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Does perceived angular declination contribute to perceived 
optical slant on level ground?

Zhi Li and
Department of Psychology and Behavioral Sciences, Zhejiang University

Frank H. Durgin*

Department of Psychology, Swarthmore College

Abstract

When one looks at a spot on level ground, the local optical slant (i.e., surface orientation relative to 

the line of sight) is geometrically equivalent to the angular declination (i.e., sagittal visual 

direction relative to horizontal). In theory, angular declination provides an unbiased proximal 

source of information for estimating optical slant on level ground. Two experiments were 

conducted to investigate whether human visual systems take advantage of this information. An 

aspect ratio task was used as an implicit measure for assessing perceived optical slant. Participants 

gave verbal estimates of the perceived aspect ratio of an L-shaped arrangement, formed by three 

balls on level ground or on slanted surfaces (hills). Gaze direction was held horizontal when 

viewing the stimuli on hills. Experiment 1 examined two optical slants (22° to 35°) at relatively 

short viewing distances (3.1 to 11.5 m), while Experiment 2 tested a shallow optical slant (6°) at 

relatively long viewing distances (5.7 to 17.2 m). No significant difference in perceived aspect 

ratio was found between the level ground and the hill conditions in either experiment. These 

findings suggest that angular declination does not contribute to perceived optical slant on level 

ground. It seems that the perception of optical slant and of gaze declination are independent, and 

this may be because the two variables are normally used jointly to determine a higher order 

perceptual variable – geographical slant.

Keywords

Optical slant; Geographical slant; Angular declination; Scale expansion hypothesis; Aspect ratio

Introduction

Perception of surface orientation is fundamental to vision because objects are covered by 

surfaces. As Gibson (1950) pointed out, visual information of the environment is provided in 

the form of dynamic optical array which is determined by all the visible surfaces in the 

environment (see also Sedgwick 1986). The orientation of a surface relative to the line-of-

sight of the observer is called optical slant (Gibson and Cornsweet, 1952). It has been shown 

that visual cues, such as texture gradient and binocular disparity gradient, contribute to 
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perceived optical slant (Cutting and Millard, 1984; Li and Durgin, 2013). In the present 

study, we consider another potential source of information concerning optical slant: angular 
declination. Whereas angular declination has been demonstrated as a powerful cue for 

perceived egocentric distance in locomotor space (i.e., about 2 to 20 m) (Li, Phillips, and 

Durgin, 2011; Messing and Durgin, 2005; Ooi, Wu, and He, 2001; Wallach and O’Leary, 

1982; Williams & Durgin, 2015), it, theoretically, may also be an excellent source of 

information for judging optical slant on a level ground, because optical slant on level ground 

is geometrically equivalent to the angular declination (Figure 1). Compared to binocular 

disparity cue and texture gradients, angular declination appears to be a simpler cue, and it 

should be perceived more robustly across different viewing conditions. For example, 

perceived angular declination should be less affected by viewing distance, acuity, and 

ocularity (i.e., viewing with one eye or with two eyes). For this reason, angular declination 

appears to be an excellent source of perceptual information concerning optical slant along a 

level ground. Moreover, it has been reported that perceived geographical slant (e.g., the 

slope of a hill) can be strongly affected by ocularity (Gibson and Cornsweet, 1952) and 

viewing distance (Bridgeman and Hoover, 2008; Li and Durgin, 2010). Would these effects 

be mitigated somewhat for perceptual estimates of optical slant on level ground given that 

participants could use perceived angular declination to estimate optical slant on level 

ground?

Apart from local optical slant based on texture gradients and binocular disparity, what other 

evidence might an observer have that a ground surface is, in fact, level (i.e., horizontal)? For 

one thing, ground surfaces that humans normally confront, including outdoor environments 

tend to be horizontal, so that the Bayesian prior should greatly weight the perception of level 

ground when image data do not rule it out. The perceptual exaggeration of perceived hill 

slant can be understood as being useful as a form of deviation coding (Durgin, Hajnal, Li, 

Tonge & Stigliani, 2010), but the assumption of near-to-level ground in the absence of 

strong evidence to the contrary seems reasonable on statistical grounds (e.g., Adams et al., 

2016). Second, there are binocular processes that have been supposed to be relevant to 

detecting a large scale level ground plane, such as the observation that the empirical horopter 

may lie along the ground plane when gaze is forward and fixation is at infinity (Helmholtz, 

1866; Tyler, 1991), providing a basis for an observer to detect deviations from planarity and 

from the horizontal. In principle, the binocular detection of planarity over a large area (e.g., 

Rogers & Bradshaw, 1993) might also contribute to the ability of the visual system to 

generalize from near space to farther space on a level ground plane when the ground is 

continuous (see also Wu, Ooi & He, 2004). Thus, there are many reasons to suspect that 

human observers would have additional evidence about the orientation of a continuous level 

ground surface that, combined with angular declination information, could be more accurate 

and more precise than the local measurement of optical slant. In this situation, using angular 

declination as an additional source of information about local optical slant on a level ground 

surface might improve or refine estimates of optical slant.

The goal of the present study is to examine whether angular declination contributes to 

perceived optical slant on level ground. In the literature, several methods have been used to 

assess perceived slant, such as verbal estimation (e.g., Proffitt, Bhalla, Gossweiler and 

Midgett, 1995), 2D orientation matching (e.g Li and Durgin, 2009), palm-board gesturing 
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(e.g., Proffitt et al., 1995), free-hand gesturing (e.g., Li and Durgin, 2011), and aspect ratio 

estimation (e.g., Li and Durgin, 2010). We decided to avoid explicit methods of slant 

estimation, such as verbal estimation, which is susceptible to strategies, and to avoid visual, 

haptic or proprioceptive matching, which are known to have biases of their own (e.g., 

Durgin, Hajnal, Li, Tonge & Stigliani., 2010; Durgin & Li, 2011a; Li & Durgin, 2012; 

Shaffer, McManama, Swank, Williams & Durgin, 2014). These were deemed unsuitable for 

the present study because using angular declination to explicitly judge optical slant on level 

ground could be an explicit strategy. Instead, we chose the aspect ratio task, because it acts 

as an implicit measure of perceived optical slant.

An aspect ratio task involves a judgment of perceived shape (i.e., perceived aspect ratio of an 

L-shaped configuration). The idea of using perceived shape to assess perceived slant can be 

traced back to Koffka (1935) who first assumed an invariant link between apparent shape 

and apparent slant. Beck and Gibson (1955) followed Koffka’s idea and came up with a 

more restricted assumption, i.e., ‘a retinal projection of a given form determines a unique 

relation of apparent shape to apparent slant’, which is known as the shape-slant invariance 
hypothesis. As predicted by the shape-slant invariance hypothesis, induction of biases in 

perceived slant (e.g., under impoverished viewing conditions) would introduce bias in 

perceived shape (e.g., Beck and Gibson, 1955; Epstein, Bontrager and Park, 1962). 

Conversely, misperception of shape may also reflect bias in perceived slant. Li and Durgin 

(2010) showed, using high-fidelity virtual reality, that aspect ratios on geographical slants 

(i.e., hills) were misperceived. The bias in perceived aspect ratio was highly consistent with 

the bias in explicitly estimated geographical slant measured in the same virtual environment 

using verbal estimation. They also reported that a slant model based on their aspect ratio 

data could quantitatively explain slant exaggeration of real hills reported in classic verbal 

data (i.e., that of Proffitt et al., 1995). According to Li and Durgin, if the aspect ratio stimuli 

with an actual in-depth to frontal ratio, R, is presented on a surface with an actual optical 

slant, β, then the apparent optical slant, β′, can be obtained from the apparent aspect ratio R
′ (Equation 1, refer to Li and Durgin, 2010 for detailed mathematical deduction).

β′ = sin−1 R
R′ sinβ (1)

Another piece of evidence suggesting that perceived aspect ratio depends on optical slant 

was reported by Loomis and Philbeck (1999, see also Loomis, Philbeck and Zahorik, 2002), 

who observed that, for the same physical aspect ratio, bias in the perceived ratio was greater 

when viewed monocularly than that when viewed binocularly. This finding in perceived 

aspect ratio is consistent with the result in perceived slant – perceived slant is also more 

biased in monocular viewing condition (the frontal tendency, Gibson and Cornsweet, 1952). 

Moreover, Loomis and Philbeck (1999) also found that bias in perceived aspect ratio was 

scale-invariant in monocular viewing conditions, i.e., perceived aspect ratio was not affected 

by viewing distance when viewed with one eye. This is also consistent with monocularly 

perceived slant, which is mostly determined by texture cues.
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Studies of perceived ground extents at increasing distances were originally used to suggest 

that perceived ground distance is increasingly compressed with distance (e.g., Gilinsky, 

1951). However, with observers at a constant eye-height, distance and optical slant are 

normally confounded in these studies, as noted by Loomis and Philbeck (1999). We gathered 

together data from aspect ratio tasks reported in 7 different studies involving 11 different 

groups of participants all tested in well-lit, natural environments (see Table 1). We computed 

the mean physical aspect ratios (sagittal/frontal) that appear as 1:1 ratios, for each cell of 

each experiment (a total of 128 data points), including only binocular conditions, except 

when the viewing surface was a table (very near space). These values are plotted as a 

function of optical slant (Figure 2A) and as a function of viewing distance (Figure 2B), 

breaking out the data that differed in eye-height (which breaks the correlation between 

viewing distance and optical slant) or ocularity. Consistent with the model of Li and Durgin 

(2010), these data (particularly those that manipulate eye-height) show that bias in perceived 

aspect ratio is tightly correlated with optical slant while only secondarily affected by 

viewing distance. For example, raising the eye-height, while controlling for optical slant, 

seems to increase the ratios slightly - as a function of increased viewing distance (Figure 

2A). But when plotted with respect to viewing distance (Figure 2B) increased eye-height 

(and thus increased optical slant) decreases the bias in ratios substantially, which is clearly a 

result of the increased optical slant while controlling for viewing distance (Figure 2B).

Because the purpose of the present study is to investigate whether angular declination may 

contribute to perceived optical slant on level ground, Experiment 1 compared perceived 

aspect ratios on level ground with perceived aspect ratios on hill surfaces. Optical direction 

to the target was horizontal in the hill surface condition, so that angular declination provided 

no information about the actual optical slant. The viewing distance, ocularity (all 

participants viewed the scene binocularly) and optical slant were matched across the 

different surfaces (hill or level ground). Whereas there were empirical data on perceived 

aspect ratio on level ground, to our knowledge, perceived aspect ratio on slanted surfaces has 

not been studied in real environments.

Experiment 1

Methods

Participants.—Sixteen undergraduate students from Swarthmore College participated in 

this experiment for payment. This is twice the modal number tested in the studies 

summarized in Figure 2. All the participants had normal or corrected-to-normal vision and 

were not made aware of the hypotheses under consideration. The experimental procedures 

reported in this article were approved by the local research ethics committee.

Environments.—The experiment was conducted in three outdoor fields located in the 

campus of Swarthmore College, including two hills and a level open field with a large 

bleacher nearby, which allowed us to manipulate optical slant and viewing distance 

independently. All the fields were covered with lawn. The aspect ratio stimuli were 

composed of three white foam balls arranged in an L-shape. The size of the ball was scaled 

to viewing distance, with a fixed angular size of 0.6°. The size of the frontal extent of the L 
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shape was also scaled to viewing distance, with a fixed angular size of 7.2°. There were two 

testing conditions: the hill condition and the level ground condition. In the hill condition, the 

balls were laid on the surface of a hill, with the corner ball being at eye level (Figure 3A). 

Two hills were used. One had an inclination of 22° and the other of 35°. Both were 

approximately planar in the testing area. Two viewing distances were tested for each hill. For 

the 22° hill, the distances were 6 and 11.5 m. For the 35° hill, the distances were 3.1 and 7.5 

m. For the hill conditions, the eye height of the observers from the level ground on which 

they stood, was held at 1.8 m using an adjustable pile of rigid pads. In the level ground 

condition, the balls were laid on a level ground and the participants stood either on the 

ground or on the stairs of a bleacher (Figure 3B). The optical slant and viewing distance in 

the ground condition matched those in the hill condition for each participant. Pads were 

again used, as necessary, to match the intended viewing points for each target.

Procedure.—Participants were tested in the two surface conditions in separate blocks. Half 

of the participants did the hill condition first, the other half did the level ground condition 

first. The order of the four (Distance × Slant) combinations were randomized in each block. 

For each of the combinations, 4 trials were conducted for each participant. In the first two 

trials, the physical aspect ratio of the L-shaped configuration (in-depth/frontal) was either 

0.5 or 2.5, in a random order. The participant’s task was to give numeric estimates of the 

perceived aspect ratio in each trial. Their estimates were immediately used to calculate the 

physical ratio that would be perceived as 1:1 by the participants (the mean reciprocal of the 

ratio of aspect ratio in the first two trials, following Loomis and Philbeck, 1999). The 

calculated ratio was then used as the physical stimuli ratio in the third trial. After the third 

estimate was collected, the estimates of all three trials were then used once more to calculate 

the physical ratio that would be perceived as 1:1, which then served as the stimuli ratio for 

the fourth trial. This method was intended to collect data near the perceived unity point. 

Although the modal response was “1:1” on the third trial, most responses (59%) still differed 

from 1.0, with a mean (unsigned) deviation of 0.11 overall. Even at the fourth trial, 47% 

differed from 1.0, with a mean deviation of 0.08. The experiment normally lasted 45 minutes 

for each participant.

Results

The ratio between the actual aspect ratio and the reported ratio was computed for each trial, 

and averaged across the four trials collected for each participant for each testing condition. 

Note that this ratio of aspect ratios (RAR) is the reciprocal of the measure used by Loomis 

and Philbeck (1999). The mean RARs across participants are plotted for the eight (Distance 

× Slant × Surface) testing conditions separately in Figure 4 (top panel). The mean RAR 

varied across the different slant-distance combinations, but there is no apparent effect of the 

surface condition (i.e., level ground vs. hill). A within-subject analysis of variance 

(ANOVA) was conducted on the complete RAR data. Factors were surface type (Level 

ground or Hill), optical slant (22° or 35°), and viewing distance (Near or Far). Reliable main 

effects in the expected directions were found for optical slant, F(1, 15)=77.3, p < .001, η2 = 

0.691, and for viewing distance, F(1, 15) = 10.8, p =.005, η2 = 0.063. No main effect was 

found for the surface type, F(1, 15) = 2.01, p = .177, η2 = 0.018.
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Because each participant participated in both the hill and the level ground conditions, it 

seemed important to ensure the null finding in surface condition was not due to the 

contamination between the two conditions. We therefore analyzed the data from the first 

block alone. In this way, the design becomes between-subject. The result is shown in Figure 

4 (bottom panel), which is similar to the overall results (i.e., Figure 4, top panel). An 

ANOVA was used to analyze the data. The surface condition becomes a between-subject 

variable, while slant and distance remained within-subject variables. A significant main 

effect was found for slant, F(1, 14) =60.7, p <.001, η2 =.559, and for distance, F(1, 14) = 

6.36, p =.024, η2 =.042; but no significant effect of surface condition was found, F(1, 14) = 

0.02, p =.882, η2 <.001.

Discussion

As we have proposed in the introduction, perceived optical slant on level ground may be 

determined by angular declination. Experiment 1 showed that, whereas perceived aspect 

ratio depends on both optical slant and viewing distance, there is no difference in the ratio of 

aspect ratio (physical ratio/estimated ratio) whether the stimuli was presented on level 

ground or on a hill surface. There are two possible explanations to account for the present 

findings: 1) Angular declination does not contribute to the perception of optical slant on 

level ground; 2) The function relating perceived angular declination to actual declination is 

the same as that relating perceived to actual optical slant on the level ground (perhaps due to 

long-term association). Durgin and Li (2011b) showed that perceived angular declination is 

almost linearly exaggerated, with an angular gain of 1.5 in the range from 0° to 50°. In 

contrast, perceived optical slant can be determined by actual aspect ratio and perceived 

aspect ratio using Equation 1 (following Li and Durgin, 2010, Equation 5). We thus 

calculated the angular gain in perceived optical slant from the aspect ratio data of 

Experiment 1 (the ratio of aspect ratio is used as an approximation of the physical ratio to be 

perceived as 1:1 ratio). The mean angular gain across the four tested slant-distance 

combinations is 1.52 in the level ground condition and is 1.49 in the hill condition, which is 

pretty similar to the 1.5 angular gain of the perceived angular declination observed in 

previous studies (Durgin & Li, 2011b; Li & Durgin, 2009). This result apparently supports 

the possibility that the perceptual gain of angular declination might be essentially the same 

as that of perceived optical slant. If this is the case, then we would not expect to see 

differences in means between the hill and ground-plane conditions, but only in the precision 

estimates; but our procedure was not designed to measure precision.

For this reason, we decided to investigate whether there was a distance effect in perceived 

slant on level ground. The distance effect of perceived slant has been demonstrated mostly in 

geographical slant, i.e. surface slant relative to true horizontal (Bridgeman and Hoover, 

2008; Li and Durgin, 2010, 2013). Would the effect of distance be lessened for perceived 

optical slant along level ground? Li and Durgin (2010; see also Li and Durgin, 2013) 

suggested that the distance effect on perceived slant is more salient for shallow slants. In 

their data obtained from perceived aspect ratios on virtual hills, the distance effect was more 

salient for the 6° slant than that for the 24° slant.
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Indeed, it is possible to compute the implied perceived slant for each of the previously 

reported data points we plotted in Figure 2. To do this, we simply compute the arcsin of the 

projected sagittal/frontal ratio that is perceived as being equilateral. A plot of these inferred 

perceived slant values against the true slant values, is shown in Figure 5, along with lines 

representing both the actual slant and slant values of 1.5 times the actual slant. In this plot it 

is evident that the historical data departs most clearly from a 1.5 gain in implied perceived 

slant for smaller optical slants.

Based on these considerations, in Experiment 2 we sought to compare hills and level ground 

with a shallow optical slant viewed at a typical viewing distance for level ground, and we 

also sought to examine the effect of viewing distance with an aspect ratio task conducted on 

level ground, varying eye-height so as to keep optical slant constant while varying viewing 

distance. Even if we find effects of viewing distance on perceived aspect ratio on level 

ground, such effects might be reduced relative to those on hills. Indeed, because such a 

circumstance would maximize the difference between the hypothesized gaze estimate from 

gaze declination and from other sources (such as texture and stereo) that specify optical 

slant, we have more basis to expect mean differences between hill and ground conditions. 

That is, with low slants, viewed at far distances, we could be more confident that an 

influence of gaze information should lead to a difference in perceived optical slant inasmuch 

as the optical slant estimate on a surface with minimal slant is more divergent from the true 

optical slant.

Experiment 2

In Experiment 2, we examined a shallow optical slant (6°), for which prior studies of slant 

perception suggest that distance effects on perceived slant would be particularly prominent 

(Li & Durgin, 2010, 2013). If perceived aspect ratios on level ground are different from 

perceived aspect ratios on a hill, the difference should be easiest to detect in shallow slants 

viewed at a distance.

Method

Participants.—Seventeen undergraduate students from Swarthmore College participated 

in this experiment for pay (a scheduling anomaly caused there to be 17 rather than 16 

participants). All participants had normal or corrected-to-normal vision. None had 

participated in Experiment 1.

Environments.—The experiment was conducted in three outdoor fields located in the 

campus of Swarthmore College, including a large 6° hill (which was approximately planar in 

the testing area), a large level open field, and a level platform (the grassy stage of the 

Swarthmore College amphitheater) 1.2 m higher than the adjacent ground (Figure 6). All the 

fields were covered with short grass. The aspect ratio stimuli consist of three white foam 

balls. The size of the foam balls was scaled to the viewing distance so that the retinal size 

was fixed at 0.5°. The frontal extent of the L-shape was also scaled to viewing distance, with 

a retinal size of about 7.2°. The 3 balls were either presented on the level surfaces or on the 

hill surface. Four viewing distances (5.74, 9.57, 13.39, and 17.22 m, corresponding to eye-

heights of 0.6, 1.0, 1.4, and 1.8 m) were examined in the level surface condition by adjusting 
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the participant’s eye height relative to the level surface (with the help of a chin rest on a 

tripod, and adjustable pads underfoot), while keeping the optical slant fixed at 6°. For 

practical reasons, only the farthest viewing distance (17.14 m) was tested in the hill surface 

condition, in which the gaze direction was horizontal but the optical slant was also 6°.

Design and Procedure.—A within-subject design was used. Each participant gave verbal 

estimates of aspect ratios in both hill and level ground conditions at an optical slant of 6°. 

One hill condition (viewed from 17.14 m) and four level ground conditions (with viewing 

distances of 5.74, 9.57, 13.39, and 17.22 m) were examined. The order of the conditions was 

randomized and was counterbalanced across participants. In each condition, 5 consecutive 

trials of verbal estimation of the perceived aspect ratio were collected. The actual aspect 

ratio of the first three trials was pre-determined. In the first trial, the in-depth to frontal ratio 

was randomly chosen from 2.0, 3.0 or 4.0. The aspect ratios in the second and third trials 

were always 1.0 and 5.0, with half participants shown the 1.0 ratio first and the other half 

shown the 5.0 ratio first. The aspect ratio in the fourth trial was calculated from the 

participants’ first three estimates (using Equation 1), so that the ratio would match the 

perceived 1:1 ratio of that participant. The aspect ratio in the fifth trial was calculated based 

on all four former estimates to match the participant’s perceived 1:1 ratio.

Results

The mean ratio of aspect ratios (physical ratio/estimated ratio) of the 5 trials in each testing 

condition was calculated for each participant. The mean RARs across participants are 

plotted for the five testing conditions separately in Figure 7. It is clear that the RARs 

increased with viewing distance in the level ground condition. A one-way within-subject 

analysis of variance (ANOVA) was conducted on the aspect ratio data of the level ground 

condition. A significant main effect was found for viewing distance, F(3, 48) =19.46, p<.

0001,η2 =.047. A paired t-test conducted on the aspect ratio data in the farthest viewing 

distance found no reliable difference between the level ground condition (M=2.94; 

SE=0.36), and the hill condition (M=2.85, SE=0.31), t(16) = 1.257, p =.227. (Nor was there 

any reduction in variance for the level surface relative to the hill.)

Discussion

Experiment 2 examined a shallow optical slant (6°) with different viewing distances. We 

observed a significant distance effect on the ratio of aspect ratio (physical ratio/estimated 

ratio), which indicated that perceived optical slant was clearly affected by viewing distance 

even on level ground. This is different from perceived angular declination, which is largely 

invariant with viewing distance. Moreover, with the shallow optical slant (6°), the slant gain 

becomes much larger (2.0 to 3.0) than the 1.5 gain observed in perceived angular declination 

(e.g., to targets on a grassy field; Durgin & Li, 2011b, Expt. 1). These results suggest that 

the perceptual function of optical slant along level ground is different from that of angular 

declination, at least for small optical slants. Most important, for the farthest ground surface 

and hill surface, where the discrepancy between the observed optical slant ratio (~2.9) and 

the 1.5 gain predicted by the angular declination model was greatest, the observed slant ratio 

on the ground was essentially identical to that on the hill. Combining the results of 

Experiment 1 and 2, the present findings strongly suggest that angular declination is not 
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used by the visual system to determine the optical slant along level ground, even though it is 

a potentially reliable source of relevant information.

In passing, we note that the implicitly-measured exaggeration of perceived optical slant 

observed here for a shallow hill is very similar to the overestimation found for explicit verbal 

reports of hill slants (i.e., the aspect-ratio results indicate that the 6° hill was perceived as 

being about 17°), yet did not differ between hills and level ground. Although our study was 

not intended to address this issue, this does seem to cast doubt on theories of hill slant 

exaggeration based on energy expenditure (e.g., Proffitt et al., 1995; see also Durgin, Baird, 

et al., 2009).

General Discussion

In the present study, we examined whether angular declination information contributes to 

perceived optical slant on level ground. We employed the aspect ratio task as an implicit 

measure to assess perceived optical slant (following Li and Durgin, 2010). The aspect ratio 

data in the level ground condition were compared to that in the hill condition, where angular 

declination information was irrelevant. Even when there was a large discrepancy between 

the angular gain expected from gaze declination and the angular exaggeration observed for a 

shallow, distant hill, no difference was observed in the matched level-ground case. This 

strongly suggests that angular declination does not contribute to the estimation of optical 

slant on level ground.

The present results are somewhat surprising because we might have expected that perceived 

aspect ratio on level ground would be more accurate than that on a hill. As Gibson (1950) 

pointed out, the ground plane is important to visual space perception of terrestrial animals. It 

has been observed that many visual cues of the spatial layout may rely on the presence of a 

level ground. For example, angular declination (also known as the slope of regard or height 

in the field) only works as an absolute egocentric distance cue when the target is on level 

ground (Ooi, Wu, and He, 2001; Wallach and O’Leary, 1982). Consistent with the idea that 

the ground plane is special, several studies have shown that ground plane dominates the 

ceiling in the spatial layout perception (Bian, Braunstein and Andersen, 2005, 2006; Kavšek 

and Granrud, 2013); and perceived exocentric distance was also less biased when targets 

were on the ground than when they were attached on the ceiling (Bian and Anderson 2011).

A theoretical advantage of level ground over a hill, for perceiving optical slant, is that the 

(0°) geographical slant of the ground plane carries information so that once angular 

declination is known, optical slant can be calculated. Knowing the geographical slant of the 

ground would be particularly useful in determining optical slant. However, the present 

finding that perceived angular declination does not contribute to perceived optical slant (at 

least for small optical slants) suggests that perceived geographical slant of the ground is a 

high-order perceptual variable, whereas the perceived optical slant and perceived angular 

declination are low-order (earlier, or more primitive) perceptual variables. Low-order 

variables are presumed to be used by the visual system to compute high-order variables. 

Indeed, for the visual system, knowing the geographic orientation of the ground plane is 

quite important because it is directly relevant to locomotion (or plan of locomotion) along 

the ground. Determining the geographical slant of a surface requires an external reference 
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frame (such as that provided by angular declination, and the implicit horizon). In contrast, 

several visual cues (e.g., binocular disparity and texture cues) can be used to determine 

optical slant, which is defined relative to the direction of observation.

The geographical slant of a surface seems to be what we consciously experience. This 

accessibility to consciousness presumably makes perceived geographical slant more stable 

and robust across different viewing conditions (i.e., slant constancy), which would be very 

important for maintaining a rigid representation of the environment during navigation. 

Indeed, participants have been found to be better at discriminating geographical slant than 

optical slant (Sedgwick & Levy, 1985). When observers were asked to give explicit 

judgment about geographical slants, their estimates were fairly robust (i.e., with similar bias 

functions) even when the angular declination was quite different (Durgin, Li & Hajnal, 

2010). However, the more rigid and robust perception of geographical slant over optical slant 

does not imply that perceived geographical slant is computed prior to perceived optical slant 

– it may instead signify that optical slant, per se, is simply not readily accessible to 

consciousness.

Gibson (1950) proposed that space perception is based on the optic array. Both angular 

declination and optical slant involve optical information contained in the optic array. It is 

possible that perceived geographical slant is computed from perceived optical slant and 

perceived angular declination. Li and Durgin (2009) found that the perceived geographical 

slant of a large downhill surface changed with the distance between the observer and the 

edge of the downhill slope, i.e., a steep downhill slant appears shallower from nearer the 

edge of the slope. They also showed that this failure of constancy in perceived geographical 

slant could be explained quantitatively by assuming that the perceived downhill slope is 

quantitatively consistent with combination of perceived angular declination and perceived 

optical slant.

We note that the mismatch between perceived angular declination and perceived optic slant 

for small optical slants at a distance means that the perceived geographical slant of a level 

ground plane may tend to be non-zero in the distance where optic slant is low, and viewing 

distance is high. This observation is consistent with the phenomenology used by Wu et al. 

(2004) to argue for their intrinsic bias hypothesis, but provides an alternative explanation in 

terms of optical slant rather than geographical slant.

In conclusion, the present findings suggest that perceived angular declination does not 

contribute to the perception of optical slant on level ground. This independence of these two 

optical variables can be understood as reflecting an unwillingness to assume a level ground 

plane. After all, detecting ground plane deviations from horizontal probably requires that the 

system not assume that the ground plane is horizontal. Rather the visual system may rely on 

two other optical variables (angular declination and optical slant) to compute a higher order 

perceptual variable – geographical slant. Detecting deviation of the ground from horizontal 

is critical for the planning and control of motor action – which may be why geographical 

slant is more accessible to awareness than is optical slant.
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Figure 1. 
The optical slant, β, on level ground is geometrically equivalent to the angular declination, 

Ƴ.

Li and Durgin Page 13

Atten Percept Psychophys. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
A graphic summary of the results of the studies listed in Table 1. The physical aspect ratio 

perceived as 1:1 is plotted as a function of optical slant (A) and as a function of viewing 

distance (B) for all the aspect ratio data in Table 1. Eye-heights from 1.5 to 2.0 m are 

considered “normal”
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Figure 3. 
Diagram depicting the environments used in Experiment 1. Panel A shows the setup in the 

hill condition, and Panel B shows the setup in the level ground condition.

Li and Durgin Page 15

Atten Percept Psychophys. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Results of Experiment 1. The mean RAR (physical ratio/estimated ratio) across all the 

participants is plotted for each of the eight surface-slant-distance combinations. Top panel 

shows the overall results. Bottom panel shows that of the first block only, where hill and 

level ground conditions represent between-subject comparisons. Error bars represent the 

95% confidence intervals.
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Figure 5. 
Data from the outdoor studies in Table 1 interpreted in terms of the implied perceived optical 

slant. A dashed line representing an angular gain of 1.5 is also shown. Such a gain would be 

consistent with perceived angular declination as measured by multiple techniques (e.g., 

Durgin & Li, 2011b).
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Figure 6. 
Diagram depicting the environments used in Experiment 2. The experiment was conducted 

on a large 6° hill (A), a level stage of an amphitheater (B), and a large level open field where 

participants either stood or kneeled to obtain two different eye-heights (C).
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Figure 7. 
Results of Experiment 2. The mean ratio of aspect ratio (physical ratio/estimated ratio) 

across all the participants is plotted as a function of viewing distance and surface condition 

(level surface vs. hill). Error bars represent the 95% confidence intervals.
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Table 1.

Data used in constructing Figure 2

Source experiment N Eye-height Surface Ocularity Unique cells
a

Beusmans (1998), Expt. 2 8 normal grass binocular 35

Kudoh (2005), Expt. 1 10 normal grass binocular 30

Loomis et al. (1992), Expt. 1 10 normal grass binocular 15

Loomis et al. (1992), Expt. 2 10 normal grass binocular 15

Loomis & Philbeck (1999) 8 normal grass binocular 6

Loomis & Philbeck (1999) 8 raised (5.85 m) grass binocular 6

Loomis et al. (2002), Expt. 1 8 normal floor binocular 3

Loomis et al. (2002), Expt. 1 8 lowered (0.18 m) table binocular 3

Loomis et al. (2002), Expt. 1 8 lowered (0.18 m) table monocular 3

Loomis et al. (2002), Expt. 2 8 lowered (0.41 m) table binocular 3

Loomis et al. (2002), Expt. 2 8 lowered (0.41 m) table monocular 3

Philbeck (2000), Expt. 1 11 normal floor binocular 3

Wu et al. (2004), Expt. 2 10 normal grass binocular 3

a.
Represents the number of unique combinations of extent sizes and viewing distances.
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