Review Of "Correspondence: Karl Ernst Von Baer [1792-1876] And Anton Dohrn [1840-1909]" By C. Groeben And J. Oppenheimer

Scott F. Gilbert
Swarthmore College, sgilber1@swarthmore.edu

Let us know how access to these works benefits you

Follow this and additional works at: https://works.swarthmore.edu/fac-biology

Part of the Biology Commons

Recommended Citation
https://works.swarthmore.edu/fac-biology/384

This Response or Comment is brought to you for free and open access by the Biology at Works. It has been accepted for inclusion in Biology Faculty Works by an authorized administrator of Works. For more information, please contact myworks@swarthmore.edu.
HISTORY, PHILOSOPHY & ETHICS

The Biological Century: Friday Evening Talks at the Marine Biological Laboratory.

In eleven valuable and eminently readable essays, this volume looks at the Biological Century through the lens of the pioneering contributions of many architects of modern biology, all associated with the Marine Biological Laboratory (MBL) in Woods Hole. Based on the renowned “Friday Evening Talks” given during the centennial year of MBL in 1988, the essays also reflect the individual approach the authors (speakers) have chosen to convey their appraisal of some crucial discoveries upon which the biological revolution is based.

Appropriately, the first essay by G. Weissmann deals with the reductionist postulate that biological phenomena can be analysed in terms of physics and chemistry. “[Jacques] Loeb was the leader of the new, mechanistic school of American biology the adherents of which tried to explain the phenomena of biology by the equations of physics and not the quirky logic of vitalism” (p. 9). The centennial year of MBL in 1988 was highlighted by a dedicatory lecture in his honor. Further essays focus on the pioneering work of T. H. Morgan and A. H. Sturtevant (by J. H. Lederberg); of E. G. Conklin and F. R. Lillie on developmental biology (by J. B. Gurdon); of A. Szent-Györgyi on biochemistry (by B. Kaminer); of K. R. Porter on cell ultrastructure (by S. Inoué); of W. J. V. Osterhout on ion permeability in membranes (by C. L. Slayman); of K. C. Cole and A. L. Hodgkin on the electrophysiology of the squid axon (by C. M. Armstrong); of S. Hecht and G. Wald on the molecular basis of vision (by M. L. Applebury); of H. E. Hartline and S. W. Kuffler on visual perception (by T. Wiesel); of C. O. Whitman and W. H. Wheeler on behavioral biology (by E. O. Wilson); and of S. F. Baird, H. Bigelow, and K. Redfield on ecology (by J. E. Hobbie and J. B. Pearce).

This volume reflects the impact of the work and ideas of the above great scientists in the Biological Century. The essays are not intended to convey an overview of a century of discoveries at MBL; some readers would have appreciated a brief indication of how the seminal discoveries were carried further by researchers at the laboratory. Still, this volume also represents a contribution to the historical record of 100 years of existence of the foremost marine biological laboratory in the USA.

ARNOST KLEINZELLER, Physiology, University of Pennsylvania, Philadelphia, Pennsylvania


It is a privilege to listen to intelligent scientists discussing important ideas. The scientists are Karl Ernst von Baer, discoverer of the mammalian egg,
This volume is typical of the kind of book one might find at an airport bookstall or at a museum exhibition where development can be carefully studied. If you do not find the bridle and reins for Darwin's speculations if you keep a structure in an organism could be modified for some other function in its descendants. He certainly didn't believe Dohrn's specific theory that annelids had converted their ventral structures into dorsal structures and were the ancestors of vertebrates. Von Baer wrote that he didn't doubt evolution, but that he doubted the efficacy of natural selection to produce the animal forms. Von Baer believed that more research was the answer and that Hendrik vanLandingham's name nor the correct current name (H. Trinitatis H. Trinitatis?)

Otto Brunfels' "botany took its greatest step with the publication of the Herbarum vivae eicones (1530-36) by Gessner's hyena). The author may have exploited the concept of icon not only for post-Renaissance anatomical illustrations of the classic and medieval herbals may be voluntary in order to confine the knowledge of herbs to the cognoscenti (p. 97). On the other hand, the author defines the idea of scientific icons very well. These are illustrations copied by unscrupulous illustrators that frequently gave rise to iconographic traditions that lasted for centuries (p. 56, Dürer's rhino; p. 72, Gessner's hyena). The author may have exploited the concept of icon not only for post-Renaissance zoological illustrations but also for botanical and anatomical illustrations of the classic and medieval eras. But it seems that illustration in manuscripts was less in favor than the printed illustration, perhaps because it was better known or more accessible.

Let me note, in passing, some inaccuracy in captions. It is improperly stated that "the publication in 1531 of Otto Brunfels's Novi Herbarii marked a move towards a representational strand of botanical illustration" (p. 85). However, it is correctly stated that "botany took its greatest step with the publication of the Herbarum vivae eicones (1530-36) by Otto Brunfels" (p. 89). The caption on page 85 might more usefully have translated the Latin explanation of the figure Viola tricolor (Herba Trinitatis). Everybody realized that poor Brunfels neither knew the Dioscoride's name nor the correct current name (H. Trinitatis was Anemone hepatica, not Viola tricolor) but, as he says,