Document Type


Publication Date


Published In

The Astronomical Journal


We report the discovery of an ultrahot Jupiter with an extremely short orbital period of 0.67247414 ± 0.00000028 days (∼16 hr). The 1.347 ± 0.047 RJup planet, initially identified by the Transiting Exoplanet Survey Satellite (TESS) mission, orbits TOI-2109 (TIC 392476080)—a Teff ∼ 6500 K F-type star with a mass of 1.447 ± 0.077 M, a radius of 1.698 ± 0.060 R, and a rotational velocity of v sin i* = 81.9 ± 1.7 km s⁻¹. The planetary nature of TOI-2109b was confirmed through radial-velocity measurements, which yielded a planet mass of 5.02 ± 0.75 MJup. Analysis of the Doppler shadow in spectroscopic transit observations indicates a well-aligned system, with a sky-projected obliquity of λ = 1fdg7 ± 1fdg7. From the TESS full-orbit light curve, we measured a secondary eclipse depth of 731 ± 46 ppm, as well as phase-curve variations from the planet's longitudinal brightness modulation and ellipsoidal distortion of the host star. Combining the TESS-band occultation measurement with a Ks-band secondary eclipse depth (2012 ± 80 ppm) derived from ground-based observations, we find that the dayside emission of TOI-2109b is consistent with a brightness temperature of 3631 ± 69 K, making it the second hottest exoplanet hitherto discovered. By virtue of its extreme irradiation and strong planet–star gravitational interaction, TOI-2109b is an exceptionally promising target for intensive follow-up studies using current and near-future telescope facilities to probe for orbital decay, detect tidally driven atmospheric escape, and assess the impacts of H2 dissociation and recombination on the global heat transport.


This work is a preprint that is freely available courtesy of IOP Publishing and the American Astronomical Society. The final published version is available online.