5-1-1999

Experimental Studies Of Magnetic Reconnection

Michael R. Brown
Swarthmore College, doc@swarthmore.edu

Recommended Citation
http://works.swarthmore.edu/fac-physics/291

This Article is brought to you for free and open access by the Physics & Astronomy at Works. It has been accepted for inclusion in Physics & Astronomy Faculty Works by an authorized administrator of Works. For more information, please contact myworks@swarthmore.edu.
Experimental studies of magnetic reconnection*

M. R. Brown†
Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081-1397

(Received 12 November 1998; accepted 10 February 1999)

Laboratory magnetic reconnection experiments have been performed for nearly 20 years. Elegant experiments by Stenzel and Gekelman [R. L. Stenzel and W. Gekelman, Phys. Rev. Lett. 42, 1055 (1979); W. Gekelman and R. L. Stenzel, Phys. Rev. Lett. 54, 2414 (1985)] focused on the measurement of field quantities with a single movable probe in a highly reproducible plasma. Observations included a very thin current sheet (on the order of \(c/\omega_{pi} \)), accelerated electrons, and whistler waves. The argon ions were unmagnetized in these experiments. Recent magnetohydrodynamic (MHD) experiments by Yamada and Ono have used merging plasmoids [M. Yamada, Y. Ono, A. Hayakawa, M. Katsurai, and F. W. Perkins, Phys. Rev. Lett. 65, 721 (1990); Y. Ono, M. Yamada, T. Akao, T. Tajima, and R. Matsumoto, Phys. Rev. Lett. 76, 3328 (1996)] and have measured three dimensional effects and ion acceleration. We have observed correlations between magnetic reconnection and energetic ion flow events with merging force free spheromaks at the Swarthmore Spheromak Experiment (SSX) [T. W. Kornack, P. K. Sollins, and M. R. Brown, Phys. Rev. E 58, R36 (1998)]. The reconnection layer is measured with linear and two dimensional arrays and ion flow is directly measured with a retarding grid energy analyzer. Flow has been measured both in the plane of the reconnection layer and out of the plane. The outflow velocity is nearly Alfvénic in the reconnection plane and the scale of the magnetic structures is consistent with collisionless reconnection theories (on the order of \(c/\omega_{pi} \)). Results from the two dimensional array show the formation of magnetic islands correlated with super-Alfvénic ions accelerated normal to the layer. © 1999 American Institute of Physics. [S1070-664X(99)6805-2]

I. INTRODUCTION

Magnetic reconnection refers to events in which magnetic flux is locally annihilated resulting in a global change in magnetic topology. In astrophysical contexts, magnetic reconnection occurs when parcels of magnetofluid with oppositely directed flux are merged (for example, when two solar flares are brought together or when a single loop of magnetofluid is twisted or distorted). Intense current sheets are formed at the interface of the merging parcels which convert magnetic energy to heat and energetic particles. In the laboratory, magnetic reconnection occurs when columns of magnetofluid become overly sheared (due to high current) or when separate bundles of magnetofluid are merged.

The paradigm for magnetic reconnection is the merger of two parcels of magnetofluid with anti-parallel flux (see Fig. 1). In the rest frame of either parcel, there is no electric field (and no velocity); simply magnetofluid at rest. The velocities of the parcels stagnate to zero at a neutral sheet which defines a new frame of reference. In the rest frame of the neutral sheet, the parcels are moving in towards the layer. If \(E' = 0 \) in the magnetofluid rest frame, then \(E + v \times B = 0 \) outside the layer in the rest frame of the neutral sheet (by a Lorentz transformation). The role of the electric field is non-dissipative (i.e., purely convective) outside the layer. When the parcels stagnate, the electric field becomes dissipative inside the layer and \(E = \eta J \). This directed electric field is capable of heating plasma and accelerating charged particles to high energies.

The transition from nondissipative drift to a dissipative current sheet and the mechanism for dissipation and breaking of magnetic field lines is a subject of considerable debate. The key idea is that the thickness of the layer adjusts to a scale such that convection is balanced by diffusion. The magnetic lines of force then lose their identity in the layer so that a line associated with one parcel of magnetofluid becomes associated with the other.

It is becoming clear that the sun (and likely other astrophysical magnetofluid) is able to generate and annihilate magnetic flux at all scales. The generation mechanism is evidently some kind of dynamo. There is growing evidence that annihilation via magnetic reconnection plays a crucial role in particle acceleration and heating in astrophysical plasmas. Recently, the Yohkoh satellite has produced dramatic images of solar flares correlating x-ray, magnetic and particle data for the first time. Observations made with the Yohkoh hard x-ray and soft x-ray telescopes have identified the reconnection region at the top of the flare as the site of particle acceleration. Shibata et al. detected jets of upward flowing plasma above the Masuda flare at close to the Alfvén speed \(v_{Alf} \) providing further evidence of reconnection and conversion of magnetic energy to kinetic energy in flares. Doppler shift measurements on the Solar Heliospheric Observatory (SOHO) ultraviolet spectrometer show evidence of bidirectional Alfvénic jets in the reconnection plane. Laboratory experiments can now begin to shed some light on these observations.
In Sec. II, key aspects of reconnection theory are summarized. In Sec. III results from two important sets of reconnection experiments [one at the University of California, Los Angeles (UCLA), the other at Tokyo/Princeton] are reviewed. In Sec. IV, recent results from the Swarthmore Spheromak Experiment are reported.

II. SUMMARY OF RECONNECTION THEORIES

Predictions of the structure and thickness of the reconnection layer depend sensitively on the model used. If parcels of magnetofluid of macroscopic scale \(L \) and with oppositely directed magnetic flux are merged at a velocity of \(v_{in} \) then a boundary layer of thickness \(\delta \) is formed where the opposing flux is annihilated (see Fig. 1). The resistive magnetic induction equation can be written by taking the curl of the magnetohydrodynamic (MHD) Ohm’s law \((E + v \times B = \eta J) \):

\[
\frac{\partial B}{\partial t} = \nabla \times (v \times B) + \frac{\eta}{\mu_0} \nabla^2 B.
\]

Resistive MHD predicts that in steady state the two terms on the right-hand side balance. Writing \(\nabla \sim 1/\delta \) as an inverse scale length across the layer, this condition can be written

\[
R_m = \frac{\mu_0 v_{in} \delta}{\eta} = 1,
\]

where \(R_m \) is the magnetic Reynolds number (the ratio of convection to diffusion) based on the inflow velocity and the thickness of the layer. The assumptions of incompressibility and energy conservation yield

\[
\frac{L}{\delta} = \frac{v_{out}}{v_{in}} = \sqrt{S},
\]

where \(S \) is the Lundquist number based on the macroscopic scale \(L \) (\(S=R_m \) if \(v_{Alf} \) is used for the velocity). Since \(S \approx \eta^{-1} \), resistive MHD predicts \(4,5 \) that the thickness of the layer vanishes like \(1/\sqrt{S} \). Outside the layer, the \(v \times B \) term in Ohm’s law dominates resistivity so the role of the electric field is to generate nondissipative \(E \times B \) flow into the layer (slowly) and out of the layer (rapidly). Since the outflow is limited to the Alfvén speed (by energy conservation), the reconnection rate is limited by thickness of the layer. Inside the layer, the electric field is dissipative but can accelerate charged particles to high energies.

It has recently been shown \(6 \) that in the collisionless limit of large \(S \) (and small \(\eta \)) Hall dynamics and electron inertia govern the scale of reconnection. Clearly, kinetic effects must be considered at small scales. Electron and ion dynamics decouple on scales smaller than the ion inertial length \(c/\omega_{pi} \) and the thickness of the layer is clamped by ion inertia. Electron dynamics generate an inner scale \(c/\omega_{pe} \) where the frozen-in flux constraint is broken and reconnection occurs. Below the \(c/\omega_{pe} \) scale we expect the single fluid MHD model to fail and kinetic effects to dominate. Dynamics at the \(c/\omega_{pe} \) scale where only the electrons are magnetized are often referred to as electron MHD (or EMHD).

Two dimensional resistive MHD simulations \(7 \) predict acceleration of a few particles to super-Alfvénic velocities normal to the layer in addition to the Alfvénic flow across the layer. The super-Alfvénic particles are trapped in “magnetic bubbles” for a few Alfvén times and are accelerated by the self-consistent electric field at the O-point. This energetic tail is predicted to be convected across the layer at \(v_{Alf} \). Collisionless two-and-one-half dimensional (2-1/2 D) hybrid simulations \(8 \) also predict ion beams (as well as in-plane Alfvénic flow) and significant out-of-plane magnetic fields.

As the magnetic flux and electron fluid decouple at the inner scale \(c/\omega_{pe} \) an out of plane super-Alfvénic jet of electron fluid is seen. The electron jet drags flux out of the plane to produce out-of-plane magnetic fields. Much of these interesting dynamics remain to be seen experimentally.

III. RECONNECTION EXPERIMENTS

A. UCLA experiments

The first detailed measurements of magnetic reconnection were performed nearly 20 years ago by Stenzel and Gekelman at UCLA \(9 \) and proceeded through the 1980’s. \(10,11 \) Experiments were performed in a large linear device and plasma was produced by a large (1 m diameter) cathode discharge. The pulsed plasma \((n_e \approx 10^{12} \text{ cm}^{-3}, T_e \approx 10 T_i = 5 \text{ – } 30 \text{ eV}) \) was immersed in a uniform magnetic field \((B_0 \approx 10 \text{ G}) \). Since \(\rho_i \approx R_{chamber} \), the ions are unmagnetized in this experiment.

There were at least two schemes for formation of the reconnection geometry. First, parallel currents could be pulsed through a pair of plates above and below the plasma (see Fig. 2). An induced current flows in the plasma anti-
parallel to the plate current. In a second scheme, the discharge current was masked to allow only a sheet current to flow. Both schemes yielded similar results.

The key technique in the UCLA experiments was to perform careful point measurements of field quantities (\mathbf{B}, \mathbf{E}, \mathbf{v}, n_e, and T_e) using single probes and to rely on the reproducibility of the discharge. The results of several measurements at one location were averaged (25 to 80 discharges) before the probe was moved. The time between discharges was short (2 s) so that hundreds of spatial locations and thousands of discharges could be measured during a run.

The main result was that the average magnetic field topology evolved to a classic double Y geometry with a current sheet thickness intermediate between the electron inertial and ion gyroradius scales ($c/\omega_{pe} < \delta < r_i$) [see Fig. 3(a)]. In addition, the distinctive outflow in the reconnection plane at the Alfvén speed was also verified [see Fig. 3(b)].

Electron temperature and density were measured throughout the reconnection region using rapidly swept electrostatic probes. The kinetic pressure ($p = nkT$) and the magnetic pressure ($B^2/2\mu_0$) can be plotted separately and compared [see Fig. 4; note that the axis in (b) should be labelled 10^{-6}]. The total pressures were shown to be com-
enced by the collisionality of the runaways. The average temperature of the bulk electrons is collisional than the bulk electrons. In addition, anisotropies in the current were carried by runaway electrons which are less influenced by the collisionality of the runaways.

The effective resistance of the plasma was influenced by the collisionality of the runaways (and not the average temperature of the bulk electrons). A large fraction of the current was carried by runaway electrons which are less collisional than the bulk electrons. In addition, anisotropies in $f(v,r,t)$ drive whistler turbulence which (as noted above) affects force balance and tends to increase the effective resistivity of the plasma.

The UCLA experiments were performed at the c/ω_{pe} scale, which is where we expect $\beta \approx 1$, and in the collisionless case, where we expect the frozen in flux condition to be broken. These studies focused on the inner scale of magnetic reconnection. Subsequent experiments at Tokyo, Princeton, and Swarthmore are unable to resolve this inner scale, but reveal some similarities. The key to the future understanding of magnetic reconnection will be in focusing on kinetics (waves and particles) as the UCLA group has done.

B. Tokyo/Princeton experiments

In the 1990’s, magnetic reconnection experiments moved fully into the MHD regime beginning with experiments of Yamada and Ono at the University of Tokyo. The key differences between these experiments and the earlier UCLA experiments were (1) the ions (protons) are fully magnetized $\rho_i \ll R_{chamber}$, (2) arrays of dozens of magnetic probes are used on a single discharge, (3) the current sheet is formed and reconnection proceeds by merging separate bundles of magnetized plasma, (4) the measurements resolve the c/ω_{pi} scale but not the c/ω_{pe} scale, and (5) the reconnection geometry is fully three dimensional.

A variety of formation schemes have been employed (Fig. 5). The Tokyo experiment has focused on $z-\theta$ formation. The Princeton Magnetic Reconnection Experiment (MRX) employs a “flux-core” formation scheme. In both cases, gas is ionized in situ so that plasma is generated with imbedded magnetic flux (forming the magnetofluid). Typical plasma parameters include $n_{e} \approx 10^{14}$ cm$^{-3}$, $T_e \approx T_i = 10−30$ eV and have a typical magnetic field $B_0 \approx 1$ kG.

There are several important results from this work. Yamada and Ono have pointed out the importance of three-dimensional effects on the reconnection rate. The idea is that the simple two dimensional (2D) Sweet–Parker picture is modified by the addition of magnetic flux in the third dimension (see Fig. 6). If the added field is in the same direction in both the upper and lower flux bundles then the reconnection angle is less than 180 degrees and the recon-
nection rate is reduced. An interpretation is that the work required to compress the added flux slows the reconnection rate. If the added field is in opposite directions (top and bottom) then the reconnection angle stays near 180 degrees and the reconnection rate is comparable to the 2D case. Viewed in terms of magnetic helicity, the first case is referred to co-helicity and the second to counter-helicity [the sign of helicity can be written \((I \cdot B) / (\|I\| \|B\|) \)]. The experimental results (Fig. 7) show that merging is much more rapid in the counter-helicity case. In other words, the reconnection rate, which is just the electric field from Faraday’s law, is higher if the local reconnection angle is close to 180 degrees. Except for the relative sign of helicity, these two discharges were identical.

Associated with the higher reconnection rates in counter-helicity merging, they have also observed ion heating and acceleration by Doppler broadening and shifts of line emission \((H_B, C II) \). Figure 8 shows the measured ion temperature profile from Doppler broadening of the \(H_B \) line. Note that the characteristic time for ion heating from 10 eV to 200 eV is only about 10 \(\mu s \) (a few Alfvén times).

Both Y- and O-shaped structures have been observed in the reconnection layer in the MRX device. The double Y topology is observed in “null-helicity” merging (purely two dimensional structure with no toroidal field at all, Fig. 9) while O-points are observed during co-helicity merging. Recent results indicate that classical resistivity is insufficient to explain their observed reconnection rates. However, if the effects of compressibility, pressure differences between up and down stream, and an effective resistivity (due to turbulence) are included, a modified version of the Sweet–Parker theory can explain their results. Note the general similarity of Fig. 9 to the corresponding UCLA result (Fig. 3). The key difference is that a few cm correspond to the ion \(c/\nu_i \) scale in the MRX plasma while a few cm correspond to the electron \(c/\nu_e \) scale in the much less dense UCLA device. There appears to be a self-similarity at both scales.

IV. SWARTHMORE SPHEROMAK EXPERIMENT

We are able to generate force-free spheromaks with magnetized plasma guns at the Swarthmore Spheromak Experiment (SSX) and merge them coaxially. Both one and two dimensional magnetic data are recorded in the plane of intersection of the spheromaks. We observe a rapid formation of a reconnection layer (within a few Alfvén transit times of spheromak formation) followed by the appearance of Alfvénic (suprathermal) ion flow at an electrostatic energy analyzer. We have made ion flow measurements both in and out of the reconnection plane and the flow appears to be predominantly in the plane containing the reconnecting field, although there is some evidence of super-Alfvénic ion flux normal to the layer. The thickness of the reconnection layer is consistent with the collisionless two fluid prediction of \(\delta \approx c/\omega_p \).

The key difference between this and previous work is that the magnetofluid is generated by plasma guns away from the interaction region. Neutral gas is introduced at the remote guns but only fully ionized plasma and imbedded magnetic fields convect into the interaction region. Triple probe measurements yield \(T_e \approx 20 \) eV and \(n_e \approx 10^{14} \) cm\(^{-3}\) for SSX plasmas and our average magnetic field is 500 G. These

FIG. 7. Evolution of the poloidal flux for (a) co-helicity and (b) counter-helicity merging in the Tokyo TS-3 device.

FIG. 8. Evolution of the radial ion temperature profile \(T_i \) on the TS-3 midplane during counter-helicity merging.

FIG. 9. Driven reconnection in the MRX device: Data from a 2D magnetic probe array on a single shot. The double Y topology is observed during null helicity merging. Note the similarity to Fig. 3.
values give $c/\omega_{pi}< \approx 2 \text{ cm}$ and $\delta \leq 1000$ and predict a resistive reconnection layer thickness $\delta < 1 \text{ cm}$. If $T_\parallel \approx T_\perp$, then $\rho_s \leq 1 \text{ cm}$. The collisional mean free path is $\approx 10 \text{ cm}$ and the Alfvén speed is about 10^7 cm/s.

Figure 10 shows the experimental arrangement with the orientation of the linear magnetic probe array. For all the data presented here the spheromaks had opposite magnetic helicity, i.e., both the poloidal and toroidal fields were opposite at the reconnection layer. Counterhelicity merging of coaxial spheromaks corresponds locally to a nearly two dimensional reconnection layer. We are able to change the orientation of the poloidal flux in both the east and west spheromaks on subsequent shots (while keeping the toroidal orientation in each fixed). A switch from right–left merging to left–right merging corresponds to a $\approx 90^\circ$ rotation of the local 2D reconnection plane. In this way we can arrange to have our energy analyzer diagnostic either in or out of the reconnection plane.

The retarding grid energy analyzer (RGEA) consists of a series of grids to suppress electrons ($\leq 10 \text{ V}$) and discriminate ions according to their energy ($0-100 \text{ V}$) in front of a biased Faraday cup for ion collection ($\leq 30 \text{ V}$). The analyzer sits outside the flux conservers (about 50 cm away) and looks between them such that it measures only particles escaping the reconnection layer. Spheromaks communicate across a 2 cm gap via large (12 cm by 9 cm) chevron-shaped slots cut in the back of each flux conserver. Since the spheromaks are formed by external plasma guns, the stray magnetic field and neutral gas levels in the gap are small. The slots force a macroscopic scale of 12 cm (comparable to the spheromak minor radius). The remaining copper in the back walls provide stability against tilting.

In Fig. 11 we present two projections of the magnetic field vectors (in the x-y and x-z planes) at 5 locations across the layer at two different times. The probe separation is 2 cm. For this shot, the east (west) spheromak had left- (right-) handed helicity such that the energy analyzer is in the reconnection plane (as depicted in Fig. 10). Note that at $t_1 = 33 \mu s$ [Fig. 11(a)] a reconnection layer has formed with opposed poloidal and toroidal fields (the magnitude of the largest magnetic field vector is about 1100 G). The thickness of the reconnection layer is evidently about 2 cm consistent with our value of c/ω_{pi}. At $t_2 = 43 \mu s$ [Fig. 11(b)] much of the poloidal flux has been annihilated. Note again that the characteristic time for flux annihilation and energy conversion is very rapid (only about 10 μs or a few Alfvén times).

We have verified the thickness of the layer with a higher resolution probe array (probe separation of 1 cm). In Fig. 12 we show the poloidal field and the inferred $J_z \sim \partial B_y/\partial x$ for a shot similar to that shown in Fig. 11 at t_1. Here the width of the current layer is $\approx 2 \text{ cm}$ consistent with c/ω_{pi}.

Correlated with this flux annihilation event is a delayed burst of plasma flow across the layer. In Fig. 13 we present the magnetic energy density around the layer [Fig. 13(a)] and the signal on the RGEA (proportional to energetic ion flux)
higher average energy than the flux of ions in the plane of reconnection. This is significant because the flux of ions is normal to the layer as predicted by Matthaeus et al., indicating that only high energy ions could be expected to traverse the distance. We find a very low flux of ions at very high energy. In order to illustrate the difference between particle dynamics across the layer versus normal to the layer, we have conducted a preliminary search for super-Alfvénic ion flux normal to the layer as predicted by Matthaeus et al. For this experiment, we added a new port that was angled to directly view the reconnection plane from above. The RGEA was well removed from the experimental region (over 1 m away) so that only high energy ions could be expected to traverse the distance. We find a very low flux of ions at very high energy.

Future work on magnetic reconnection will focus on three dimensional effects and particle acceleration mechanisms. It is becoming clear that resistive MHD is an insufficient model to explain experimental results. Collisionless models incorporating Hall effects and electron inertia will have to be employed. In addition, kinetic effects such as particle distributions and fluctuations (both Alfvénic and whistler) need to be measured.

FIG. 14. Retarding energy analyzer scan in the SSX device. Top: merging spheromaks (in-plane), Alfvénic ions, $E = 70$ eV. Bottom: merging spheromaks (out-of-plane), super-Alfvénic ions, $E = 600$ eV. The data are fit with a simple one parameter model.

FIG. 15. Data from a 2D magnetic probe array on a single SSX shot. The O-point is observed during counter-helicity merging and may play a role in confining energetic particles. Probe resolution is 2 cm.
ACKNOWLEDGMENTS

This work was performed in collaboration with C. Geddes, T. Kornack, P. Sollins, V. Lukin, D. Auerbach, and A. Carlisle (Swarthmore), W. Matthaeus (Bartol), D. Schnack (Science Applications Incorporated), and S. Paul (Princeton). Special thanks to S. Palmer and D. Radcliff for assistance with the apparatus.

This work was performed under Department of Energy (DOE) Grant No. DE-FG02-97ER54422. M.R.B. is a DOE Junior Faculty Investigator.