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Run-of-River Device for Hydropower from the Crum Creek

Paula Suder
Swarthmore College

Engineering Senior Design Project
Faculty Advisor: E. Carr Everbach

Abstract

With the onset of climate change from excess carbon emissions, renewable energy
sources, especially in the form of hydropower, can offer comparatively low-emission alternatives
to conventionally used fossil fuels that may lessen the environmental effects of energy
generation. Although most hydroelectric facilities utilize dams to store water and channel flow,
diversion facilities, also called “run-of-river” facilities, operate utilizing a portion of the natural
flow and eliminate the need for dams and their associated construction and environmental
concerns. To design and construct a small-scale run-of-river device, an iterative design process
was implemented over two prototypes, including spiral axial hydropower turbine design and
component selection. The second prototype was created by adjusting the metrics of the spiral
axial turbine and implementing the concepts of bevel gear pair theory and design. After
assembly, the device was tested in the Crum Creek for its ability to generate power. The device
generated a small but detectable amount of voltage and current, successfully producing power.
By optimizing various components in future iterations, the device can more efficiently capture
the energy of the Crum Creek’s flow and yield greater power output. Additionally, future
iterations can rework and scale the design to produce enough power for common everyday uses,
such as powering a modern smartphone.
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1 Introduction

Given its global scale, climate change is one of the most pressing concerns of the 21st
century with excess greenhouse gas emissions like carbon dioxide, methane, and nitrous oxide
increasing year by year. Greenhouse gasses, when emitted excessively, trap too much of the sun’s
heat radiating off the earth causing increasing global temperatures and other negative
environmental effects such as extreme weather events, loss of natural plant and animal species,
and human health risks. Although greenhouse gasses are emitted from energy usage by a variety
of major sectors, one of the main sources of greenhouse gas emissions in the United States is the
electricity and heat sector. According to data collected by Climate Watch in 2023, the electricity
and heat sector produced 5.27 tonnes of greenhouse gas emissions per capita in 2020. Although
this amount has decreased from previous years of electricity and heat production, the electricity
and heat sector continues to emit the largest amount of greenhouse gasses per capita over all
other sectors.
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Per capita greenhouse gas emissions by sector, United States, 2020 
Per capita greenhouse gas emissions' are measured in tonnes of carbon dioxide-equivalents' per person per -. 

year. 

Electricity and heat 
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1. Greenhouse gas emissions: A greenhouse gas (GHG) is a gas that causes the atmosphere to warm by absorbing and emitting radiant energy. 
Greenhouse gases absorb radiation that is radiated by Earth, preventing this heat from escaping to space. Carbon dioxide {CO2) is the most 
well-known greenhouse gas, but there are others including methane, nitrous oxide, and in fact, water vapor. Human-made emissions of greenhouse 
gases from fossil fuels, industry, and agriculture are the leading cause of global climate change. Greenhouse gas emissions measure the total 
amount of all greenhouse gases that are emitted. These are often quantified in carbon dioxide equivalents (CO2eq) which take account of the 
amount of warming that each molecule of different gases creates. 

2. Carbon dioxide equivalents (CO2eq): Carbon dioxide is the most important greenhouse gas, but not the only one. To capture all greenhouse 
gas emissions, researchers express them in "carbon dioxide equivalents" (CO2eq). This takes all greenhouse gases into account, not just CO2. To 
express all greenhouse gases in carbon dioxide equivalents (CO2eq), each one is weighted by its global warming potential (GWP) value. GWP 
measures the amount of warming a gas creates compared to CO2. CO2 is given a GWP value of one. If a gas had a GWP of 10 then one kilogram of 
that gas would generate ten times the warming effect as one kilogram of CO2. Carbon dioxide equivalents are calculated for each gas by multiplying 
the mass of emissions of a specific greenhouse gas by its GWP factor. This warming can be stated over different timescales. To calculate CO2eq 
over 100 years, we'd multiply each gas by its GWP over a 100·year timescale (GWP100). Total greenhouse gas emissions - measured in CO2eq -
are then calculated by summing each gas' CO2eq value. 



Fig. 1

1.1 Background

Historically, the United States has produced heat and electricity using fossil fuels like
coal, natural gas, and petroleum, all of which produce a significant amount of carbon dioxide
when combusted. Alternatives to fossil fuels, such as nuclear and renewable energy, make up a
comparatively smaller portion of heat and electricity generation than fossil fuels in the United
States, contributing about 18.2% and 21.5% in 2022 respectively. Although not nearly as
commonly implemented, these alternative sources have been increasingly favored as sources for
heat and electricity because they emit much less greenhouse gas emissions, especially carbon
dioxide, for the same amount of energy production as their fossil fuel counterparts. Although
more favorable in terms of their reduced greenhouse gas emissions, nuclear and renewable
energy still pose unique issues that can cause negative impacts in other regards. For example,
nuclear power requires a lot of energy for mining and processing uranium ore and constructing
the power plant itself. Additionally, the process of creating nuclear energy is highly radioactive,
creating radioactive wastes, human worker health risks, and the potential for an extremely
damaging environmental disaster from a nuclear meltdown. Renewables, on the other hand, can
be inconsistent depending on weather conditions, costly to initialize and maintain, take up a lot
of space, and not produce energy as efficiently as fossil fuels.

1.2 Hydroelectric Power Generation

Hydropower, a type of renewable energy that creates energy from water flow, is currently
the largest source of renewable energy in the electricity sector. There are multiple types of
facilities that produce hydropower, each of which implement similar but varying processes of
capturing the energy of water flow. A pumped storage facility works by pumping water from a
lower to higher elevated reservoir to store electricity from other energy sources, and then
releasing the water back to a lower elevation onto a turbine when electricity is needed. The most
common type of hydroelectric plants in the United States are impoundment facilities, which use
dams to slow and store river water in a reservoir and release the flow of the reservoir through a
turbine to spin a generator and generate electricity. As of 2020, there are more than 90,000 dams
in the US, a majority of which are used for stock and farm ponds, flood control, and irrigation,
and about 2,300 to produce power.
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Fig. 2

The third type of hydroelectric plants are diversion facilities, also known as a
“run-of-river” facility. Run-of-river facilities produce energy by channeling a portion of the
natural flow of a river or other waterway caused by a decreasing bed elevation. This portion,
channeled by a canal or penstock, is directed through a turbine to generate energy and then
released back into the original waterway. Unlike impoundment facilities, diversion facilities
often do not require the use of dams which can negatively impact the environment by slowing or
blocking river flow and altering the surrounding environment, posing a threat to the survival of
the natural plant and animal life. Although only a small percentage of dams are used for
electricity generation, they still noticeably impact the environment of the most essential rivers
around the country.

1.3 Motivation

As abundant environmental features, rivers and other waterways have the potential to
produce a large amount of hydroelectric power that can help replace the need for fossil fuels.
Despite its potential, not only does hydroelectric power comprise a small portion of electricity
generation in the United States, but commonly uses dams which take a significant amount of
time, resources, and energy to construct, and disrupt the environment of the river or waterway it
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uses. My motivation for my project is to create a system of hydropower production that does not
block or impede the flow of a waterway, causing minimal disruptions to the environment. To
achieve this, I decided to design and build a small-scale “run-of-river” device that is portable
enough to transfer to and from a waterway. My system relies on the main concept behind
run-of-river systems, which is channeling a portion of a waterway to generate electricity instead
of blocking the water flow and causing environmental disruptions like dam systems. My overall
goal for this project is to design and produce the system’s components, build a transportable
device, and record its performance in a waterway.
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2 Theory

2.1 Axial Hydropower Turbines

In order to generate electricity from water flow, hydropower systems use hydro turbines
to capture the kinetic energy of the flow as mechanical energy to power a generator. In essence,
the force of the flow onto the submerged portion of the turbine creates a torque, causing it to spin
and harness the water’s kinetic energy as mechanical energy. There are several types of
commonly used hydro turbines, including the Francis, Kaplan, and Pelton turbines, each of
which best suit different waterway conditions. Another category of hydro turbines are axial flow
turbines whose axes are oriented horizontally parallel to the flow, such as a spiral axial turbine
that floats horizontally atop the flow surface with continuous, spiraling blades.

- In slow and shallow conditions akin to the Crum Creek, spiral axial turbines have
multiple advantages over other types of axial turbines, such as the conventional 3-bladed
axial turbine

- The various parameters of a spiral axial turbine such as spiral diameter, pitch angle, blade
thickness, and angle relative to the flow all impact its ability to spin.

- The direction of the spiral matters - clockwise turbines will spin one direction while
counterclockwise turbines will spin the opposite direction
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Fig. 3

2.2 DC Motors

Direct Current, or DC, motors are devices that convert an input of electrical energy from
a source such as a battery into mechanical energy. They work by utilizing the Lorenz Law to
create a force in the presence of a current which is specified by the voltage rating, a parameter
describing the maximum voltage that can safely be applied to the motor. DC motors can also
function as generators, inputting mechanical energy and outputting electricity. When the shaft is
rotated by an external force such as a water flow, there is a voltage induced across the opposing
terminals. In hydropower systems, a generator is able to input the mechanical energy generated
by the spinning turbines and induce a voltage to produce power. The voltage induced by the
generator is directly proportional to the speed of shaft rotation and increasing the rotational speed
results in higher output voltages up to the voltage rating. One of the defining metrics of a
generator, the efficiency, is the ratio between output and input power and characterizes how
much energy into the generator is successfully converted to output energy and lost to the
environment. While a higher voltage rating gives a generator the capacity to generate more
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electricity than a lower voltage rating, power generation is more efficient when the voltage rating
is closer to the input voltage.

(Replace with my own pics/figures)

2.3 Gear Pairs

In a simple hydropower configuration, gear pairs, or a set of gears with identically sized
teeth allowing the gears to mesh, enable the mechanical energy generated by the turbine to be
inputted into the generator. An important parameter of gear pairs is the gear ratio with a larger
ratio implying a larger difference in the number of gear teeth and a smaller ratio implying less of
a difference. When the gears are meshed together and begin to rotate, the smaller gear of the pair
will spin faster relative to the larger gear based on the respective gear ratio. Given a fixed speed
of the larger gear, the smaller gear can be designed based on the ratio between the speed of the
turbine and the desired power output by reducing the amount of teeth on the smaller gear on the
generator.

- While typical gears mesh at 180 degrees, bevel gears are a type of gear with conical
teeth-bearing faces that enable a pair to mesh at a specified angle with the shafts of the
gears intersecting.

9
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Fig. 5
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3 Design and Construction

3.1 Overall Design Considerations

Implementing the theory explored above, my project produces power using a small-scale,
run-of-river device demonstrated by the following schematic:

● Add figure of a labeled schematic of the device

The main requirement of my project is to design a portable, small-scale, run-of-river
device that generates electricity from the kinetic energy of water flow and can be reconfigured
and scaled in size to generate enough power for common everyday uses, such as charging a
modern smartphone. Constrained by factors such as time and the ability to be constructed and
transported by myself, I did not require my design to produce a specified power output, but
rather aimed it towards successfully generating mechanical energy from the turbines and
inducing a measurable voltage across the generator. My design intends to demonstrate
small-scale run-of-river hydropower in a working prototype that can be scaled and reworked for
more specific applications. In the process of designing hydropower systems, one must also
consider the professional standards and codes that may govern the constraints of the overall
design. Given the extremely small scale and lack of further optimization of my design, it can
only produce a very small fraction of power produced by any commercial hydropower systems
including Pico Hydropower, the smallest category of commercial hydroelectric power generation
ranging from 100 Watts to under five kilowatts. Due to its very small scale, I was unable to find
any professional standards or codes that could govern my design process.

3.2 Spiral Axial Turbine Design

My first step was to design the axial turbine that would capture the flow of the creek. One
of my main requirements was that part of the turbine would float above the surface of the water it
is placed in. To most efficiently model and generate a floating turbine prototype, I used
AutoDesk Fusion to create a 3D model of my design and then 3D printed the model out of PLA
using a Original Prusa i3 MK3S+ 3D printer. When designing my turbine prototypes, one of my
largest constraints was the maximum print size allotted by the Original Prusa i3 MK3S+ 3D
printer, which is 250 x 210 x 210 mm or 9.84 x 8.3 x 8.3 in. As a result, the turbine diameter was
limited to a maximum size. To begin creating a preliminary turbine model, I initially designed a
model with a 5-inch “plus sign” base to observe the effect of the number of blades on the spiral
pattern. Due to the height and width printing limits of the Prusa printers, I had to stick to a
relatively small spiral diameter and height for my model; So although I had to keep my spiral
diameter within the limits, I printed the model in two segments and adhered them together to
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double the length and increase the water-receiving area without making it too long and hard to
transport.

Fig. 6

My preliminary model set a baseline for my turbine design and highlighted necessary
adjustments to certain spiral parameters. First, the blades of the “plus sign” base end up quite
close together along the length of the spiral which is not ideal as this tightness makes it difficult
for the flow to come in as much contact with the blades as possible. Second, the blades
themselves ended up quite thick which is also not ideal because this bulk adds more material to
the turbine while decreasing the water-receiving surface area due to creating a tighter spiral.
Lastly, with my limited 3D modeling skills, I knew I wanted to stick to a model with a constant
diameter along the length that I could easily alter and remodel so to increase the surface area in
contact with the flow, I found the that the turbine would have to intersect the flow at an angle
corresponding to the pitch angle of the spiral. Given that the spiral diameter is constrained by the
Prusa i3 MK3S+ 3D printer dimensions, my next turbine prototype focused on maximizing the
surface area of the turbine coming in contact with the flow to increase the force of the water on
the turbine.

Next in my design process, I designed a second turbine model changing the metrics I
discussed before. This time, I used a “minus sign” base that resulted in 2 blades instead of 4. I
also increased the spiral diameter to the limit of the printer and cut the blade thickness in half to
0.5 inches to minimize the plastic I needed and increase the ratio of the surface area to overall
volume as much as possible while maintaining structural integrity and durability. Additionally,
Professor Everbach and I came up with the idea to create identical clockwise and
counterclockwise models that could both sit at a 45 degree angle to the flow and converge at the

12



front to power a generator. This configuration is more ideal than a single turbine because
theoretically, the flow would apply an equal amount of force to either side of the device which
helps keep the whole device balanced, making it easier to intersect the flow at the correct angle.
On top of that, with the correct gear configuration, my design could combine the torque of the
turbines to spin the generator twice as fast.

13



Fig. 7

3.3 Device Component Selection

The next aspect of the design process was the components I would need for the device.
This included rods and bearings for the turbines to spin around and a motor that I use as a
generator.

- Given its accessibility on consumer retailers such as Amazon, I purchased 2-mm stainless
steel rods and corresponding bearings to serve as the axes of my turbines.
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Fig. 8

I chose to use a small, standard motor on hand for this purpose which was 6 volts. The
most important component to consider was the gears connecting the turbines to the motor.
Considering the theory behind gear ratios, I knew that the motor gear would spin faster than the
turbine gear relative to their ratio so I decided to design gears that would allow the motor to spin
much faster than the turbine.

3.4 Bevel Gear Design

For my second prototype, I decided to use 3D printed bevel gears in order to allow the
right- and left- handed turbines to both be at an angle to the flow and design a specific gear ratio
and center hole diameter for the gear pairs. Given that my turbines would converge with each
turbine 45 degrees to the center axis of the device, I designed bevel gears with teeth-bearing
faces at 45 degrees to mesh teeth at 90 degrees. Keeping the diameter of the gear slightly smaller
than the spiral diameter to impede the flow as little as possible, I created a 3:1 gear ratio with 144
to 48 teeth respectively. The idea is that the turbine gears would mesh with each other in the
center to form a right angle and the motor gear would mesh with the turbine gear at 45 degrees
driven by the combined torques of the turbines.

- To help generate my bevel gear design, I used the “Bevel Gear Matched Pair Generator”
that creates a 3D bevel gear pair model based on the creator’s design and user-customized
metrics and generates downloadable .stl files online for open-access 3D printing

● Add pictures of the printed bevel gears

15



3.5 Device Construction

Once I acquired all the main components needed for my second prototype, I created a
detailed design sketch to help visualize the assembled device to-scale and allow me to make
additions or adjustments before construction. The last component consideration was adding a
frame to house the components of the device in one place and enabling portability while keeping
the device floating when in water.

● Add the device design sketch

The main requirements of the frame were to suspend the turbines horizontally at 45
degrees to each other, hold the device components as a cohesive unit, and float despite the added
weight to the overall device.

- I decided to use wood as the frame material and used wood triangles to account for the
angle of the turbines within the 3-sided rectangular frame. I also added a wood trapezoid
to house the generator at the correct angle and height for its gear to mesh with the turbine
gear

- After designing and assembling the pieces for the wooden frame, I was able to assemble
the device following the guidance of my preliminary design sketch. The most critical
aspect of the device construction was making sure the turbine gears were meshed
securely at 90 degrees when measuring where the rods intersect the frame. I started by…
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Fig. 9

To evaluate the ability of my design to harness the kinetic energy of water flow and
generate electricity, I planned to test the device prototype in the Crum Creek.

- The Crum Creek spans miles and varies significantly in depth and width along its length,
creating varying flow speeds at different locations. Since the Crum Creek has a slower
flow and shallower depth than the rivers hydropower systems typically utilize, I chose a
testing location that had a depth of at least two feet and relatively narrow channel
creating a higher flow speed compared to other deep portions. This location of the Crum
Creek also has a bridge built over the creek, allowing me to suspend my device into the
water from above and monitor its performance.

- I measured the device’s power output by attaching digital multimeters across the
terminals of the generator to measure the output voltage and current, which are then used
to calculate the power and evaluate its efficiency.

17



4 Results and Discussion

4.1 Device Results

- When testing my device in the Crum Creek, the turbines of my device successfully
captured the kinetic energy of the flow and spun in opposite directions to converge at
matching bevel gears, spinning the gear of the generator and inducing a detectable
voltage. Based on the video footage, each turbine spun at approximately 0.416
revolutions per second, inducing a range of 50-80 mv across the generator and varying
from 0 to 0.1 mA with 10 ohms of resistance. At 80 mv of voltage and 0.1 mA of current,
my device generated a maximum of 0.008 mW of power.

4.2 Discussion

- The testing process was very short with only about a day of testing at one location,
limiting the data on the results of my design, especially across varying flow conditions.
My testing process was constrained by the lack of time left to complete the project…

- Although my device generated a very small amount of power, it was able to successfully
generate a detectable amount of electricity from the flow of the creek. In that sense, my
design met my requirement of prototyping a small-scale run-of-river device. On the other
hand, it is difficult to determine if my design can be successfully built upon and scaled to
produce more power on a small, transportable scale.

18



5 Suggestions for Future Improvements

5.1 Future Improvements for the Original Device

- In future iterations of the design, the performance of the device can be improved by
optimizing the generator to fit the conditions and using a bigger gear ratio to create
smaller gear with less teeth to make the gear smaller and allow it to spin faster

5.2 Improvements for Greater Application

One of the most important improvements that could be made for future iterations of the
device is scaling up each component to create a system that resembles the original design but is
able to generate upwards of 20 watts of electricity and power common devices like modern-day
smartphones, almost exclusively of which are charged using power from electricity generated by
fossil fuels. If I were to implement this improvement, I would first source a 15V-20V electric DC
motor which I can use to generate up to 20 watts of power. Then, I would scale up the size of the
axial hydro turbine designs according to my desired power output, keeping not only the
estimated efficiency of the device in mind, but also the maximum power that the turbine can
intercept which will be affected both by the scaling of the design and the velocity of the
waterway. I would either construct the scaled turbine by hand using a different material than
PLA as the Prusa i3 printer could not print a turbine of that size, or source a larger 3D printer that
could accommodate the diameter of the turbine, allowing me to construct the full turbine from
printing and adhering to each section. I would also source thicker stainless steel rods that will
provide adequate support for the larger device components while connecting the turbine’s gear to
the bevel gear pair attached to the motor. To scale up each gear, I would first acquire new
customized .stl files with the new larger rod thickness, then either scaling the gear using 3D
printing software if a larger printer than the Prusa i3 is available, or constructing a larger version
of the original design with the new center hole diameter by hand with a different material. The
last aspect of the new device would be a scaled-up version of the protection chamber that is able
to encompass the components of the enlarged device while remaining afloat.
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