Stress Responsive Bacteria: Biosensors As Environmental Monitors

Document Type


Publication Date


Published In

Advances In Microbial Physiology


The delicate and dynamic balance of the physiological steady state and its maintenance is well characterized by studies of bacterial stress response. Through the use of genetic analysis, numerous stress regulons, their physiological regulators and their biochemical processes have been delineated. In particular, transcriptionally activated stress regulons are subjects of study and application. These regulons include those that respond to macromolecular damage and toxicity as well as to nutrient starvation. The convenience of reporter gene fusions has allowed the creation of biosensor strains, resulting from the fusion of stress-responsive promoters with a variety of reporter genes. Such cellular biosensors are being used for monitoring dynamic systems and can report the presence of environmental stressors in real time. They provide a greater range of sensitivity, e.g. to sub-lethal concentrations of toxicants, than the simple assessment of cell viability. The underlying physiological context of the reporter strains results in the detection of bioavailable concentrations of both toxicants and nutrients. Culture conditions and host strain genotypes can be customized so as to maximize the sensitivity of the strain for a particular application. Collections of specific strains that are grouped in panels are used to diagnose targets or mode of action for unknown toxicants. Further application in massive by parallel DNA and gene fusion arrays greatly extends the information available for diagnosis of modes of action and may lead to development of novel high-throughput screens. Future studies will include more panels, arrays, as well as single reporter cell detection for a better understanding of the population heterogeneity during stress response. New knowledge of physiology gained from further studies of novel systems, or using innovative methods of analysis, will undoubtedly yield still more useful and informative environmental biosensors.

This document is currently not available here.