#### Document Type

Article

#### Publication Date

12-15-2000

#### Published In

Journal Of Chemical Physics

#### Abstract

We have used a path integral Monte Carlo technique to simulate positronium (Ps) in a cavity. The primitive propagator is used, with a pair of interacting chains representing the positron and electron. We calculate the energy and radial distribution function for Ps enclosed in a hard, spherical cavity, and the polarizability of the model Ps in the presence of an electrostatic field. We find that the positron distribution near the hard wall differs significantly from that for a single particle in a hard cavity. This leads to systematic deviations from predictions of free-volume models which treat Ps as an effective, single particle. A virial-type estimator is used to calculate the kinetic energy of the particle in the presence of hard walls. This estimator is found to be superior to a kinetic-type estimator given the interaction potentials, cavity sizes, and chain lengths considered in the current study. (C) 2000 American Institute of Physics. [S0021-9606(00)50447-4].

#### Recommended Citation

L. Larrimore, R. N. McFarland, P. A. Sterne, and Amy Lisa Graves.
(2000).
"A Two-Chain Path Integral Model Of Positronium".
*Journal Of Chemical Physics*.
Volume 113,
Issue 23.
10642-10650.
DOI: 10.1063/1.1323979

https://works.swarthmore.edu/fac-physics/90

## Comments

This work is freely available courtesy of the American Institute of Physics.