Nonlinear Elasticity And Short-Range Mechanical Coupling Govern The Rate And Symmetry Of Mouth Opening In Hydra
Document Type
Article
Publication Date
2-28-2024
Published In
Proceedings Of The Royal Society B: Biological Sciences
Abstract
Hydra has a tubular bilayered epithelial body column with a dome-shaped head on one end and a foot on the other. Hydra lacks a permanent mouth: its head epithelium is sealed. Upon neuronal activation, a mouth opens at the apex of the head which can exceed the body column diameter in seconds, allowing Hydra to ingest prey larger than itself. While the kinematics of mouth opening are well characterized, the underlying mechanism is unknown. We show that Hydra mouth opening is generated by independent local contractions that require tissue-level coordination. We model the head epithelium as an active viscoelastic nonlinear spring network. The model reproduces the size, timescale and symmetry of mouth opening. It shows that radial contractions, travelling inwards from the outer boundary of the head, pull the mouth open. Nonlinear elasticity makes mouth opening larger and faster, contrary to expectations. The model correctly predicts changes in mouth shape in response to external forces. By generating innervated : nerve-free chimera in experiments and simulations, we show that nearest-neighbour mechanical signalling suffices to coordinate mouth opening. Hydra mouth opening shows that in the absence of long-range chemical or neuronal signals, short-range mechanical coupling is sufficient to produce long-range order in tissue deformations.
Keywords
epithelium, viscoelastic, chimera, strain hardening, nearest-neighbour interaction
Recommended Citation
T. Goel; Ellen M. Adams , '21; April L. Bialas; C. M. Tran; T. Rowe; Sara Martin; Maia Chandler , '25; Johanna Schubert , '23; P. H. Diamond; and Eva-Maria S. Collins.
(2024).
"Nonlinear Elasticity And Short-Range Mechanical Coupling Govern The Rate And Symmetry Of Mouth Opening In Hydra".
Proceedings Of The Royal Society B: Biological Sciences.
Volume 291,
Issue 2017.
DOI: 10.1098/rspb.2023.2123
https://works.swarthmore.edu/fac-biology/699