of luminescence observed with ethanol and the level of luminescence observed with hydrogen peroxide. It is suggested that this construction or similar constructions may be used as a tool for assaying oxidant and antioxidant properties of chemicals, as a biosensor for environmental monitoring and as a tool for studying cellular responses to oxidative hazards.
Recommended Citation
S. Belkin, D. R. Smulski, Amy Cheng Vollmer, T. K. Van Dyk, and R. A. LaRossa.
(1996).
"Oxidative Stress Detection With Escherichia Coli Harboring A katG'::lux Fusion".
Applied And Environmental Microbiology.
Volume 62,
Issue 7.
2252-2256.
https://works.swarthmore.edu/fac-biology/389
Comments
This work is freely available courtesy of the American Society for Microbiology.