Accelerated Taylor Plumes For MIF Targets

Michael R. Brown
Swarthmore College, doc@swarthmore.edu

D. A. Schaffner

Holden L. Parks , '16

Ariel B. Rock , '16

Follow this and additional works at: https://works.swarthmore.edu/fac-physics

Part of the Physics Commons

Let us know how access to these works benefits you

Recommended Citation

This work is brought to you for free and open access by . It has been accepted for inclusion in Physics & Astronomy Faculty Works by an authorized administrator of Works. For more information, please contact myworks@swarthmore.edu.
Accelerated Taylor plumes for MIF targets

M.R. BROWN, D.A. SCHAFFNER, H.L. PARKS, A.B. ROCK, Swarthmore College — The SSX plasma device has been converted to a 2.5 m merging plasma wind tunnel configuration. Experiments are underway to study merging and stagnation of high density, helical Taylor states\(^2\) to employ as a potential target for magneto-inertial fusion. Eventually, SSX Taylor states will be accelerated to over 100 km/s and compressed to small volumes either by stagnation or merging. Initial un-accelerated merging studies produce peak proton densities of \(5 \times 10^{15} \text{ cm}^{-3}\). Densities are measured with a precision quadrature He-Ne laser interferometer. Typical merged plasma parameters are \(T_i = 20 \text{ eV}, T_e = 10 \text{ eV}, B = 0.4 \text{ T}\) with lifetimes of 100 \(\mu\text{s}\). Results from a single prototype acceleration coil will be presented, as well as initial simulation studies of Taylor state plasma acceleration using multiple staged, pulsed theta-pinch coils.

\(^1\)Work supported by DOE ARPA-E ALPHA program.