Evaluation Of 1,1-Cyclopropylidene As A Thioether Isostere In The 4-Thio-Thienopyrimidine (TTP) Series Of Antimalarials

R. D. Barrows
J. T. Hammill
M. C. Tran
M. O. Falade
A. L. Rice
C. W. Davis
T. J. Emge
Paul R. Rablen, Swarthmore College
R. K. Guy
S. Knapp

Abstract

The 4-(heteroarylthio)thieno[2,3-d]pyrimidine (TTP) series of antimalarials, represented by 1 and 17, potently inhibit proliferation of the 3D7 strain of P. falciparum (EC50 70–100 nM), but suffer from oxidative metabolism. The 1,1-cyclopropylidene isosteres 6 and 16 were designed to obviate this drawback. They were prepared by a short route that features a combined Peterson methylenation / cyclopropanation transformation of, e. g., ketone 7. Isosteres 6 and 16 possess significantly attenuated antimalarial potency relative to parents 1 and 17. This outcome can be rationalized based on the increased out-of-plane steric demands of the latter two. In support of this hypothesis, the relatively flat ketone 7 retains some of the potency of 1, even though it appears to be a comparatively inferior mimic with respect to electronics and bond lengths and angles. We also demonstrate crystallographically and computationally an apparent increase in the strength of the intramolecular sulfur hole interaction of 1 upon protonation.