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Large Sample Statistical Study of Three-Dimensional Magnetic

Reconnection at the Swarthmore Spheromak Experiment

Solomon Murdock

2 June 2024

Abstract

Many plasmas can be described by ideal magnetohydrodynamics (MHD). A key result of ideal MHD

is the frozen-in-flux theorem which states that the magnetic field stretches and bends with the motion

of the plasma. The frozen-in-flux theorem is violated during magnetic reconnection, the annihilation of

magnetic flux within a plasma. During reconnection, non-ideal MHD effects dominate plasma dynamics.

The dynamics of magnetic reconnection is an unsolved problem in plasma physics. Most prior laboratory

studies of magnetic reconnection examined reconnection in 2D scenarios, scenarios with a single ignorable

coordinate. The SSX device was used to merge twisted ropes of plasma called Taylor states which undergo

3D magnetic reconnection, reconnection without an ignorable coordinate, as they collide. The merging

occurs in an unconfined volume at the center of SSX. The experiment measured the line averaged electron

density and ion temperature along two different chords in the SSX midplane and measured the magnetic

field on a grid of 16 coplanar positions in the merging region. We recorded data on 604 instances of

Taylor state merging. The merging of Taylor states involves oscillations in density, magnetic energy, and

ion temperature. Each quantity attains multiple significant peaks during each shot. The geometry of

the current density in the merging region varies over the course of each shot. We calculated 11 summary

statistics for each shot including the average and peak density, ion temperature, and magnetic energy and

report their distributions. Neither average or peak magnetic energy is correlated with average or peak

ion temperature despite ion heating being a known consequence of magnetic reconnection. The merging

of Taylor states is much more complex and dynamic than two-dimensional magnetic reconnection.
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1 Introduction

1.1 Plasma

A plasma is an ionized gas, a gas that contains negative electrons and positive ions. Plasma is rarely observed

on earth, because free electrons and positive ions attract each other and spontaneously combine to form atoms

or molecules depending on the nature of ions. However, at high temperatures, electrons have enough energy

to remain detached from their respective ions. Familiar examples of plasma include the matter that makes

up stars, the interstellar medium, and lightning. Plasma can also be created in the laboratory by heating

an ordinary gas to high temperatures.

The charges in a plasma can move to generate currents within the plasma. These currents create a

magnetic field just like currents in wires. The magnetic field created by the currents in the plasma exerts a

force on the currents. When the magnetic field exerts a strong enough force on the plasma to significantly

affect its behavior, we call the plasma a magnetized plasma. What is considered significant depends on the

precision of the measurements being made on the plasma. If the magnetic field is necessary to describe the

observed plasma dynamics, the plasma is considered magnetized. There is a complex interplay between the

current and magnetic field in a magnetized plasma, because two processes are simultaneously at play. The

current geometry determines the magnetic field, and at the same time, the magnetic field exerts forces on

the plasma driving the currents.

1.2 The Problem of Magnetic Reconnection

There are three main models of a plasma, the Vlasov model, the two-fluid model, and magnetohydrodynamics.

Magnetohydrodynamics, MHD, is actually a family of very closely related theories rather than a single theory.

It includes many variants, such as resistive MHD and ideal MHD, which will be detailed later in this thesis.

The simplest model of a plasma, ideal MHD, is a special case of the two-fluid model which itself is a special

case of the Vlasov model. Upon making certain assumptions, the two-fluid equations can be simplified to

the ideal MHD equations. Ideal MHD is able to describe most of the dynamics of many plasmas including

the solar corona, the interstellar medium, and the plasma inside a tokamak, a potential configuration for a

nuclear fusion reactor. However, these plasmas do display some deviation from ideal MHD.

Within the framework of ideal magnetohydrodynamics, one can prove Alfv́en’s theorem which is also

known as the frozen-in-flux theorem. This theorem, which will be proved later in this thesis, states that the

magnetic flux through any closed surface which moves along the velocity field of the plasma is constant. As

the particles that make up the plasma move, the magnetic field lines stretch and bend as if they are attached

to the fluid. When the frozen-in-flux theorem holds, the magnetic field in a plasma can be thought of as

being frozen into the plasma.

Ideal MHD plasmas have been observed to stop obeying ideal MHD during a phenomena known as

magnetic reconnection. Magnetic reconnection is the annihilation of magnetic flux due to the overlap of

oppositely directed field lines. One way magnetic reconnection can occur is when two ideal MHD plasmas

with oppositely directed magnetic fields collide as in Figure 1a. Ideal magnetohydrodynamics says that

magnetic flux is frozen into each plasma. In theory, this prevents the plasmas from merging and leads to

the formation of a large magnetic field gradient as shown in 1b. This is because, if any particles flowed from

one plasma into the other, they would drag the magnetic field with them according to Alfv́en’s theorem.

However, this magnetic field would immediately cancel with the oppositely directed magnetic field of the
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other plasma. The absence of magnetic field at the merging site would then contradict Alfv́en’s theorem.

Consequently, plasmas with oppositely directed magnetic fields cannot merge within the framework of ideal

MHD. However, studies of plasma merging have not detected a high magnetic field gradient as ideal MHD

predicts. Instead, ideal MHD breaks down, the two distinct plasmas merge into one, and the field lines

slip through the plasma and cancel with each other. This leads to the magnetic field geometry shown in

Figure 1c. This is a change in magnetic topology, because the field lines in the independent plasmas before

the merging were not connected. After the merging, those field lines are connected. The process is called

magnetic reconnection, because the field lines of each plasma start separate, but when the plasmas merge,

both plasmas’ field lines break and then reconnect to form lines that span both plasmas as in Figure 1c.

Figure 1: The merging of ideal MHD magnetized plasmas with oppositely directed magnetic fields. The
prediction of ideal MHD and what is actually observed are shown. The predictions of ideal MHD do not
agree with observation. (a): Two plasmas with frozen in flux. (b): Ideal MHD prediction of plasma collision.
Plasmas cannot merge because merging would violate Alfv́en’s theorem. The collision creates a high magnetic
high gradient between the two plasmas. (c): Observed result of plasma collision. Plasmas merge and field
lines reconnect causing a change in magnetic topology. [1]

The problem of magnetic reconnection can be phrased as follows: How can we modify ideal magnetohy-

drodynamics in order to allow it to describe magnetic reconnection? Which assumption that were made in

deriving ideal MHD were incorrect in the conditions under which magnetic reconnection occurs?

Magnetic reconnection can be studied in both astrophysical plasmas and plasmas generated in the labora-

tory. Reconnection studies on astrophysical plasma usually have lower spatial resolution than measurements

on laboratory plasmas, because spacecraft constellations designed to measure plasma activity consist of

only a few spacecraft. For example, the Magnetospheric Multiscale, MMS, spacecraft constellation which is

designed to study magnetic reconnection consists of only four spacecraft [2]. In laboratory reconnection ex-

periments, on the other hand, plasma diagnostics can be used to attain measurements of plasma parameters

at numerous locations. On the other hand, current laboratory reconnection experiments generate plasma

with millimeter scale debye lengths, an important length scale for plasmas that will be described later. This

makes it practically impossible for laboratory experiments to resolve reconnection dynamics on the scale of

the debye length. Astrophysical plasma have long enough debye lengths that can be resolved by spacecraft

constellations.

The first theoretical prediction of magnetic reconnection was made in 1957 by Sweet and Parker [3].

The predictions made by Sweet and Parker only apply to 2D magnetic reconnection [3]. A scenario is

called 2D when all quantities are constant with respect to a single coordinate. That coordinate is ignorable,

so only 2 coordinates are important. Since the Sweet-Parker model, there have been many theories on
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2D magnetic reconnection but none on 3D magnetic reconnection. Due to the prevalence of theories on

2D reconnection and absence of 3D reconnection theories, laboratory experiments have almost exclusively

studied 2D magnetic reconnection. Satellite measurements of reconnection in space plasmas are 3D, because

astrophysical plasmas naturally have complex 3 dimensional magnetic geometries.

1.3 Study of 3D Magnetic Reconnection at SSX

The Swarthmore Spheromak Experiment (SSX) is a laboratory apparatus that generates plasma to study a

wide range of plasma phenomena including magnetic reconnection [4, 5]. During the summer of 2023, we

used the SSX device to study 3D magnetic reconnection. We produced and merged MHD plasmas called

Taylor states to initiate 3D magnetic reconnection. The exact details of the experiment conducted as well

as the results are the topic of much of this thesis. The summer 2023 SSX experiment are some of the first

laboratory studies on 3D magnetic reconnection.

1.4 Organization of Thesis

Chapter 2 presents a sampling of plasma physics theory and the Sweet-Parker model of magnetic recon-

nection. Chapter 3 surveys previous studies on magnetic reconnection in laboratory plasmas. Chapter 4

discusses the summer 2023 SSX experimental setup including the plasma generation mechanism and diag-

nostics used. The thesis concludes by presenting the results of the summer 2023 SSX study on 3D magnetic

reconnection in chapter 5, and provides concluding remarks in section 6. Future experiments that would

build on the results of the summer 2023 SSX experiment are briefly discussed in chapter 7.
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2 Plasma and Magnetic Reconnection Theory

In order to model a plasma, one could in principle write down F = ma for each charged particle in the

plasma with the net force being the sum of the electromagnetic force on the particle due to the electric

field and magnetic field created by all other particles in the plasma and the mechanical forces on it due to

collisions with other particles. Then, one could solve the equations to determine how each particle’s position

changes in time. However, even calculating the electric and magnetic fields due to the number of particles

in a very simple plasma is so computationally intensive that is isn’t feasible. For example, a 1 µg sample

of fully ionized hydrogen plasma contains on the order of 1018 particles. The equation used to calculate

the electric field of such a plasma at a single instant would have 2 × 1018 terms and would depend on the

position, velocity, and acceleration of every particle in question. It is clear that another approach is necessary

to describe plasma behavior.

There are three main models of plasma. In order of decreasing complexity they are the Vlasov model, the

two-fluid model, and magnetohydrodynamics. The Vlasov model keeps track of the distribution of particle

velocities at each point in space. The two-fluid model treats each species, electrons and different ions, as

separate fluids. Magnetohydrodynamics treats the whole plasma as a single fluid. The two-fluid model can

be derived from the Vlasov model when simplifying assumptions are made, and magnetohydrodynamics can

be derived from the two-fluid model under further simplifying assumptions. Each model leads to different

insights and is useful in different circumstances. In this thesis we will focus on magnetohydrodynamics,

because as we will see in sections 2.7 and 2.8, it is the most relevant to understanding the problem of

magnetic reconnection. We begin by discussing basic plasma physics concepts in sections 2.1 through 2.5

and then proceed to a discussion of magnetohydrodynamics in section 2.6. We will discuss the frozen-in-

flux theorem and magnetic reconnection in sections 2.7 and 2.8. We will end with a description of two

plasma geometries, the spheromak and the Taylor state, in section 2.9. These geometries that are important

to understanding the 3D magnetic reconnection experiments carried out at the Swarthmore Spheromak

Experiment in the summer of 2023.

2.1 Debye Shielding and Debye Length

Let us focus on a single electron in a plasma that is perturbed from equilibrium. The perturbation creates

a local difference in electron and ion density which creates an electric field. The equation of motion for the

electron is

m
dv

dt
= qE− ∇p

n
= 0 2.1

where p is the plasma pressure, and n is the number density of electrons. dv
dt = 0, because the flow is assumed

to be steady. Now E = −∇ϕ from the definition of ϕ. From the ideal gas law we have p = nkT . Substituting

these into equation 2.1 gives

−q∇ϕ− ∇(nkT )

n
= 0 2.2

or

−q∇ϕ =
∇n

n
kT 2.3
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The perturbation from equilibrium can be treated as a radial perturbation. Since ∇ = r̂ ∂
∂r + ..., we have

−q
∂ϕ

∂r
=

∂n

∂r

kT

n
2.4

which is equivalent to

−q

kT
dϕ =

1

n
dn 2.5

which can be solved to yield

n = n0e
−qϕ/kT 2.6

which gives the electron density as a function of electrostatic potential. Equation 2.6 is called the Boltzmann

relation. [6]

Now focus on the electric field around any single electron or ion. Electrons in the plasma will move

around in order to reduce or screen the charge’s electric field. The ions, being much more massive than the

electrons, move much more slowly than the ions and therefore do not participate in the screening. Another

way of thinking of this screening effect is that the electrons move around to neutralize any accumulation of

net charge. This effect is called Debye shielding. We can use Poisson’s equation to find the potential near

any particle

∇2ϕ = − ρ

ϵ0
= − e

ϵ0
(ni − ne) 2.7

Since the perturbation under consideration is in the electron density and not ion density, ni = n0, and

we can use 2.6 and the fact that eϕ << kTi in a plasma in order to approximate the electron density as

ne = n0e
−eϕ/kT ≈ 1− eϕ

kT . Equation 2.7 can then be solved for the potential.

∇2ϕ == − ρ

ϵ0
= − e

ϵ0
(ni − ne)

= − e

ϵ0
(n0 − n0(1−

eϕ

kT
))

= −n0e
2ϕ

kTϵ0

= − ϕ

λ2
D

ϕ(r) =
ϕ0

r
e−r/λD 2.8

where λD = kTϵ0
n0e2

is the Debye length [7].

Equation 2.8 shows that close to a charge, for r << λD, ϕ ∝ 1/r, so the electric field of the charge is

unshielded. Far from a charge, where r >> λD, ϕ = 0, so the electric field of the charge completely shielded.

From this analysis, we see that λD is the maximum length scale on which electric fields due to separation

of charge exist in a plasma. External electric fields and electric fields due to induction can exist on scales

larger than the debye length.
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2.2 Single Particle Orbits

Consider an ion moving in a magnetized plasma. The magnetic field will make the particle move in circular

orbits. We seek to determine the orbital angular speed ωci on scales larger than the Debye length. E = 0

due to Debye shielding. To find ωci we use the Lorentz force formula F = q(E+ v×B), or since E = 0

F = qv×B 2.9

We know the component of v that is parallel to B will cause the ion to move in a straight line in addition

to its orbit. The component perpendicular to B will cause the ion to orbit. Let v⊥ be the component of

velocity perpendicular to B and let v⊥ = |v⊥|. We equate the net force on the ion with the centripetal force

to find the angular frequency of the ion’s orbit, the ion cyclotron frequency ωci.

m
v2⊥
r

= qv⊥B

qBr

m
= v⊥ = rωci

ωci =
qB

m
2.10

The result ωci =
qB
m shows that the angular frequency of an ion’s orbit is independent of its initial velocity.

Using the right hand rule to determine the direction of the ion orbits reveals that ions make left handed

orbits about the magnetic field. [7]

One can also calculate the radius of the ion orbits in a plasma, the ion gyroradius ρi =
vth
ωci

. vth is the

ion thermal velocity, the velocity of an ion in a plasma. vth = kTi

mi
where Ti is the ion temperature and mi

is the ion mass [8].

2.3 Plasma Frequency

A plasma consists of an approximately equal number of negative electrons and positive ions. We typically

define n, the plasma density as n = ne = ni. For this reason, plasmas are approximately neutral overall.

However, the thermal motion of electrons and ions can lead to the formation of net charges within a plasma.

Suppose that due to the random thermal motion of particles, a separation of charge appears in the plasma.

At a certain instant, some ions form a thin layer of positive charge of thickness δ which is adjacent to a

thin layer of negative charge formed by the same number of electrons also of thickness δ. Since the layers of

charge are very close together, we can approximate the electric field between the layers of charge as that of

two infinite planes of charge, so E = σ
ϵ0

= neδ
ϵ0

where σ is the charge density per unit area, e is the elementary

charge, and n is the plasma density.

Both electrons and ions will experience a force from this electric field, but the electrons will respond to

it much faster than the ions, because they have a much smaller mass. We can now write Newton’s second

law for the electrons subject to the electric field. M tot
e is the total mass of the electrons in the negatively

charged region, q is the charge of the negatively charged region, me is the mass of an electron, and V is the

volume of the negatively charged region.
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M tot
e a = qE

menV δ̈ = −neV
neδ

ϵ0

δ̈ = − ne2

meϵ0
δ

δ̈ = −ω2
peδ

δ = Aeiωpet +Beiωpet

where

ωpe =

√
ne2

meϵ0
2.11

is called the electron plasma frequency. The separation of charge in a plasma leads to an oscillation of the

thickness of the charged regions. This occurs because electrons oscillate in response to the electric field

created by the charge separation. ωpe is the frequency of these electron oscillations [7].

During the derivation of ωpe, we ignored the response of the ions to the electric field, because the ions

have a much larger mass than the electrons. The ions, however, do respond to the electric field created by

a separation of charge. The ions oscillate in response to the electric field just like the electrons. These ion

oscillations occur at the ion plasma frequency ωpi which has the formula

ωpi =

√
nZ2e2

miϵ0
2.12

where Z is the charge of the ions and mi is the ion mass.

2.4 Plasma β

β = nkBT/
B2

µ0
is the dimensionless ratio of mechanical pressure to magnetic energy density. It characterizes

the relative presence of kinetic energy and magnetic energy in a plasma as well as the relative importance

of pressure forces and magnetic forces. When β >> 1, mechanical forces on the plasma dominate magnetic

forces, and most of the plasma’s energy is kinetic rather than magnetic. When β << 1, magnetic forces on

the plasma dominate mechanical forces, and most of the plasma’s energy in magnetic rather than kinetic.

2.5 Alfvén Speed and Alfvén Time

A magnetized plasma has energy stored in its magnetic field. Suppose the magnetic energy in a fluid element

of volume dV is converted into energy of flow. If B and ρ are the magnitude of the magnetic field and the

mass density at the fluid element’s position respectively, we can find the speed of the outflowing plasma v

using conservation of energy [7].
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1

2
ρ dV v2 =

B2

2µ0
dV

v =
B

√
µ0ρ

This speed is called the Alfvén speed, vA = B√
µ0ρ

. The Alfvén speed is the characteristic speed of

disturbances in an MHD plasma. This is similar to how the sound speed in the characteristic speed of a

disturbance in a gas or other media. The Alfvén time τA = ℓch
vA

is the system’s characteristic length divided

by the Alfvén speed. It is the characteristic time for a plasma that obeys magnetohydrodynamics which is

detailed in the next section.

2.6 Magnetohydrodynamics

Magnetohydrodynamics, MHD, is the simplest of the three main models used to describe plasmas. Instead

of describing each distinct species in a plasma, electrons, ions, and neutrals, separately, it treats the plasma

as a single fluid. The MHD description of a plasma consists of five partial differential equations which will

be referred to as the MHD equations. They can be solved for a given set of initial conditions and boundary

conditions to yield the behavior of an MHD plasma. The MHD equations involve quantities from both

classical fluid dynamics and classical electrodynamics. In MHD, the plasma is described by the mass density

ρ, the fluid velocity field u, the pressure P, current density J, as well as the electric and magnetic fields E

and B [6]. MHD is a valid description of a plasma when

1. All length scales of interest are much greater than the Debye length.

2. The particle velocities are much smaller than the speed of light in a vacuum.

3. The time scales of interest are long compared to the ion and electron cyclotron periods.

4. The electron and ion gyroradii are much less than the size of the plasma.

In MHD, mass conservation is expressed by the equation

−∂ρ

∂t
= ∇ · (ρu) 2.13

The product ρu represents the amount of mass flowing through a small cross sectional area. The negative

sign in front of ∂ρ
∂t specifies that flow out of a location causes a decrease in density and flow into a location

causes an increase in density.

The equation of state for an MHD plasma is

P/ργ = const 2.14

where γ is the adiabatic constant 5/3.

The MHD equation of motion states that there are two forces on each differential volume element of the

plasma, the magnetic J×B force and the pressure gradient force, −∇P .

ρ
Du

Dt
= J×B−∇P 2.15
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Note that there is no electric force on a fluid element. This is because MHD only applies when all lengths

of consideration are more than λD which implies that the electric field is screened out by Debye shielding.

The operator D
Dt = ∂

∂t + u · ∇ is called the convective derivative. To understand why the convective

derivative is used instead of a regular partial derivative, consider an arbitrary vector property of a fluid

A(x, t). A at a specific location can change in time in two ways. It can either change explicitly with time,

or it can change due to a change in location. From the chain rule we have

dA(x, t)

dt
=

∂A

∂t
+

∂A

∂x

∂x

∂t
+

∂A

∂y

∂y

∂t
+

∂A

∂z

∂z

∂t
2.16

or

dA(x, t)

dt
= u · ∇A 2.17

so we define D
Dt =

∂
∂t + u · ∇ to be the convective derivative

Another important relationship in MHD is MHD Ohm’s law. It describes the ability for electric and

magnetic fields to produce currents in a plasma.

E+ u×B = ηJ 2.18

where η is the resistivity of the plasma. This equation is usually not stated as one of the MHD equations.

Instead, we take its curl to yield equation 2.19, the MHD induction equation. Note that two of Maxwell’s

equations, Faraday’s Law ∇×E = −∂B
∂t and no magnetic monopoles ∇ ·B = 0 are used in the derivation of

the induction equation from MHD Ohm’s law.

∇× (E+ u×B) = ∇× (ηJ)

∇×E+∇× (u×B) = − η

µ0
∇× (∇×B)

∇×E+∇× (u×B) = − η

µ0
(∇(∇ ·B)−∇2B)

−∂B

∂t
+∇× (u×B) = − η

µ0
∇2B

and finally

∂B

∂t
= ∇× (u×B) +

η

µ0
∇2B 2.19

We can compare the importance of the convective term ∇× (u×B) and the resistive term η
µ0
∇2B via

a quantity called the magnetic Reynolds number Rm.

Rm =
|∇ × (u×B)|

| η
µ0
∇2B|

=
vchB/ℓch
ηB/µ0ℓ2ch

=
µ0vchℓch

η

10



where vch and ℓch are the characteristic speed and lengths associated with the MHD processes in question.

The final MHD equation is Ampére’s law

∇×B = µ0J+ µ0ϵ0
∂E

∂t
2.20

However, under the assumptions of MHD, the displacement current µ0ϵ0
∂E
∂t is negligible. To see this, we

compare the magnitudes of the µ0ϵ0
∂E
∂t and ∇×B. To make this comparison we introduce ℓch, tch, and vch

the characteristic length, time, and velocity for phenomena we are trying to describe with MHD. Note that

vch = ℓch/tch We begin by estimating E using Faraday’s law, ∇×E = −∂B
∂t .

E/ℓch ≈ B/tch 2.21

E ≈ B · ℓch/tch 2.22

We now use the approximation of E to approximate the magnitude of the displacement current.

µ0ϵ0|∂E∂t |
|∇ ×B|

≈ c−2E/tch
B/ℓch

2.23

µ0ϵ0|∂E∂t |
|∇ ×B|

≈ ℓ2ch/t
2
ch

c2
=

(vch
c

)2

2.24

Therefore, as long as the characteristic speed of the processes in question is much less than c, the displace-

ment current can be neglected. We assumed that this condition holds for an MHD plasma. Therefore the

displacement current can be neglected and Ampère’s law can be simplified to

∇×B = µ0J 2.25

2.6.1 Resistive vs Ideal Magnetohydrodynamics

We have now discussed all of the MHD equations. There are 11 total unknowns, ρ, P , and the three

components of each of u, J, and B. γ = 5/3 and η are constants. There are 11 equations, 2 scalar equations

and 3 three-dimensional vector equations, which makes the system solvable. The MHD equations are listed

below for completeness.

−∂ρ

∂t
= ∇ · (ρu) 2.26

P/ργ = const 2.27

ρ
Du

Dt
= J×B−∇P 2.28

∂B

∂t
= ∇× (u×B) +

η

µ0
∇2B 2.29

∇×B = µ0J 2.30

While Faraday’s law and ∇ · B = 0 are not explicitly listed, they are used to derive equation 2.29, the

induction equation, and therefore should be thought of as part of MHD. The above equations include the

resistive term η
µ0
∇2B in the induction equation, so the model they describe is called resistive magnetohy-
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drodynamics. When the resistivity of a plasma is small, the resistive term η
µ0
∇2B in the induction equation

can be dropped. Doing so simplifies resistive MHD to ideal MHD. Ideal MHD is resistive MHD with η = 0.

The ideal MHD equations are included below for completeness.

−∂ρ

∂t
= ∇ · (ρu) 2.31

P/ργ = const 2.32

ρ
Du

Dt
= J×B−∇p 2.33

∂B

∂t
= ∇× (u×B) 2.34

∇×B = µ0J 2.35

2.7 Frozen in Flux Theorem

A plasma with very small resistivity can be modelled with ideal MHD. An important consequence of ideal

MHD is the frozen-in flux theorem which is also known as Alfvén’s theorem. The theorem states that the

flux through a loop that moves with the fluid in a perfectly conducting plasma is constant. In terms of field

lines, the frozen-in-flux condition means that the number of field lines piercing through a loop in a perfectly

conducting plasma is constant. The frozen-in flux condition can be intuitively understood as requiring that

the magnetic field lines in a perfectly conducting plasma bend and twist with the plasma as it moves. The

frozen-in flux theorem is now formally stated and proved following Griffiths [9].

Frozen-in flux theorem: Let P be a loop in a perfectly conducting plasma at time t which encloses

the surface S. The loop P moves with the velocity field of the plasma u. Let P ′ be the loop at time t+ dt,

and let S′ be the surface enclosed by P ′. Then the magnetic flux through the loop is constant.

Figure 2: A loop that flows with the velocity field of a plasma [9]. At time t, the loop is called P . At time
t+ dt the loop is called P ′. The surface S is enclosed by P , and the surface S′ is enclosed by P . The ribbon
surface R is traced out by the path the loop moves through in time dt. If the plasma has zero resistivity,
the magnetic flux through the loop is constant.
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Proof: The magnetic flux through P ′ and P are∫
S′

B(t+ dt) · da 2.36

and ∫
S

B(t) · da 2.37

respectively. Therefore the change in flux dϕ through the loop in time dt is

dϕ =

∫
S′

B(t+ dt) · da−
∫
S

B(t) · da 2.38

Taking the integral of ∇ ·B = 0 over an arbitrary volume V we get∫
V

∇ ·B dV =

∫
V

0 dV = 0 2.39

Using Gauss’s theorem we have that ∫
∂V

B · da = 0 2.40

where ∂V is the surface that encloses V . As the loop moves through space with velocity u, it traces out a

ribbon surface R as shown in Figure 2. Now we apply equation 2.40 to the volume enclosed by S, S′, and

R at time t+ dt ∫
S′

B(t+ dt) · da+

∫
R

B(t+ dt) · da−
∫
S

B(t+ dt) · da = 0 2.41

Substituting
∫
S′

B(t+ dt) · da = dϕ+
∫
S

B(t) · da we get

dϕ+

∫
S

B(t) · da+

∫
R

B(t+ dt) · da−
∫
S

B(t+ dt) · da = 0 2.42

dϕ = −
∫
R

B(t+ dt) · da+

∫
S

[B(t+ dt)−B(t)] · da 2.43

dϕ = −
∫
R

B(t+ dt) · da+ dt

∫
S

B(t+ dt)−B(t)

dt
· da 2.44

dϕ = −
∫
R

B(t+ dt) · da+ dt

∫
S

∂B(t)

∂t
· da 2.45

The term
∫
R

B(t+ dt) · da can be written differently. We can see from Figure 2 that da = dl× udt where

dl is a differential element of P . Now expand
∫
R

B(t+ dt) · da in a Taylor series about time t.

13



∫
R

B(t+ dt) · da = 2.46

∫
R

(B(t) + dt
∂B(t)

∂t
+O(dt2)) · (dl× udt) = 2.47

∫
R

B(t) · (dl× udt) + dt
∂B(t)

∂t
· (dl× udt) +O(dt2) · (dl× udt) 2.48

where O(dt2) is an infinite series that depends on powers of dt beyond 1. All terms involving a power of dt

beyond the first are negligible, so we can say∫
R

B(t+ dt) · da =

∫
R

B(t) · (dl× udt) 2.49

Now substitute equation 2.48 into equation 2.45, use a vector identity, and use Stokes’ theorem.

dϕ = −
∫
R

B(t) · (dl× udt) + dt

∫
S

∂B

∂t
· da 2.50

= −dt

∫
P

(u×B(t)) · dl+ dt

∫
S

∂B

∂t
· da 2.51

= −dt

∫
S

∇× (u×B(t)) · da+ dt

∫
S

∂B

∂t
· da 2.52

dϕ

dt
=

∫
S

[
∂B

∂t
−∇× (u×B(t))

]
· da 2.53

MHD Ohm’s law states that ηJ = E+u×B. In the case that the plasma is perfectly conducting, η = 0.

This allows us to write the ideal MHD Ohm’s law

E+ u×B = 0 2.54

Taking the curl of the 2.54 and using Faraday’s law to substitute for ∇×E, we can see that

−∂B

∂t
+∇× (u×B) = 0 2.55

Substituting equation 2.55 into equation 2.53 yields

dϕ

dt
=

∫
S

0 · da = 0 2.56

so ϕ, the flux through the loop, is constant.

The frozen-in flux theorem is a remarkable result of ideal MHD and allows for a simple understanding of

the relationship between the fluid flow and magnetic field in an ideal MHD plasma. It does not, however,

apply in situations where ideal MHD breaks down such as during magnetic reconnection.
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2.8 Magnetic Reconnection

Magnetic reconnection is the process by which magnetic flux in a plasma is annihilated. When two highly

conductive plasmas are separated from each other by a large distance, as in Figure 3a, each of their motions

can be described by ideal MHD. The frozen-in flux condition proved in the last section applies to each of

the plasmas independently.

When two plasmas with oppositely directed magnetic fields move towards each other, ideal MHD does

not predict that the plasmas merge together. Instead, it predicts the formation of a large magnetic field

gradient as shown in Figure 3b. To see this, assume that ideal MHD accurately describes the merging of

plasmas with oppositely directed magnetic fields. In this case, the frozen-in flux condition must hold. If the

plasmas were to merge together then according to Alfvén’s theorem, the oppositely directed magnetic fields

would be pulled into the merging region which causes them to cancel. A loop inside either plasma before

the merging would have significant flux through it, but once the merging occurs, the loop would be inside

the merging region. Since the magnetic fields have cancelled there, there is no flux through the loop. This

is a violation of the frozen-in flux condition. This means that if ideal MHD were to apply to the described

merging, the plasmas would not be able to merge. Instead, we would see a large magnetic field gradient as

indicated in Figure 3b.

The large magnetic field gradient predicted by ideal MHD is not observed. Instead, ideal MHD breaks

down, the plasmas merge together, and the frozen-in flux condition is violated. The opposing field lines can

be said to slip through the plasma. The field lines overlap and annihilate as in Figure 1c. The annihilation

of the magnetic fields causes the conversion of magnetic energy to other forms of energy and a change in

magnetic topology. We say that the magnetic field has changed topology because before the merging, each

plasmas had independent field lines that did not intersect the magnetic field of the other plasma. After the

merging, the field lines span both plasmas as in Figure 3c. The magnetic field lines can be said to break and

then reconnect together. This process is known as magnetic reconnection.

Figure 3: This figure is the same as Figure 1 and is repeated for convenience. The merging of ideal MHD
magnetized plasmas with oppositely directed magnetic fields. The prediction of ideal MHD and what is
actually observed are shown. The predictions of ideal MHD do not agree with observation. (a): Two
plasmas with frozen in flux. (b): Ideal MHD prediction of plasma collision. Plasmas cannot merge because
merging would violate Alfv́en’s theorem. The collision creates a high magnetic high gradient between the
two plasmas. (c): Observed result of plasma collision. Plasmas merge and field lines reconnect causing a
change in magnetic topology. [1]
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Determining the outcome of a reconnection event is an unsolved problem in plasma physics. There is

currently no universal model that accurately predicts the outcome of magnetic reconnection observed in

astrophysical and laboratory plasmas. There are models that predict the outcome of reconnection under

specific conditions, but no existing model is able to predict the outcome of reconnection in all conditions.

Some questions relevant to the problem of reconnection are: What assumption or assumptions that were

made in deriving ideal MHD are violated during magnetic reconnection? Where does the energy stored in

the annihilated magnetic field go? What are dimensions of the reconnection layer, the region between the

merging plasmas where reconnection takes place?

2.8.1 Sweet-Parker Reconnection

The first model of magnetic reconnection was proposed by Sweet and Parker in 1957 [3]. It provides an

explanation for magnetic reconnection using resistive MHD. The model assumes that reconnection is a

steady state process, the plasmas undergoing reconnection are incompressible, and all magnetic energy in

the incoming plasmas is converted to kinetic energy. It is also a 2D model which means that it models

reconnection with a single ignorable coordinate. We now present the Sweet-Parker model of magnetic

reconnection [7, 10].

Figure 4: The Sweet-Parker model of magnetic reconnection. The model is 2D, because the situation does not
vary in the out of plane direction, z. Plasmas with oppositely directed magnetic fields enter the reconnection
layer and exit out its sides. Magnetic energy is entirely converted to flow velocity.

Two identical plasmas with oppositely directed uniform magnetic fields of magnitude B enter the recon-

nection layer of length 2L and width 2δ with speed vin. Plasma leaves the reconnection layer with speed

vout. The plasma does not vary in the z direction which makes this model 2D.

Since the plasmas are incompressible ρ = constant. The continuity equation then simplifies to
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ρ ∇ · v = 0 2.57∫
V

∇ · v · dV = 0 2.58

where V is a volume. By the divergence theorem we have∫
S

v · da = 0 2.59

where S is the surface bounding V . Now take the volume V to be the reconnection layer and z0 to be the

length of the plasmas in the z-direction.

−vin2Lz0 − vin2Lz0 + vout2δz0 + vout2δz0 = 0 2.60

vin
vout

=
δ

L
2.61

Next we recognize that there is no current in the each region containing an inflowing plasma, because

∇×B = µ0J and B is constant in each inflow region. Then from resistive MHD Ohm’s law E+v×B = ηJ

we find that in both inflowing plasmas

Ein = −vinBẑ 2.62

The inflowing plasmas enter the reconnection layer at the same speed and merge in the reconnection layer,

so the flow velocity in the reconnection layer is zero by conservation of momentum. Therefore, by Ohm’s

law,

Elayer = ηJ 2.63

Since we are assuming that reconnection is a steady state process, ∂B
∂t = 0. Using a loop in the y-z plane

to apply Faraday’s law we find that

Ein = Elayer 2.64

By symmetry, contributions to the line integral from the electric field in the y direction in the reconnection

layer as well as in the inflow plasma sum to zero. Now combining equations 2.62, 2.63, and 2.64 we have

vinB = ηJ 2.65

The final piece of information needed to solve the Sweet-Parker model is obtained by using Ampère’s

law along the boundary of the reconnection region. The magnetic field of the outflowing fluid is negligible,

because reconnection is assumed to convert all incoming magnetic energy to kinetic energy.
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∫
B · dl = µ0I 2.66

4BL = 4µ0JLδ 2.67

B

J
= µ0δ 2.68

Now we can calculate the Sweet-Parker model’s predictions about the reconnection process. First combine

equations 2.65 and 2.68 to yield

µ0δ =
η

vin
2.69

µ0vinδ

η
= 1 2.70

Recall the definition of magnetic Reynolds number Rm = µ0vchℓch
η . Equation 2.70 shows that the Parker

model predicts that the magnetic Reynolds number during reconnection is 1. This means that convection

balances diffusion. We have found that the width of the reconnection layer as a function of conductivity and

inflow speed. Specifically, the width of the reconnection layer is adjusted to make the magnetic Reynolds

number equal to 1.

Next we are interested in predicting the reconnection rate which is defined as the ratio of the inflow speed

to the outflow speed vin
vout

. To begin, we solve for vout using conservation of energy. Since the reconnection

process is assumed to convert all magnetic energy to kinetic energy, the outflow speed must be much greater

than the inflow speed.

1

2
ρv2in +

B2
in

2µ0
=

1

2
ρv2out +

B2
out

2µ0
2.71

B2
in

2µ0
≈ 1

2
ρv2out 2.72

vout =
B

√
µ0ρ

= vA, the Alfvén speed 2.73

Therefore by equations 2.61, 2.70, and 2.73, the squared reconnection rate is
(

vin
vA

)2

=
(
δ
L

) (
η

µ0δvA

)
. We

define the Lundquist number S as

S =
µ0vAL

η
2.74

So the predicted reconnection rate can be written as

vin
vout

=
1√
S

2.75

A reconnection rate of 0.1 has been observed in many experiments and simulations [11]. While the

development of the Sweet-Parker model was an important first step in understanding magnetic reconnection,

the reconnection rates that it predicts are much smaller than observed in astrophysical plasmas [12]. It

also does not account for the ion heating which has been routinely observed in laboratory reconnection
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experiments [13]. Another drawback of the Sweet-Parker model is that it only considers a 2D scenario even

though reconnection can occur when quantities vary in all three directions.

2.9 MHD Equilibrium, the Spheromak, and the Taylor State

2.9.1 Force-Free States

We are often interested in configurations of plasmas with no forces acting on them. These states are called

force-free states. Let us consider a low β MHD plasma. According to the MHD equation of motion, there

are two forces that can act the plasma, −∇P and J × B. Since the plasma has low β, pressure forces are

negligible, −∇P → 0. This means that a force free state must have J×B = 0. This only occurs when J ∥ B

which is equivalent to

J = λB 2.76

for some λ which can depend on spatial coordinates. Using the simplified Ampère’s law from MHD, ∇×B =

µ0J, we have

∇×B

µ0
= λB 2.77

∇×B = λB 2.78

This simple derivation of equation 2.78, the force free condition, allows for spatial variation in λ. However,

force-free states have values of λ with no spatial variation [14]. The full derivation of constant λ is not included

for the sake of brevity, but I will briefly describe it. A force-free state is a state with a local minimum of

magnetic energy. It can be shown that when MHD plasmas relax into their lowest energy state, a quantity

called magnetic helicity is conserved [14]. Magnetic helicity K is defined by

K =

∫
V

A ·B dV 2.79

where A is the magnetic vector potential such that ∇×A = B. The minimization of magnetic energy subject

to constant magnetic helicity can be performed using Lagrange multipliers. The result is ∇×B = λB with

constant λ [14]. Once we have B for a force free state, we can find J using ∇×B = µ0J.
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2.9.2 Spheromaks and Taylor states

The term spheromak refers to a specific configuration of plasma, including its magnetic field. The magnetic

field of a spheromak satisfies the force-free equation ∇ × B = λB. When the force-free equation is solved

inside a cylinder of radius R and length L one gets infinitely many solutions, one for each possible value of

λ. The axisymmetric solution where λ is commonly denoted as λ0 is

Br = B0
kz
kr

J1(krr) cos(kzz) 2.80

Bϕ = B0
λ0

kr
J1(krr) sin(kzz) 2.81

Bz = B0J0(krr) sin(kzz) 2.82

where kr =
3.83

R
kz =

π

L
λ0 =

√
k2r + k2z 2.83

where J0 and J1 are Bessel functions. The number 3.83 appears in equation 2.83, because it is the first zero

of J1 [15]. Note that we can calculate J for this solution using µ0J = ∇ × B = λB. This solution to the

force-free equation is called a spheromak and it is shown in Figure 5. The magnetic field in a spheromak

is commonly broken down into a toroidal component and a poloidal component. The ϕ component of the

magnetic field is called the toroidal field, because it points around the torus. The r and z components of the

magnetic field are together called the poloidal field, because they points between the poles of the cylinder.

The experiment detailed later in this thesis involves shooting spheromaks down long flux conservers,

copper tubes which the magnetic field and plasma cannot penetrate. While the spheromak is a force free

state, it is an unstable equilibrium state. A small perturbation of a spheromaks’s magnetic field will make it

tilt and twist into a twisted rope magnetic geometry called a Taylor state [16]. The details of a spheromak’s

evolution into a Taylor state are beyond the scope of this thesis because the process involves MHD turbulence.

Nevertheless, when a spheromak moves down a flux conserver, it tilts and twists into a Taylor state. A

diagram of the magnetic field of a Taylor state is shown in Figure 6. Like spheromaks, Taylor states are force

free structures which satisfy ∇×B = λB. But unlike spheromaks, Taylor states are stable equilibrium states.

The magnetic field of a Taylor state does have an analytical form involving Chandrasekhar-Kendall functions

[17]. It is omitted here, because the equations are too complex to visualize or yield physical intuition.
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Figure 5: A diagram of a spheromak, the axisymmetric solution to the force-free equation in a cylinder,
showing the direction of the toroidal and poloidal magnetic field. The toroidal field is shown with open
arrows and the poloidal field is shown with filled in arrows [15].

Figure 6: A diagram of a Taylor state, a twisted rope magnetic geometry of magnetized MHD plasmas
constrained within a cylinder. The magnetic field points along the lines in the image. A Taylor state is a
stable force free state.
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3 Prior Studies of Magnetic Reconnection

3.1 Stenzel and Gekelman

The first experiments on magnetic reconnection were done at UCLA by Stenzel and Gekelman starting in

1979 and throughout the 1980s [10]. The apparatus, shown is Figure 7, consisted of a 2 meter long cylindrical

metal chamber with a diameter of 1 meter which was evacuated and filled with 10−4 Torr of either argon or

helium depending on the experiment [18]. A uniform density ne ≈ 1012 cm−3 plasma is generated by heating

an oxide-coated cathode and continuously pulsing a discharge voltage between the cathode and a nearby

mesh anode. An axial magnetic field is created by coils around the main chamber. To create a reconnection

event, an additional 20 kA current is pulsed through two parallel metal plates which are equidistant from

the center of the machine. Typical temperatures observed were kTe = 10kTi = 4 eV. The ion gyroradius

in this experiment was similar to the radius of the chamber which means that the plasma is not an MHD

plasma.

Figure 7: (a) The cross sectional view of the apparatus used by Stenzel and Gekelman to study magnetic
reconnection. Current is pulsed through plates 30 cm apart is order to initiate reconnection. [18]. (b)
Detailed side view of the apparatus [19]. Plasma is produced by continuously pulsing a bias between the
cathode and nearby anode. Coils around the vacuum chamber create a uniform B-field in the axial direction.

The experiment relied on the reproducibility of the plasma and reconnection event. The experiment

could be run once a second and a single probe was moved after each shot in order to measure the magnetic

field at different locations. The measurements at a single location were averaged over multiple shots in order

to ensure the data described the average reconnection event.

The most significant finding of this experiment is that the width of the reconnection layer is a few electron

inertial lengths, c/ωpe [18, 20]. They also found that the plasma flowing out of the reconnection layer was

flowing at the Alfvén speed as predicted by the Parker model [20].

3.2 TS-3

The TS-3 device studied magnetic reconnection at the University of Tokyo in the 1990s [21]. The reconnection

observed in this device is different from the UCLA reconnection experiment in several ways. Functionally,

TS-3 merges two spheromaks to initiate magnetic reconnection instead of initiating magnetic reconnection
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by forcing flux through the plasma as was done in the UCLA device. A schematic of TS-3 is shown in Figure

8a. In TS-3, the ion gyroradii are much smaller than the size of the plasma, so the reconnection is fully

in the MHD regime. This was not the case in the UCLA device. Instead of relying on the shot-to-shot

reproducibility of the plasma to measure the magnetic field like the UCLA experiment, the magnetic field in

TS-3 was measured using a probe array. This allows the TS-3 magnetic field measurements to capture shot

specific intricacies that are lost when averaging measurements over multiple shots. The UCLA experiment

ensured that a single component of the magnetic field was small in order to create a 2D scenario, one of the

conditions under which the Parker model is valid. The magnetic field in the TS-3 experiments had significant

components in all 3 orthogonal directions. They are not 3D reconnection experiments, however, because the

spheromaks have azimuthal symmetry.

The TS-3 device is capable of studying the merging of spheromaks with the same or opposite magnetic

helicities. The former scenario is called co-helicity merging while the latter scenario is called counter helicity

merging. Many experiments at TS-3 focus on the difference between co- and counter-helicity merging.

Typical plasma parameters in TS-3 are n = 3 × 1014 cm−3, Te = 5 − 15 eV and toroidal magnetic field

Bϕ = 1 kG. The experiments found that counter-helicity merging results in a higher reconnection rate than

co-helicity merging. They also found that the reconnection rate is proportional to the inflow speed of the

spheromaks [21]. Later TS-3 experiments observed ion heating and acceleration [22]. Figure 8b shows one

instance of ion heating as a result of reconnection in TS-3.

Figure 8: (a) A schematic of the TS-3 device [21]. (b) Observed ion heating in TS-3 [22].
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3.3 MRX

The MRX device at the Priceton Plasma Physics Laboratroy studied magnetic reconnection starting in the

late 1990s. The device, shown in Figure 9, consists of a cylindrical conducting shell with two conducting “flux

cores” inside the chamber. Current is passed through the flux cores and varied in order to generate plasma

and then subsequently initiate reconnection. The magnetic structure of the reconnection was measured with

a probe array placed on an r-z plane. Other diagnostics include Langmuir probes for measuring electron

density and temperature. The plasma in MRX is in the MHD regime. Typical plasma parameters are

B = 0.3− 0.6 kG, Te = 10− 30 eV, and ne = 0.5− 2× 1014 cm−3 [23].

Figure 9: A schematic of the MRX device [23].

The MRX experiments revealed the presence of a double-Y shaped reconnection layer during null helicity

reconnection just as predicted by the Parker model. An O-shaped reconnection layer was observed during

co-helicity reconnection [23]. The Y and O shaped reconnection layers observed are shown in Figure 10.

The reconnection rates observed at MRX were compared to those predicted by the Sweet-Parker model.

The Parker model failed to account for the observed reconnection rates. However, a modified Parker model

that accounts for the compressibility of the plasma and treats plasma pressure differently than the tradi-

tional Parker model is able to explain the observed reconnection rates [24]. A comparison of the observed

reconnection rates to the modified and unmodified Parker model is shown in Figure 11.

Figure 10: Comparison of null and co-helicity reconnection in MRX. Null helicity results in a double-Y
shaped reconnection layer while co-helicity results in an O-shaped reconnection region [23].
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Figure 11: (a) Observed reconnection rates in MRX as compared with the Sweet-Parker model [24]. (b)
Observed reconnection rates in MRX as compared with a modified Sweet-Parker model. The modified model
takes into account the compressibility of the plasma and treats the role of plasma pressure in reconnection
differently than the standard Parker model [24].

3.4 Early SSX Experiments

The SSX device was initially set up as shown in Figure 12 to perform 2D magnetic reconnection experiments.

This was done by merging axisymmetric spheromaks. Spheromak plasmas were produced on either end of

the device with magnetized plasma guns. The guns accelerate the spheromaks towards the middle of the

device where they merge and undergo magnetic reconnection. Just like TS-3 and MRX, SSX has the ability

to study co-helicity and counter-helicity merging configurations. Typical plasma paramters are Te = 20 eV

and ne = 1014 cm−3 [4].

An O-shaped reconnection layer, shown in Figure 13, was observed during counter-helicity merging of

spheromaks at SSX [10]. Since the MRX experiments observed an O-shaped reconnection layer during co-

helicity experiments, it has been shown that the shape of the reconnection layer is not simply a function of the

initial helicity of the reconnection scenario. The thickness of the reconnection layer was observed to be c/ωpi.

The axisymmetric SSX experiments also found a energetic ion flux emanating from the reconnection layer.

The ion flux was observed to peak 5 µs after the magnetic peak at a distance 50 cm from the reconnection

layer indicating an outflow speed of 107 cm/s, the Alfvén speed [4].
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Figure 12: A schematic of the SSX device as set up to study axisymmetric spheromak merging. Magnetized
plasma guns generate fully ionized plasma at either end of the device and accelerate the plasma towards the
center where merging occurs. [4]

Figure 13: (a) Observed o-shaped reconnection layer during counter helicity merging at SSX [10]. (b)
Magnetic energy peak followed by a 5 µs delayed observation of ions 50 cm from the reconnection region at
SSX indicates Alfvénic ion outflows [4].
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4 Experiment and Device Setup
Nearly all prior laboratory studies of magnetic reconnection have been 2D in that the reconnection geometry

does not vary along one coordinate. We have performed a laboratory study of 3D magnetic reconnection by

using a new iteration of the Swarthmore Spheromak Experiment (SSX) device to merge Taylor states. A

schematic of the SSX device is shown in Figure 14. Before plasma is produced, the SSX vacuum chamber

is evacuated to 10−7 Torr. This allows hot plasma to enter the chamber without being cooled down by

the room temperature air. Spheromak plasmas made from fully ionized hydrogen gas are produced using

magnetized plasma guns at either end of the device. The spheromaks move towards each other down thick

walled copper cylinders with inner radius R = 7.8 cm. As the spheromaks move, they relax into their lowest

energy state, a Taylor state. At the center of SSX, the Taylor states become radially unconstrained and

merge. The width of the merging region is 17.3 cm wide. Magnetic reconnection occurs due to the overlap

of the magnetic field of each Taylor state. The evolution of spheromaks into Taylor states is governed by

turbulence. This means that the angle at which the the magnetic field at the leading edge of the Taylor

states merge varies from shot to shot.

We collected data on 604 instances of Taylor state merging. During each shot, the magnetic field inside

the merging plasmas is measured in 16 different locations in an r-z plane as shown in Figures 14 and 15.

The electron density along the center of the merging region is measured using Mach-Zehnder interferometry.

The ion temperature is measured along a chord which goes through the center of the merging region using

ion Doppler spectroscopy as shown in Figures 15 and 14. The relative positions of the diagnostics are shown

in Figure 15. The next sections explain the workings of the plasma guns and each diagnostic.

Figure 14: (a) An r-z cross sectional view of the SSX device. (b) An on-axis view of the SSX device.
Spheromaks are produced on either side of the device using magnetized plasma guns. The spheromaks move
through flux conservers towards the center of the device and evolve into Taylor states. The Taylor states
merge in the center of the device uncontrained by flux conservers. The merging is studied using a magnetic
probe array, Mach-Zehnder interferometery, and ion Doppler spectroscopy.
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Figure 15: The relative positions of each diagnostic. The interferometer passes through the center of SSX.
The IDS telescope is positioned to observe light along a diameter that goes through the center of SSX. The
magnetics probes are arranged in a 4 x 4 grid on one side of the axis of SSX. Magnetics measurements

4.1 Plasma Production

SSX produces plasma using cylindrical magnetized plasma guns. Each gun consists of a coaxial solid cylin-

drical inner electrode and a cylindrical shell outer electrode. The space between the inner and outer electrode

begins as a vacuum. A small amount of H2 gas is puffed into the area between the inner and outer electrode

of the gun and a current is passed through an external coil to create a poloidal magnetic field called the

stuffing field as shown in Figure 16a. When the gas fills the entire area between the electrodes, the inner

electrode is biased at -4 kV relative to the outer shell using a 1 mF capacitor. This is shown in Figure 16b.

The strong electric field between the electrodes ionizes the hydrogen atoms in the gas which breaks the H2

bond and turns the gas into a hydrogen plasma consisting of protons and free electrons. Now that there

is a conducting plasma between the electrodes rather than a neutral gas, current flows through the plasma

and down the inner electrode. The current flowing down the inner electrode makes a toroidal magnetic field

which is embedded in the plasma. A J × B force pushes the plasma out of the gun as in Figure 16c. As

the plasma moves out of the gun past the stuffing field, the stuffing field is embedded in the plasma as a

poloidal field. Finally, the formed spheromak exits the gun with its embedded toroidal and poloidal fields as

in Figure 16d.

Figure 16: Formation of a spheromak using a coaxial plasma gun. (a) Gas is puffed between the inner and
outer electrodes. External coil creates a poloidal magnetic field. (b) A capacitor biases the inner electrode
at -4 kV and ionizes the gas. Current flows down the inner electrode and generates a toroidal field. (c) A
J×B force pushes the plasma out of the gun. (d) The spheromak exits the gun with an embedded toroidal
and poloidal field. [25]

28

/ 

JI. 

/ 
/ 22cm 

Interferometer Path 

.. 
IDS Path, 

3.6cm 
I .. 

/ 
/ 

/ 
/ 

1( 

3.8 cm 

\ 

Poloidal Field 



4.2 B-dot Probe Array

The magnetic field inside the plasma is measured by a planar 4 × 4 array of B-dot probes. Each probe

consists of three mutually perpendicular loops of wire whose ends extend out of SSX so the voltage around

the coil can be measured by high speed data acquisition modules. The data acquisition units were configured

to sample at 32 MHz for 125 µs. Each coil measures the component of the magnetic field at the probe’s

location perpendicular to its area. Each of the three coils is wound around a delrin rod to hold it in place.

The probes and delrin rods are surrounded by quartz tubes to protect them from the plasma. A schematic

of the probe array in SSX is shown in Figure 15. The axial probe spacing is 3.6 cm and the radial probe

spacing is 3.8 cm. The probe array therefore does not allow for the determination of the exact magnetic

structure of the reconnection. It does, however, allow for the determination of the magnetic energy in a 22

x 19 x 7.6 cm box delimited by the probes.

The magnetic field perpendicular to each coil is measured using Faraday’s law. According to Faraday’s

Law,

V = −N
d

dt

∫
A

B⊥(t) · dA 4.1

where B⊥ is the component of the magnetic field that is perpendicular to the coil, N is the number of turns,

and A is the cross sectional area of the coil. We can simplify Faraday’s law to V = −N d
dt (B⊥,avA) or

B⊥,av(t) = B⊥,av(0)−
1

NA

t∫
0

V (t)dt 4.2

where B⊥,av is the average magnetic field over the area of the probe that is perpendicular to its cross section.

Since B at an infinitesimally small point is impossible to measure with a finite area coil, the value of Bav is

assigned to B at the center of the coil. In this way, the B-dot probe array allows for the measurement of the

magnetic field at 16 locations inside the plasma.

4.3 Interferometer

The electron density is SSX is measured using a modified Mach-Zehnder interferometer. A complete expla-

nation of the SSX interferometer can be found in Tim Gray’s thesis [26]. A 632.8 nm HeNe laser is split by

a beam splitter to produce two beams which traverse two equal length paths. One beam, the scene beam,

travels through the plasma. The other beam, the reference beam, travels through air. The reference beam

is circularly polarized using a λ/4 waveplate. The beams are recombined after traversing their paths and

then split by a Wollaston prism into components polarized parallel and perpendicular to the prism’s optical

axis. The presence of plasma in the path of the scene beam rotates the polarization of the recombined beam

counterclockwise. Measurement of the intensity of both components of the recombined beam allows for the

determination of the phase shift of the light caused by the plasma. The shift in the phase of the recombined

beam is related to the line averaged plasma density by

∆ϕ =
λe2

4πc2ϵ0me

∫
∆z

n(z) dz 4.3

where λ is the wavelength of the laser, e is the elementary charge, and ∆z is the distance in the path of

the scene beam that contains plasma [7]. Thus, the interferometer allows for the measurement of the line
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average plasma density 1
∆z

∫
∆z

n(z) dz.

4.4 Ion Doppler Spectrometer

SSX plasmas are pure hydrogen plasmas, but they contain trace amounts of impurities such as carbon. These

impurities are present, because the the hydrogen gas puffed into SSX to create the plasma is not 100% pure.

Atoms other than hydrogen are also scraped off the walls of SSX by the hot plasma. At SSX temperatures,

2 electrons are stripped from carbon atoms to form doubly ionized carbon ions which are denoted CIII. The

bound electrons in CIII move between energy levels due to the heat of the plasma and emit light which is

Doppler shifted according to the ion velocities. The SSX ion Doppler spectrometer determines the proton

temperature by measuring the broadening of the 229.687 nm line in CIII.

The SSX ion Doppler spectrometer uses an optical fiber to collect light from the plasma along a chord

which passes through the center of the merging region [27]. The collected light is fed into a McPhearson

Model 209 monochromator which filters out all wavelengths other than the Doppler broadened 229.687 nm

CIII line of interest and then spreads the light out onto an array of photomultiplier tubes, PMTs, using

a 25th order echelle grating. Each PMT in the array measures the intensity of 229.687 nm light with a

specific Doppler shift. The signals from each PMT over time thus allows for the measurement of the velocity

distribution of the carbon ions along the line of sight of the optical fiber. For an MHD plasma, particles have

a Maxwellian velocity distribution which means that the 1D velocity distribution function that is measured

by the IDS system is a 1D Maxwellian distribution

f(v) = n

(
m

2πkT

)1/2

exp

(
−m(v − v0)

2

2kT

)
4.4

where m is the mass of a CIII ion, n is the average impurity ion density, v0 is the mean velocity of ions towards

or away from the optical fiber, and T is the temperature of the CIII ions [28]. Wider velocity distributions

correspond to larger temperatures and narrower distributions correspond to lower temperatures.

The carbon ions equilibrate with the protons on a timescale less than 0.5 µs, so the carbon ion temperature

and proton temperature are equal on a timescale of 1 µs [27]. The IDS system thus determines the proton

temperature every microsecond. A sample fit of a Maxwellian to a velocity distribution to yield a temperature

measurement is shown in Figure 17. Since the fit is made to a plot of photon count vs velocity instead of

impurity count vs velocity, the fit function is

Photon count = I0 exp

(
−m(v − v0)

2

2kT

)
4.5
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Figure 17: A Maxwellian fit to a velocity distribution measured by the SSX IDS system from observa-
tion of the Doppler shift of the CIII 229.67 nm line. The distribution is of the form photon count =

I0 exp
(−m(v−v0)

2

2kT

)
.
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5 Results and Discussion
We took 604 shots of Taylor state merging using the SSX device. 354 shots merged Taylor states of the same

magnetic helicity, co-helicity merging. 251 shots merged Taylor states of opposite magnetic helicity, counter

helicity merging. All of the shots were performed with 4.0 kV on the capacitor banks and and stuffing flux

of Φgun = 1.0 mWb. During each shot, we measured the line-averaged electron density with Mach-Zehnder

interferometry, line averaged ion temperature with ion Doppler spectroscopy, and the magnetic field at 16

different locations with a probe array as detailed in section 4. The magnetic field was used to calculate the

magnetic energy in the box delimited by the probe array.

5.1 Typical Shots

Data from a typical shot is shown in Figure 18. Measurements start around 28 µs, when the Taylor states

reach the diagnostics at the center of SSX and begin to merge. Merging ends around 95 µs. The density,

ion temperature, and magnetic energy oscillate over the course of the shot with multiple prominent peaks.

Oscillations in all three quantities were observed in all shots, but the number of peaks and peak locations

in each of the density, ion temperature, and magnetic energy varies from shot to shot. The merging of

Taylor states is not a steady state process as in the Parker model. Since all measurements are made in

fixed locations, we cannot distinguish between spatial and temporal variations. The periodic structure

of the twisted magnetic flux ropes may be related to the periodic nature of the merging, especially the

magnetic energy oscillations, but the details of its role is unclear. Figure 18 shows that the density reaches

its maximum early in the merging and the temperature reaches its maximum later. A previous study of

Taylor state merging at SSX by Gelber and Brown with identical experimental parameters and diagnostics

as this study found a density peak followed by a later temperature peak when averaging over multiple shots

[29]. When averaged over multiple shots, electron density and ion temperature displayed no oscillations [29].

We have seen density, ion temperature and, magnetic field oscillations in every shot which were not noted in

the previous study by Brown and Gelber. We have also found electron density and ion temperature peaks

that are of similar magnitude to the maximum electron density and ion temperature which may be just as

important to the merging as the initial density maximum and subsequent temperature maximum observed

by Brown and Gelber when averaging over multiple shots [29].

Measurement of the magnetic field in the plane of the probe array allows for the calculation of current

density in the same plane via Ampère’s law. The displacement current was considered negligible as in the

MHD Ampère’s law, because Taylor states are MHD plasmas. We visualized the magnetic field and current

density in the plane of the probe array by creating movies of moving arrows overlaid on a variable heat map.

The magnetic field and current of different shots look very different from one another. No two shots look alike.

This is most likely due to the shot-to-shot variation in the merging angle between the magnetic field at the

leading edge of the Taylor states. Within a single shot, the magnetic field greatly varies in both magnitude

and direction. This leads to the formation of irregular current shapes. A typical observed current density is

5× 106 A/m
2
. Figure 19 shows the current density at four times in the same shot. The times chosen were

selected at magnetic energy peaks in order to show the largest observed current densities. At t = 39.25000 µs

we see an inner and outer current sheet which face in opposite directions. At t = 57.46875 µs nearly the

entire current sheet points the same direction. At t = 30.78125 µs and t = 48.34375 µs the current sheet has

no clear structure. The limited size of our probe array prevents us from making detailed comments about

the current in merging Taylor states, but we can clearly see that Taylor state merging produces complex
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current geometries. This is unlike the magnetic reconnection of axisymmetric spheromaks which produces a

single current sheet.

Figure 18: Electron density, ion temperature, and magnetic energy for a typical shot. Electron density and
ion temperature are measured along cords going through the SSX midplane. Magnetic energy is calculated
in the box delimited by the probe array. The merging epoch is 28 – 95 µs.

Figure 19: The average current density in the space between the probes at four different times corresponding
to magnetic energy peaks. At t = 39.25000 µs the current sheet reverses direction at the SSX midplane.
At t = 57.46875 µs the current almost completely points in a constant direction. At t = 30.78125 µs and
t = 48.34375 µs there is no clear pattern in the current.
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5.2 Summary Statistics and Correlations

Our diagnostics are too limited to determine the magnetic, density, or temperature geometries produced by

Taylor state merging. They are, however, sufficient for calculating quantities which summarize each shot. We

call these quantities summary statistics for ease of reference. For each shot, we calculated the average and

peak values of electron density, ion temperature, and magnetic energy during the merging epoch 28− 95 µs.

Average values are denoted with a bar. These values were used to calculate vA = B/
√
µ0ne, tA = R/vA,

ρi = Ti
1/2

m
1/2
p /eB, and βi = 2µ0nTi/B

2
, all averages. B is the average magnetic field on the axis of SSX

where it is strongest, mp is the mass of a proton, e is the elementary charge, and R = 7.8 cm is the inner

radius of the flux conserver. We also calculated the time between the maximum density and maximum ion

temperature which we call heating time. A positive heating time means density reached its maximum before

ion temperature. A negative heating time means ion temperature reached its maximum before density.

Figures 20 and 21 show the distributions of each summary statistic. The mean of each summary statistic is

shown in Table 1.

We would like to examine the shape of the distribution of each summary statistic, but due to the

lack of theoretical predictions for 3D magnetic reconnection or Taylor state merging, we don’t know what

distributions to expect. We compared the distribution of each summary statistic to a normal distribution

using a Q-Q plot. The normal distribution was chosen due to its special role in the central limit theorem,

and because many of the distributions we measured looked similar to a normal distribution. It should

be acknowledged, though, that there is no theoretical basis for comparing each distribution to a normal

distribution. The ne distribution has a heavier right tail and a lighter left tail than a normal distribution. The

distribution of peak Wmag is approximately normal but with heavier tails. The Ti and peak ne distributions

match the normal distribution near the median and on right tail. They deviate from normality in the left

tail. This deviation from normality is much more pronounced in peak ne than in Ti. The distribution of Ti

is the closest to a normal distribution of any of the summary statistics. Both Wmag and vA are skewed left.

Peak Ti, tA, βi, and ρi are all skewed right. The Q-Q plot for heating time is particularly interesting. It

shows strong agreement with a normal distribution around the median and to the right of the median. To

the left of the median, particularly at negative heating times less than −10 µs, the distribution of heating

times deviates from a normal distribution. There is not enough theory on 3D magnetic reconnection to

comment on the meaning of the distribution shapes.

Figure 20: Distributions for average (above) and peak (below) ne, Ti,Wmag.

34

Average Electron Density 

4 5 6 20 

"ff; (cm- 3 1015) 

Peak Electron Density 

Average Ion Temperature 

30 40 50 

T; (eV) 

Peak Ion Temperature 

Average Magnetic Energy 

60 7.5 10.0 12.5 15.0 17.5 20.0 22.5 

Wmag 0) 

Peak Magnetic Energy 

7 8 9 10 11 50 100 150 200 250 300 20 40 60 80 

max ne (cm- 3 1015) max T; (eV) max Wmag (J) 



Figure 21: Distributions for average tA, vA, β, ρi, and heating time.

Overall Co-helicity Counter-helicity

ne (cm−3 1015) 4.28± 0.02 4.18± 0.03 4.43± 0.04

Ti (eV) 38.3± 0.4 37.2± 0.4 39.9± 0.4

Wmag (J) 16.2± 0.1 17.1± 0.1 15.0± 0.2

peak ne (cm−3 1015) 8.00± 0.03 7.90± 0.05 8.14± 0.05

peak Ti (eV) 131± 2 124± 2 141± 3

peak Wmag (J) 45.8± 0.4 48.2± 0.4 42.6± 0.6

βi 3.59± 0.06 3.15± 0.05 4.2± 0.1

vA (cm/µs) 4.68± 0.03 4.83± 0.02 4.48± 0.05

tA (µs) 1.70± 0.01 1.630± 0.008 1.80± 0.02

ρi (cm) 0.457± 0.003 0.438± 0.003 0.483± 0.005

Heating time (tA) 8.3± 0.4 8.2± 0.5 8.3± 0.6

Table 1: Mean of each statistic across all shots, during co-helicity merging, and during counter-helicity
merging.

Most shots display a positive heating time, but 14.6% of the total shots have a negative heating time.

This is true for 13.8% of the co-helicity shots and 15.6% of counter-helicity shots. Data from a shot with

a negative heating time is shown in Figure 22. While the maximum temperature does occur before the

maximum density, the shot displays an initial density pulse followed by a heating pulse as well as oscillatory

behavior just like the shots with positive heating times. The maximum density and maximum temperature

may be related. This would make the time between these peaks a key parameter for describing Taylor state

merging. However, due to the episodic nature of the merging and the similar magnitude of the various

density and temperature peaks that occur over the course of each shot, it is possible that the maximum

density and temperature are not any more noteworthy than the other peaks. In this case, the process of

Taylor state merging should be thought of as a series of density and temperature peaks rather than a single

important peak in each quantity.
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Figure 22: Electron density, ion temperature, and magnetic energy for a shot with where ion temperature
reaches its maximum before electron density. Arrows point to the maximum values of electron density and
ion temperature. Electron density and ion temperature are measured along cords going through the SSX
midplane. Magnetic energy is calculated in the box delimited by the probe array. The merging epoch is 28
– 95 µs.

As shown in Figure 23a, we find a significant negative correlation between heating time and average

Alfvén time among shots with positive heating times (p < 0.01). Figure 23c shows no significant correlation

between heating time and average Alfvén time among shots with negative heating times (p = 0.62). The

significant negative correlation among shots with positive heating times goes against our intuition about the

relationship between heating time and Alfvén time. As the Alfvén time increases, we would expect heating

time to increase due to the longer characteristic time for the merging, but the correlation we find is negative.

If the maximum density and temperature are not more important in describing Taylor state merging than

any other peaks, we would find no correlation between heating time and average Alfvén time. We do not

understand why we observe this negative correlation.

The absence of a correlation among the shots with negative heating times may be due to insufficient data

to reveal the correlation. As stated earlier, only 14.6% of the total shots, 88 shots, have a negative heating

time. The lack of a correlation could also be due to the inability of heating time, the time between the

maximum density and maximum temperature, to characterize Taylor state merging. As seen in Figure 18,

there are multiple density and temperature peaks in each shot and, as stated earlier, the maximums may

not be of particular importance.

Figure 23b shows a significant negative correlation between heating time and average ion gyroradius

among shots with positive heating times (p < 0.01). Just as with Alfvén times, Figure 23d shows that no

significant correlation is observed among shots with negative heating times (p = 0.06). We know that both

tA ∝ 1
B

and ρi ∝ 1
B

where, as stated earlier, B is the average magnetic field during the merging epoch on the

axis of SSX, were the magnetic field is strongest. Figure 24 reveals a positive correlation between heating

time and B. We know that when heating time is positive, shorter tA, shorter ρi, and larger B lead to longer
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heating times. But we don’t know which of tA, ρi, or B is directly responsible for the longer heating times,

because they are all functions of each other. Regardless of whether heating time is directly related to tA, ρi,

or B, we do not have a theoretical explanation for the relationship.

Figure 23: Heating time vs average Alfvén time for shots with positive heating times (a) and negative heating
times (c). Heating time vs average ion gyroradius for shots with positive heating times (b) and negative
heating times (d) Least-squares lines of best fit are shown. For shots with positive heating times, heating
time and average Alfvén time as well as heating time and average ion gyroradius are negatively correlated
(p < 0.01). Shots with negative heating times display no significant correlation between heating time and
average Alfvén time or between heating time and average ion gyroradius (p > 0.01).

Figure 24: Heating time vs average magnetic field on the the axis of SSX for shots with positive heating
times. The least-squares line of best fit is shown. Among shots with positive heating times, there is a
significant positive correlation between the average magnetic field on the axis of SSX and the heating time
(p < 0.01).
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Table 1 shows that counter-helicity shots have higher mean values of average and peak ion temperature

than co-helicity shots. One known affect of magnetic reconnection is ion heating, so we would expect the

counter-helicity shots to also have higher mean values of average and peak magnetic energy [13]. However,

average and peak magnetic energy have lower mean values in counter-helicity shots than in co-helicity shots.

When examining all shots, both co and counter-helicity, we expect to see a positive correlation between one

or multiple pairs of either average or peak ion temperature and average or peak magnetic energy due to the

magnetic reconnection that occurs during Taylor state merging. Figure 25 shows scatter plots of average and

peak ion temperature vs average and peak magnetic energy. The aggregate statistics examined do not reveal

a correlation between magnetic energy and ion temperature. This suggests that the conversion of magnetic

energy to heat during Taylor state merging is more complex than with 2D magnetic reconnection.

Figure 25: Average and peak Ti vs average and peak Wmag for the shot ensemble. There is no correlation
between ion temperature and magnetic energy.

Counter helicity shots have higher mean values of average and peak density than co-helicity shots. Com-

bined with higher ion temperatures and lower magnetic energy, ion dynamics in counter-helicity shots are

on average more thermally dominated than in co-helicity shots. This is seen in the higher mean βi among

counter-helcity shots. Also noteworthy is that the mean heating times for both co and counter-helicty merg-

ing are about 8.3 tA. The heating time in units of Alfvén time is equal to the reciprocal of the Sweet-Parker

reconnection rate if we assume that reconnection only occurs a single time during Taylor state merging.

Accepting this assumption, we calculate a mean reconnection rate over the shot ensemble of 0.12, about 0.1,

which has been observed in many other experiments and simulations [11].
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5.3 Frequency Analysis

We can see in Figure 18 that the electron density, ion temperature, and magnetic energy all undergo oscilla-

tions over the course of merging. To explore these oscillations, we calculated the Fourier transform of each

trace during the merging epoch 28 – 95 µs. A linear fit was subtracted from each trace in the merging epoch

before taking tge Fourier transform to account for linear trends. For each shot, the frequency with the high-

est Fourier power above 40 kHz was recorded for the electron density, ion temperature, and magnetic energy.

A cutoff frequency of 40 kHz was chosen, because low frequency modes below 40 kHz strongly dominate the

Fourier transform of all traces. Figure 26 shows a histogram of these highest amplitude frequencies for the

co-helicity shots, and Figure 27 shows a histogram for the counter-helicity shots. As frequency increases, all

of the histograms display a decrease in counts which indicates the dominance of low frequencies. In both

co and counter helicity shots, small peaks in magnetic energy and ion temperature are observed around 60

kHz. The counter-helicity shots display a peak in highest amplitude ion temperature frequency around 100

kHz. We also averaged the electron density, ion temperature, and magnetic energy traces in the frequency

domain across all shots, the co-helicity, and the counter-helicity shots. This yields decreasing power spectra

without any significant peaks. Many shots have electron density, ion temperature, or magnetic energy traces

with highest amplitude Fourier modes above 40 kHz which suggests that oscillations are important to un-

derstanding unconfined Taylor state merging, but the exact nature of the oscillations has not been revealed.

Advanced signal processing techniques such as wavelet transforms or more spatially resolute measurements

of plasma parameters may be able to reveal the character of the oscillations.

Figure 26: Histogram of highest amplitude Fourier mode for electron density, ion temperature, and magnetic
energy in co-helicity shots. The ion temperature and magnetic energy traces have peaks around 60 kHz.
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Figure 27: Histogram of highest amplitude Fourier mode for electron density, ion temperature, and magnetic
energy in counter-helicity shots. The ion temperature and magnetic energy traces have peaks around 60
kHz. Ion temperature displayed an additional peak around 100 kHz.
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6 Conclusion

This experiment is one of the first studies of 3D magnetic reconnection in laboratory plasmas. The merging

of Taylor states is much more complex than 2D reconnection. The merging is dynamic rather than steady

state like the 2D Sweet-Parker model. We have observed irregular magnetic field and current geometries

which vary over the course of the merging. Electron density, ion temperature, and magnetic energy all

oscillate over the course of the merging. The exact nature of the oscillations has not been revealed. Taylor

state merging involves multiple prominent peaks in electron density, ion temperature, and magnetic energy.

The maximum values of electron density and ion temperature are probably not especially important as was

suggested by the previous SSX experiments by Brown and Gelber [29]. Analysis of the average and peak

values of magnetic energy and ion temperature are unable to capture the conversion of magnetic energy to

ion temperature via magnetic reconnection. Average Alfvén time and average ion gyroradius, both of which

are inversely proportional to average magnetic field, are negatively correlated with heating time for shots

with positive heating times. The theoretical basis for these correlations has not been determined.

7 Future Work

SSX will continue to study Taylor state merging in the summer of 2024. There are plans to perform a similar

experiment to the one described in this thesis, but with the inclusion of electron temperature measurements.

There is much work to be done studying 3D magnetic reconnection in laboratory plasmas. Future experiments

could involve mapping out the magnetic field, density, ion temperature, and electron temperature at every

point in a 3D reconnection geometry in a manner similar to Stenzel and Gekelman [18]. This would require

a reproducible 3D reconnection event unlike the Taylor state merging described in this paper. Experiments

could also look at the role of turbulence in magnetic reconnection.
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8 Appendix A: Probe Array Details

8.1 Magnetic Probe Array Calibration Procedure

As stated in section 4.2, each B-dot probe consists of three mutually perpendicular loops of wire. We showed

that the magnetic field perpendicular to a loop of wire can be calculated from the voltage around the loop.

B⊥,av(t) = B⊥,av(0)−
1

NA

t∫
0

V (t)dt 8.1

where A is the area of the loop and N is the number of turns.

One could measure the cross sectional area and record the number of turns in each of the three coils

making up each single probe in order to solve for B in terms of the measured voltages on the probe. However,

such a method would not account for the imperfections in probes construction. The three coils may not be

perfectly perpendicular. It is also difficult to accurately measure the small cross sectional area of a single

coil.

Instead of measuring N and A to be able to calculate B from the measured voltage on the probe, we use

a different calibration mechanism for the probes. This process is detailed by Geddes, Kornack, and Brown

[15]. Since the three coils making up each probe may not be perfectly perfectly perpendicular, we can say

that Vx′ x̂′+Vy′ ŷ′+Vz′ ẑ′ = cx′Ḃx′ x̂′+cy′Ḃy′ ŷ′+cz′Ḃz′ ẑ′ where x̂′, ŷ′, and ẑ′ are linearly independent but not

necessarily perpendicular unit vectors that point perpendicular to each of the 3 coils making up each probe.

The value of the component of the magnetic field along each of the 3 orthogonal directions of a coordinate

system is a linear combination of Bx′ x̂′, By′ ŷ′, and Bz′ ẑ′.

Three operations are required to solve for B at a single probe’s location from the measured voltages. We

must multiply the voltage on each of the three coils comprising the probe by the correct factor to find Ḃ.

Then we must integrate Ḃ to find B in the x̂′, ŷ′, ẑ′ basis. Finally, we must perform a linear transformation

on Bx′ x̂′+By′ ŷ′+Bz′ ẑ′ to find B in the orthogonal x̂, ŷ, ẑ coordinate system. These operations can be done

in any order, because integration is a linear operation. To find B, we first integrate the measured voltages

Vi(t), i = x′, y′, z′ on each of the three coils that make up the probe to get Vint(t) then we multiply by

the correct constants and transform the magnetic field into the x̂, ŷ, ẑ basis by the matrix multiplication

C Vint = B 8.2

where C is the calibration matrix for the probe which is calculated before the experiment.

The calibration matrix C is calculated for each probe via the following procedure. The probe array was

placed inside a helmholtz coil with known dimensions, R = 15.8 cm and N = 2 turns per coil, such that

the location of each probe is known. High current, about 10 kA, is pulsed through the coil and the voltages

induced on each of the coils comprising each probe are recorded. The current through the helmholtz coil is

measured using a Rogowoski coil. This process is done three times, each with the helmholtz coil pointing

along a different directional axis of the coordinate system. On each of these so called calibration shots, a

specific instant in time is selected to perform the calibration. At the chosen time, the measured current is

used to calculate B at each probe and the recorded voltage is integrated to find Vint at each probe. This

leads to three matrix equations of the form C Vint = B for each probe. These three equations are equivalent

to the single matrix equation
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C Vint = B 8.3

where the ith column of Vint is the vector Vint from a specific calibration shot and the ith column of B is

B from the same calibration shot. We can solve for C to yield

C = B V −1
int 8.4

By this procedure, we can calculate the calibration matrix C for each probe. The calibration matrices

are then used to calculate the magnetic field at each probe location over the course of a plasma shot using

C Vint = B.

8.2 Additional Corrections to Magnetic Field Measurements

Aside from using the a calibration matrix to calculate B from the measured voltages, there are two additional

corrections that must be made to the magnetic field data in order to ensure its accuracy. The first correction

is a simple offset removal on the measured voltages. Before integrating V to get Vint, the average voltage

during the first 3 µs of data collection on each channel is subtracted from all measured voltages on said

channel. This is because each channel of the digitizer using to measure the voltage on each magnetic pickup

coil has a unique offset due to imperfect zeroing. While this offset is usually small, it’s affect on Vint is large,

especially later in the shot because the integral of a small constant is a straight line.

An additional error in the magnetic field measurements occurs due to capacitive coupling between the

probes and plasma. The voltage recorded on any given coil is the sum of the inductive voltage and capacitive

voltage, V = Vind + Vcap. The capacitive voltage occurs as a result of a net charge momentarily appearing

in the plasma near the probe during a shot. The net charge creates an electric field on the probe which

changes its voltage.

We observe that a calculation of the magnetic field which accounts for the digitizer offset leads to a

magnetic field trace which levels out to a constant at about 100 µs. Plasma merging is indicated by the

presence of changing magnetic field signals on the B-dot probe array which means that the plasma merging

process is complete at around 100 µs into a shot. Since there cannot be a magnetic field after the plasma is

gone, we conclude that a capacitive voltage which was on the probe while the plasma was present must have

been integrated to yield the final constant. We do not know the full functional form of Vcap, so we model

the false magnetic field caused by the capacitive voltage as a tanh function that begins at zero and ends at

the value of the magnetic field after the plasma merging in over.

Bfalse(t) =
B(110)

2

(
tanh

(
1

20
(t− 62.5)

)
+ 1

)
8.5
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Figure 28: The x component of the magnetic field on probe 4 during shot 071323r51 with and without the
correction for capacitive coupling. The tanh function that is subtracted from the uncorrected Bx in order
to yield the corrected Bx is also shown.

This form of Bfalse(t) reasonably approximates the capacitive voltage on the probe as a nonzero constant

during the plasma merging and zero before and after the merging, because the derivative of tanh(t), sech2(t),

is a smooth approximation of a rectangular pulse. Bfalse(t) is subtracted from the magnetic field measure-

ment to yield the true magnetic field as a function of time. Figure 28 shows the magnetic field before and

after the correction for capacitive coupling between the probe and plasma.
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