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Abstract: 

Mechanistically connecting genotypes to phenotypes is a longstanding and central mission of 

biology. Deciphering these connections will unite questions and datasets across all scales from  

molecules to ecosystems. Although high-throughput sequencing has provided a rich platform on 

which to launch this effort, tools for deciphering mechanisms further along the genome to 

phenome pipeline remain limited. Machine learning approaches and other emerging 

computational tools hold the promise of augmenting human efforts to overcome these 

obstacles. This vision paper is the result of a Reintegrating Biology Workshop, bringing together 

the perspectives of integrative and comparative biologists to survey challenges and 

opportunities in cracking the genotype to phenotype code and thereby generating predictive 

frameworks across biological scales. Key recommendations include: promoting the 

development of minimum “best practices” for the experimental design and collection of data; 

fostering sustained and long-term data repositories; promoting programs that recruit, train, and 

retain a diversity of talent and providing funding to effectively support these highly cross-

disciplinary efforts. We follow this discussion by highlighting a few specific transformative 

research opportunities that will be advanced by these efforts. 

http://mc.manuscriptcentral.com/icbiol
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Introduction: 

Deciphering the mechanisms by which genotypes generate phenotypes is a central mission of 

biology. Historically this mission was hampered by a lack of sequence and expression data. 

Now, we are hindered by the daunting task of integrating large amounts of disparate data 

across multiple areas of expertise. Fully realizing these mechanisms will facilitate the integration 

of enormous datasets in organismal diversity research across molecular, morphological, 

behavioral, and ecosystem scales (Figure 1). Comprehensive, multi-scale data integration will 

impact broad reaching, interdisciplinary and integrative goals across biological disciplines (NRC, 

2009).  Although not a comprehensive list, some of these programs and goals include: 1) 

understanding the rules for signaling; 2) deciphering mechanisms underlying robustness and 

resilience; 3) predicting and ameliorating the impact of anthropogenic change to preserve 

biodiversity and ecosystem services; 4) integrating data across scale; 5) promoting proactive 

and personalized medicine designed around wellness instead of treating disease; and 6) 

effective deployment of synthetic biology approaches for health, energy, and environmental 

remediation applications. 

While this unification of datasets has long been the goal of researchers, only now in the big data 

era are tools emerging that hold promise to augment human efforts (Camacho et al., 2018). 

Machine learning approaches now demonstrate their ability to make connections and find 

patterns at a pace that better aligns with the exponentially increasing rates of data collection. To 

fully exploit these advancements, the biological research community will need to invest 

significant resources towards 1) the development of data collection and storage standards; 2) 

the development of tools to overcome key bottlenecks in data acquisition and analysis; and 3) 

training initiatives and collaborative outreach to a diverse pool of existing and emerging talent 

(Hulsen et al., 2019).  Here we discuss how sustained efforts in these areas can further catalyze 

biology’s big data era for cracking the genotype to phenotype code.  We follow this discussion 

http://mc.manuscriptcentral.com/icbiol
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by highlighting a few specific transformative research opportunities that will be advanced by 

these efforts. 

Context: This vision paper resulted from the authors participation in the Reintegrating Biology 

Jumpstart Workshop held in Austin, Texas in December of 2019. Reintegrating Biology is 

funded by the National Science Foundation through a grant to the University Corporation for 

Atmospheric Research (UCAR) and Knowinnovation (KI). The workshop consisted of virtual 

town halls, microlabs and jumpstart meetings designed to engage diverse participation from 

across the biological community. The primary objectives of Reintegrating Biology were to solicit 

input on key challenges and exciting opportunities on both long-standing and emerging 

biological research directions. After evaluating roughly 50 different proposals generated during 

the initial phase of the workshop, our working group (a structural biologist, an ecologist, a 

biomechanist, an integrative animal behaviorist, and two evolutionary developmental biologists) 

coalesced around the challenge of utilizing big data to elucidate the genome to phenome 

discovery pathway. This vision paper is the result of on-site discussions and group writing 

sessions followed by off-site collaborative writing. Our paper complements the focus of the ICB 

Building Bridges Special Issue on questions that cross multiple scales from molecules to whole 

organisms while offering the perspective of a suite of integrative and comparative biologists. 

Challenges and their solutions: 

Effective deployment of high throughput data to decode genotype to phenotype mechanisms will 

require extensive modification and resource allocation all along the pipeline from data collection 

to publication and storage. In this section, we provide an overview of some key challenges and 

potential solutions. These approaches align with the principles of making data Findable, 

Accessible, Interoperable and Reusable (FAIR) (Wilkinson et al., 2016).

http://mc.manuscriptcentral.com/icbiol
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1. Data collection and quality.

For a tool or repository to be useful there needs to be community defined and driven standards 

regarding experimental design, data collection and annotation. One example regards proper 

alignment of sequencing techniques (RadSeq, SNP arrays or whole genome resequencing) to 

match specific research goals. Whole genome resequencing provides complete genomic data 

for relatively few individuals, making it optimal for gene discovery (Xu & Bai, 2015). In contrast, 

because RadSeq and SNP arrays exploit widely spaced markers, they can be used to 

characterize and compare relatively large numbers of individuals, but with less information for 

each sample (Tam et al., 2019). Thus these techniques are optimal for high throughput 

characterization of populations. Additionally, experimental design tools, such as GWAPower 

(Feng et al., 2011), can be used to facilitate optimal selection of sample sizes and sequencing 

type (average distance between SNP and candidate gene) for new candidate gene identification 

projects. Another major difficulty involves proper annotation of functionally characterized genes. 

Many gene products are highly pleiotropic, shifting their function in a context-dependent manner 

within the same organism (Wagner & Zhang, 2011). Furthermore, orthologous genes are 

frequently re-deployed, leading to highly variable functions in different organisms. Overcoming 

these challenges will require a highly versatile system of annotation that can encompass 

functional variability without compromising overall utility. 

2. Data storage. 

Currently the tools and data associated with high throughput sequencing are inaccessible and 

unstable (i.e., often poorly maintained due to lack of support). The National Center for 

Biotechnology Information, NCBI (https://www.ncbi.nlm.nih.gov), is an excellent, supported 

repository for genomic and transcriptomic data (Coordinators, 2020), however its design for 

biomedical research makes it somewhat limited for non-model organisms. While international 

resources designed specifically for housing non-model organism genomic and transcriptomic 

http://mc.manuscriptcentral.com/icbiol
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data and tools, such as Lepbase (http://lepbase.org), can suffer from limited financial support. 

Solutions will involve creating centralized, community edited (possibly open source), sustainable 

data and tool repositories (potentially modeled on ImageJ or the Brain Initiative). Additionally, 

robust infrastructures must be in place to maintain and oversee these repositories as they 

expand. There are already systems in place (da Veiga Leprevost et al., 2017; Barnett et al., 

2019) from which we can learn best practices. Finally, establishing close links between research 

groups collecting and research groups analyzing data will be essential.  A “hub and spoke” 

approach, as exemplified by data coordination centers used extensively in clinical research, 

may be an efficient model to foster this, with constant feedback from all stakeholders and 

advisory groups. 

3. Data transparency.  

Methods for data collection, management, and analysis are often opaque, making it difficult to 

critically evaluate datasets or efficiently redeploy them in different contexts. Agreement across 

fields on proper annotation of methodology, data and metadata could help overcome this issue. 

Data Carpentry (https://datacarpentry.org/semester-biology/syllabus/) may provide a framework 

to teach standard methods for data collection and management across biology. Data analysis 

and development platforms such as github (https://github.com) can also be excellent public 

repositories for code, as they allow others to easily recreate analyses and results. While open 

data challenges, such as Critical Assessment of Massive Data Analysis (CAMDA), Critical 

Assessment of Genome Interpretation (CAGI), and DREAM Challenges can facilitate 

opportunities for researchers to compare analysis methods and develop best practices. 

4. Data sets are often incomplete. 

Next generation sequencing is poised to promote the comprehensive collection of genomic data 

along with transcriptional and chromatin dynamics in organisms, tissues and cells. High 

http://mc.manuscriptcentral.com/icbiol
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throughput mass spectrometry will allow comprehensive profiling of protein expression. 

Advances in imaging will enable pervasive characterization of cellular, organismal and 

population level phenotypes. For example, high throughput imaging approaches applied to 

classifying interspecific diversity (Lytle et al., 2010; Valan et al., 2019) may be improved over 

time to characterize intraspecific morphological or phenotypic diversity linked to genotypes. Tool 

development must keep pace with these technologies in order to provide efficient high 

throughput solutions for gathering and analyzing data at critical bottlenecks. These bottlenecks 

include candidate gene identification, mapping connections in gene regulatory and protein 

interaction networks, precise quantification of relevant biochemical processes such as signaling 

ligand diffusion, phenotypic profiling and mapping cross-species interactions. To fill in these 

gaps, new tools and data-collection efforts must be promoted, perhaps in the model of some 

existing “big science” initiatives from ecology or ecosystem science like the Long Term 

Ecological Research network (LTER; Hobbie et al., 2003), the National Ecological Observatory 

Network (NEON; Barnett et al., 2019), or hypothesis-driven coordinated distributed experiments 

(Fraser et al., 2012). Research that seeks to bridge the difficult divide from genotype to 

phenotype in situ and for non-model organisms may be more successful if leveraging data and 

researcher expertise from well-studied “model” ecosystems.

5. Data is exponentially increasing, unwieldy and noisy. 

The potential benefits of high-throughput sequencing data and other large datasets are greatly 

limited by inherent difficulties in extracting signal from noise. Machine learning approaches 

could be employed as a possible solution. We define machine learning as the science of training 

a model from data, enabling the machine to perform specific tasks and generate predictions 

(Camacho et al., 2018). The development of such machine learning tools will require a highly 

interdisciplinary approach, engaging computer scientists, mathematicians, and teams of 

biologists with wide-ranging expertise.

http://mc.manuscriptcentral.com/icbiol
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6. Existing tools are often limited in applicability. 

It is essential to provide resources and motivation to modify tools so they are more generally 

applicable. Decreasing barriers and increasing accessibility to tools and databases will provide 

resources to a broader user base that may not have developer or technical expertise.  One 

component of increasing tool applicability is development of clearly defined and annotated 

instructions regarding the types of data taken as inputs, definitions of parameters (and how they 

can be tuned), the assumptions underlying the algorithms, and what is generated as output. 

This will often be most readily achieved by providing, along with the tool, a use-case, sample 

data, or vignette to serve as a tutorial for use and to exemplify performance.

7. Biologists using big data should share best practices across subdisciplines. 

Scientists may apply machine learning approaches to resolve big data questions across the 

biological sciences, from mapping genotypes to phenotypes or structure to function, to 

predicting relationships between the distribution of species and their environments (Olden et al., 

2008). These subfields working independently likely encounter some of the same challenges in 

applying and interpreting machine learning approaches: Are the big data sources we use 

reliable and well-maintained (Barnes et al., 2014)? Do machine learning predictions have 

mechanistic meaning, or are they occasionally over-fitting to noise (Walsh et al., 2016)? 

Biologists applying machine learning to big data questions across levels of the biological 

hierarchy might share experiences on best practices or discoveries, while also being aware that 

conventional statistical approaches can be more appropriate and interpretable for some 

purposes (Royle et al., 2012; Rudin, 2019). Shared challenges may include identifying cases of 

model over-fitting (Okser et al., 2014), improving interpretability of “black box” machine learning 

output (Olden and Jackson, 2002), quantifying or identifying uncertainty in predictions (Willcock 

et al., 2018), and sharing practices for independence of training and testing data (Kegerreis et 

http://mc.manuscriptcentral.com/icbiol
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al., 2019). Biologists undoubtedly would benefit from more interactions with computer scientists 

and mathematicians in these fields, but may also have high potential to learn from innovations 

or experiences in other fields in biology using similar tools. For example, do ecologist’s 

concerns about the independence of machine learning testing and training data, and associated 

implications for model transferability or generalizability (Wenger & Olden, 2012; Bahn & McGill, 

2013), relate to machine learning in other fields of biology (Walsh et al., 2016; Kegerreis et al., 

2019)? Further, machine learning results are often not reincorporated into subsequent models. 

Solutions would involve providing efficient avenues for scientists to identify models that are 

relevant to their data sets and vice versa and motivate them to incorporate relevant data. 

Exciting Opportunities:

Here we detail a few exciting research opportunities across molecular, morphological, 

behavioral, and ecosystem scales that will be advanced by sustained big data and machine 

learning approaches.

Using big data to solve problems in molecular structure. A key part of solving the genotype 

to phenotype code is investigation of molecular structure, especially developing a better 

understanding of structural dynamics. Biomolecular structures are often envisioned as static; we 

generate structural maps from snapshots of biomolecules in specific conditions. We know, 

however, that the biochemical reactions that occur at a molecular level are dynamic.  

Parameters of a protein's environment (pH, temperature, physical location in the cell, 

presence/absence of binding partners, signaling molecules or ligands) can influence the fold 

and function of a protein. Similarly, RNA molecules can have different secondary structure folds 

despite the same nucleotide sequence. These dynamic modulations in structure can impact 

function and generate phenotypic changes at the cellular or organismal level (Nussinov et al., 

2019). A fundamental problem is that while we are interested in generating movies of the 

http://mc.manuscriptcentral.com/icbiol
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molecular machinery in action, we typically cannot access these ensemble dynamics. The 

predominant method used to investigate molecular structure is X-ray crystallography, which 

accounts for ~90% of the structural models available. These structures form the basis for 

generating questions about models for ligand binding, protein folding, and enzymatic function. 

These methods, however, depend on crystallizing the biomolecule, which necessitates finding 

chemical conditions in which a biomolecule will crystallize; this is a fundamental bottleneck in 

structural biology experiments, limiting our ability to structurally explore the dynamic ensemble 

of protein functional space. While advances have recently been made in developing a 

convolutional neural network to classify crystallization outcomes (Bruno et al., 2018), we 

currently have no working models for predicting what conditions will generate a crystal despite 

extensive attempts to use information about genetic sequences, homology modeling, and 

biomolecular parameter space to make predictions (Abrahams & Newman, 2019; Lynch, et al., 

2020). Leveraging a big data and machine learning framework of data organization and 

annotation coupled with developing accessible repositories for full experimental details 

(including what doesn’t work) and tools for using these data is critical for making predictive 

models. These big data approaches to molecular structural biology questions would enable a 

fuller exploration of the dynamics of protein function.

Comprehensive mapping and analysis of gene regulatory networks. The developmental 

processes that generate diverse phenotypes (morphological, physiological and behavioral) are 

largely encoded by densely interconnected gene networks (Davidson & Erwin, 2006). Next 

generation sequencing is poised to identify nearly all of the components in these networks 

(coding genes, non-coding regulatory elements and associated chromatin states) in a wide 

range of organisms and cell types (Banf & Rhee, 2017; Das Gupta & Tsiantis, 2018; Lowe et al., 

2017; Rebeiz & Tsiantis, 2017). However, we currently cannot leverage these sequencing data 

to accurately map the regulatory connections that link these elements in a high throughput 

http://mc.manuscriptcentral.com/icbiol
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manner (Thompson et al., 2015; Fiers et al., 2018; Skinnider et al., 2019; Siahpirani et al., 2019; 

Huynh-Thu & Sanguinetti, 2019). Network mapping is particularly critical for efforts to 

characterize dynamic shifts in gene network connections that drive the temporal unfolding of 

developing patterning programs and mediate environmentally dependent variability in 

morphology or physiology. These mapping efforts may be supplemented by single cell 

sequencing, which can be used to enhance our understanding of cell fate and to connect 

transcriptional and epigenetic heterogeneity (Grün & Grün, 2020; Angermueller et al., 2016). 

Mapping will also facilitate characterization of key differences in network architecture or 

dynamics that generate diverse phenotypes at various biological scales from cells to super-

organisms (Rebeiz et al., 2015). Additionally, mapping can promote characterization of 

genetically encoded intra and inter-specific interactions particularly within holobiont communities 

including microbe/metazoan, symbiotic or parasite/host interactions (Ferreiro et al., 2018). 

Mapping will also provide a productive framework for comparative approaches or targeted 

perturbations (CRISPR) used to test hypotheses regarding fundamental structure/function 

questions. In particular, these approaches can be used to elucidate architectural features or 

modules that are targeted by selection to produce novel phenotypes (Rebeiz et al., 2015; 

Nocedal & Johnson, 2015). These maps can also be used to identify key differences within 

heterologous cell populations within an individual that are associated with disease states 

(Chiquet et al., 2019). Broad characterization of these functionally critical network features or 

modules can then be used to search for shared properties which may facilitate predictive 

models or formulation of underlying principles. It is also possible that tools used to map or 

analyze gene network connections can be deployed in relation to other biological networks at 

different scales and thus exploit other poorly utilized data repositories (Yan et al., 2016).

A deep learning approach to gene expression analysis.  In the continued aim to “reverse 

engineer” the gene regulatory networks (GRN) that generate organismal diversity (Cussat-Blanc 

http://mc.manuscriptcentral.com/icbiol
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et al., 2019), researchers produce vast amounts of gene expression data. The literature is full of 

microscopy generated images of in situ hybridization assays for genes of interest, in both wild-

type and experimental systems, across an ever-expanding range of organisms (Puniyani & 

Xing, 2013; Davis, 2013; Wu et al., 2016). In situ hybridization assays are open to subjective 

interpretation (Yang et al., 2019), and expression domain similarities, differences, and/or 

variation are rarely quantified within or across datasets (see excellent exceptions such as Mace 

et al., 2010; Patrushev et al., 2018). With the more recent practical availability of RNA-seq, 

tissue and cellular level transcriptomics provides a more quantitative approach for testing 

hypotheses about gene-gene interactions. However, transcriptomics has in no way replaced in 

situ assays. In particular, in situ assays validate expression data for genes of interest identified 

in high-throughput transcriptomic analysis. In situ assays also provide essential details on 

spatial and temporal patterns of expression. In well-characterized systems such as Drosophila, 

we are beginning to see intriguing synergies of these datasets (Karaiskos et al., 2017). How 

then do we continue this trend and bring a community’s concerted efforts into a data pool to fully 

leverage the goal of understanding gene-gene interactions across organismal diversity? 

Some deep learning approaches are demonstrating impressive abilities to recognize patterns 

within and between large datasets, and to make connections between visual and molecular 

datasets (Mobadersany et al., 2018). Deep learning algorithms are networked computational 

models that mimic the layered node-like, neuronal structure of organic brains (Goodfellow et al., 

2016). Early variants of these algorithms relied on heavy processing of data before it went into 

the model in order for results to be meaningful. However, as big data gets even bigger, 

continued improvements in these algorithms have led to autonomous learning, in which the 

model itself is capable of finding meaningful patterns in the data (Webb, 2018). In particular, 

convoluted neural networks (CNNs), the form of deep neural networks behind rapid 

advancements in computer vision (Khan et al., 2018), hold significant promise for biology. CNNs 

http://mc.manuscriptcentral.com/icbiol
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are ideal for processing data with two or more dimensions, such as -omics or image datasets 

(Camacho et al., 2018). Some of the ways in which CNN algorithms can be employed are 

already emerging, as recent studies yield promising returns in the automatic detection of 

positive in situ staining results (Dong et al., 2015), the screening of developmental stages and 

phenotypes (Ishaq et al., 2017; Cordero-Maldonado et al., 2019), the construction of “in silico 

embryos” (Shen et al., 2018) and the generation of GRN predictive models using expression 

data (Yang et al., 2019). Sustained progress in these areas will require community initiatives 

that 1) promote tool/algorithm development and sharing; and 2) foster long-term pan-taxa 

repositories for gene expression and associated transcriptomic datasets.

Characterizing complex phenotypes. If a phenotype is broadly defined, or influenced by a 

large number of genes with small effects, it can be incredibly difficult to have enough power to 

identify all, or any, of the genes involved. 

One way to circumvent this problem is to design experiments that allow for the detection of 

genes associated with relatively simple, specific aspects of biologically relevant complex 

phenotypes. For example, if interested in the genes underlying mate selection, identify the 

genes associated with visual preference, olfactory preference, or vibratory preference 

separately, instead of searching for genes associated with a broadly characterized mate 

preference (Figure 2). This technique, of distilling complex phenotypes down to many simple 

phenotypes, has proven fruitful for identifying genes associated with behavior in model animals. 

The genes of large effect for conspecific pheromone detection and olfactory mate preference in 

Drosophila were identified by testing individual responses to the specific components of 

conspecific and heterospecific pheromones, with an array of gene knock-out lines (Xu et al., 

2005; Datta et al, 2008; Jin et al., 2008; Billeter & Levine, 2013). The different genes associated 

with positive and negative memory formation in Drosophila fruit flies and Aedes aegypti 

http://mc.manuscriptcentral.com/icbiol
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mosquitoes were identified using highly controlled experiments, with well-defined phenotypes 

(Schwaerzel et al., 2003, Vinauger et al., 2018). The same can be said for the genes involved in 

the circadian clock, and for genes involved in sex-specific responses to male pheromones in 

Drosophila (Curtin et al., 1995; Suri et al., 1999; Sarov-Blat et al., 2000; Demir & Dickson, 2005; 

Drapeau et al., 2006; Ruta et al., 2010). Indeed, the reason we know so much about the 

genetics of mate preference in Drosophila is because of decades of phenotype dissection and 

careful study of specific elements of the mate selection process (Keene & Waddell, 2007; 

Dickson, 2008). As illustrated by Drosophila mate preference genetics, these narrowly defined 

phenotypes are often the building blocks of the larger phenotype of interest, and once 

characterized, may scale up. While one can argue that this approach will only work for model 

animals, recent work on butterfly wing pattern genetics suggests otherwise. This approach has 

proven extremely fruitful for the identification of genes controlling specific color patterning 

elements of complex butterfly wing patterns in wild populations (Reed et al., 2011; Martin et al, 

2012; Kronforst & Papa 2015; Nadeau et al., 2016; Westerman et al., 2018), and may also 

prove useful for identifying genes associated with other complex traits in wild populations, such 

as habitat selection and mate choice. 

Identifying the genetic basis of behavior. One of the major hurdles of behavioral ecology has 

been identifying the genetic basis of evolutionary and ecologically important behaviors. 

Scientists have spent decades carefully characterizing a vast array of behaviors using 

ethograms, from foraging to mating to habitat selection, in a wide range of species. These 

carefully characterized phenotypes are ripe for genotype-phenotype discovery, and the last 

decade has seen an uptick in behavioral genetics studies in a range of taxa and natural and 

semi-natural populations (Bubac et al., 2020). Importantly, the ecological and evolutionary 

underpinnings of these phenotypes are often known, so identifying the genetic basis of these 

traits will facilitate a dramatic advance in our understanding of how selective forces on whole 
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organisms translates to genomic change (as discussed in Bengston et al., 2018; Merlin & 

Liedvogel, 2019; Westerman, 2019). Additionally, many of the scientists studying these well-

characterized behavioral traits are familiar enough with their study system that they can identify 

the most interesting and most accessible traits for gene identification. This drops the number of 

individuals that need to be sequenced for high quality candidate gene identification from the 

thousands needed in model animals and human populations to 70-120 individuals. This is 

primarily because we are looking for new genes of large effect in non-model animals (e.g. 

Westerman et al., 2018) instead of for new genes of small effect (which is what we are looking 

for in model animals and humans, e.g. Agrawal et al., 2016). These new genes of large effect 

are likely to be most relevant and tractable for management of responses to global change for 

non-model organisms (below). The genomic and translational tools necessary for identifying the 

genes underlying these behaviors now exist (Bentley, 2006; Visscher et al., 2012; Ran et al., 

2013), and are starting to be incorporated into the study of behavior in a small set of species 

(Bubac et al., 2020). The challenge is to integrate genomic, proteomic, and network approaches 

(and scientists) more broadly into the study of behavior, and to expose data scientists to the 

wealth of behavioral phenotypic data and associated behavioral ecologists that can be utilized in 

our efforts to better understand the genotype to phenotype pathway.   

Improved predictions for global change. Bridging the genotype to phenotype divide has high 

potential to improve management of species, communities, and ecosystems in response to 

global change challenges (climate, land use, invasive species), whether human-managed (e.g., 

agriculture; Abberton et al., 2016) or natural (e.g., endangered species, protected areas; 

Hoffman et al., 2015). Importantly, data deficiencies and uncertainties are likely to be most 

severe for wild species or remote ecosystems, relative to those upon which human societies are 

more dependent (Bland et al., 2015; Donaldson et al., 2016). As knowledge of genotypes has 

outpaced knowledge of phenotypes, researchers have called for high throughput phenotyping to 
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keep pace with genomic data (Kültz et al., 2013). Both phenotype and genotype data is urgently 

needed to guide adaptation and mitigation of global change effects on species and ecosystems. 

For example, current correlation-based predictions of species responses to global change (i.e., 

relating presence or distributions to environment conditions) inaccurately predict these 

relationships because they: 1) lack mechanism; 2) ignore biotic interactions; 3) omit potential for 

evolutionary response to change (Urban et al., 2016). Big data (both genetic and phenotypic) 

can improve these predictions by improving our understanding of organismal physiology, 

dispersal ability, or evolutionary potential. Phenotypic big data is being generated and improved 

through trait databases like TRY (Kattge et al. 2011), FishTraits (Frimpong & Angermeier 2009), 

and others. However, some specific data priorities to improve predictions of species, 

community, and ecosystem response to global change (land use, climate, invasive species) 

include: thermal, desiccation, and chemical tolerances; body mass; water and light 

requirements; life history traits; trophic position or diet; seed or larval size or dispersal traits; 

intra- and inter-specific interactions (mediated by behavior); and evolutionary or adaptive 

potential (Urban et al., 2016). Ecological genetic big data (transcriptomic and genomic) are 

being generated in field and common garden studies of increasingly diverse taxa under different 

climatic regimes (Pespeni et al, 2013; Hübner et al., 2015; Smith et al., 2013; Maor-Landaw et 

al., 2017). Increasing the taxonomic and ecological breadth of these data will enhance our 

understanding of genome to phenotype while improving the predictive power of our ecological 

models.   

Calls to reintegrate organismal biology by collecting high throughput phenotypic data to 

compliment high throughput genomic data (Kültz et al., 2013) can leverage management and 

conservation needs for some similar data to guide more mechanistic models of species 

responses to climate change (Urban et al., 2016). Both needs and applications share a 

dependency on: 1) big data (e.g., van den Hoogen et al., 2019), often analyzed by 2) machine 
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learning approaches (e.g. Olden et al., 2008). Researchers might leverage funding opportunities 

by combining basic science questions in mapping the genotype to phenotype with applied 

science needs for both data sources to inform conservation and management of commercially 

important, invasive, or endangered species in natural ecosystems. This integration of basic and 

applied science requires choosing which organisms provide the most return on investment for 

both basic and applied science questions concurrently. Further, there are too many populations, 

species, and ecosystems to collect genotype and phenotype data for all biological entities that 

need management; rather, scientists and resource managers will need to prioritize 

representative systems that can generalize to similar taxa or ecosystems (Urban et al., 2016) - 

these may not be classical model organisms, but will still be surrogates or proxies for related 

organisms and ecosystems (Caro & O’Doherty 1999).

Creating the human infrastructure for a big data and machine learning approach:  

Ironically, leveraging big data approaches and machine learning tools to crack the genotype to 

phenotype code will be about supporting people. There has been recognition that lack of data 

science proficiency and expertise is a fundamental roadblock in scientific research (Barone et 

al., 2017). Currently, exciting pioneering efforts are underway - in tool and research 

development, and in fundamental research. However, these efforts will likely remain insular, 

underutilized, and unavailable to the whole community - an inequitable situation - without 

broader development initiatives. Systematic top-down and bottom-up support structures are 

needed to: 1) attract, recruit, incentivize, and train a diverse group of students to these 

questions, many of which may never identify as biologists (i.e. they will remain data scientists, 

statisticians, etc.); 2) support and retrain biologists who are interested in developing these 

approaches; 3) develop sustained pan-disciplinary collaborations with experts in data science, 

mathematics, computer science, and related fields. These sustained pan-disciplinary 

collaborations can be particularly fruitful for pushing the boundaries of non-model organism 
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research, as illustrated by recent scientific advancements using Heliconius butterflies, most of 

which were achieved via multi-year collaborations between field biologists, bioinformaticians, 

developmental biologists, and population geneticists (as well as other sub-disciplines) (Merrill et 

al., 2015; Kronforst & Papa, 2015). Addressing some of these challenges may involve the 

development of interdisciplinary courses, programs, and degrees along with associated 

outreach to community colleges or other institutions that do not currently have access to 

resources. Formation of interdisciplinary teams who commit to attending and hosting each 

other’s conferences will help build common languages and interest in the key questions in their 

fields. Programs such as NSF’s Research Coordination Network (RCN) provide support 

pathways for human infrastructure and workforce development to achieve this goal. Ultimately, 

the results of these efforts can be seen as more than a reintegration - but instead the 

emergence of an augmented biology.

Recommendations:

● Promote the development of minimum “best practices” for the experimental design and 

collection of data - especially when these data are expected to be utilized as part of a 

community pool.

● Foster sustained and long-term initiatives for tool development and sharing.

● Promote data standards and annotations.

● Foster sustained and long-term data repositories, preferably those that would promote 

data sharing across scales and taxa.

● Support funding agency and publisher requirements that new datasets, tools and code 

be shared and made easily accessible to the community. 

● Promote programs that recruit, train, and retain a diversity of talent - both new students 

and retrained biologists - that are interested in the use of these approaches.  
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● Promote collaborative pan-disciplinary exchange between biologists and data scientists 

and related fields.

● Identify opportunities where funding can be leveraged for basic and applied questions 

concurrently, including in response to management of natural and human-dependent 

species or ecosystems in response to global change.

Acknowledgements

We would like to thank the University Corporation for Atmospheric Research and 

Knowinnovation for organizing the Reintegrating Biology Jumpstart Workshops which facilitated 

this working group and manuscript, and NSF for funding these workshops. We would also like to 

thank the many participants of the Reintegrating Biology Jumpstart Workshop in Austin, TX 

whose thoughtful feedback improved this manuscript. 

References

Abberton, M., Batley, J., Bentley, A., Bryant, J., Cai, H., Cockram, J., Costa de Oliveira, A., 

Cseke, L.J., Dempewolf, H., De Pace, C. & Edwards, D., 2016. Global agricultural intensification 

during climate change: a role for genomics. Plant biotechnology journal 14: 1095-1098.

Abrahams, G.J. & Newman, J. 2019. BLASTing away preconceptions in crystallization trials. 

Acta Crystallographica Section F: Structural Biology Communications, 75(3): 184-192.

Agrawal, A., Edenberg, H.J. & Gelernter, J. 2016. Meta-analyses of genome-wide association 

data hold new promise for addiction genetics. Journal of Studies on Alcohol and Drugs 77: 676-

680.

http://mc.manuscriptcentral.com/icbiol

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article-abstract/doi/10.1093/icb/icaa055/5850862 by Sw

arthm
ore C

ollege Libraries, Jessica Brangiel on 22 July 2020



20

Angermueller, C., Clark, S.J., Lee, H.J., Macaulay, I.C., Teng, M.J., Hu, T.X., Krueger, F., 

Smallwood, S., Ponting, C.P., Voet, T., Kelsey, G., Stegle, O., Reik, W. 2016. Parallel single-cell 

sequencing links transcriptional and epigenetic heterogeneity. Nature Methods 13(3): 229-232. 

Bahn, V. & McGill, B.J. 2013. Testing the predictive performance of distribution models. Oikos 

122: 321-331.

Banf, M. & Rhee, S.Y. 2017. Computational inference of gene regulatory networks: Approaches, 

limitations and opportunities. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms 

1860 (1): 41-52.

Barnes, M.A., Jerde, C.L., Wittmann, M.E., Chadderton, W.L., Ding, J., Zhang, J., Purcell, M., 

Budhathoki, M., & Lodge, D.M. 2014. Geographic selection bias of occurrence data influences 

transferability of invasive Hydrilla verticillata distribution models. Ecology and Evolution 4: 2584-

2593.

Barnett, D.T., Duffy, P.A., Schimel, D.S., Krauss, R.E., Irvine, K.M., Davis, F.W., Gross, J.E., 

Azuaje, E.I., Thorpe, A.S., Gudex‐Cross, D. & Patterson, M. 2019. The terrestrial organism and 

biogeochemistry spatial sampling design for the National Ecological Observatory Network. 

Ecosphere 10: e02540.

Barone, L., Williams, J. & Micklos, D., 2017. Unmet needs for analyzing biological big data: A 

survey of 704 NSF principal investigators. PLoS computational biology 13: e1005755.

http://mc.manuscriptcentral.com/icbiol

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article-abstract/doi/10.1093/icb/icaa055/5850862 by Sw

arthm
ore C

ollege Libraries, Jessica Brangiel on 22 July 2020



21

Bengston, S.E., Dahan, R.A., Donaldson, Z., Phelps, S.M., Van Oers, K., Sih, A. & Bell, A.M. 

2018. Genomic tools for behavioural ecologists to understand repeatable individual differences 

in behaviour. Nature Ecology & Evolution 2: 944-955.

Bentley, D.R. 2006. Whole-genome re-sequencing. Current Opinion in Genetics & Development 

16(6):545-552.

Billeter, J. & Levine, J.D. 2013. Who is he and what is he to you? Recognition in Drosophila 

melanogaster. Current Opinion in Neurobiology 23:17-23. 

Bland, L.M., Collen, B.E.N., Orme, C.D.L. & Bielby, J.O.N. 2015. Predicting the conservation 

status of data‐deficient species. Conservation Biology 29, 250-259.

Bruno, A.E., Charbonneau, P., Newman, J., Snell, E.H., So, D.R., Vanhoucke, V., Watkins, C.J., 

Williams, S. & Wilson, J. 2018. Classification of crystallization outcomes using deep 

convolutional neural networks. PLoS ONE, 13(6).

Bubac, C.M., Miller, J.M., Coltman, D.W. 2020. The genetic basis of animal behavioural 

diversity in natural populations. Molecular Ecology Doi: 10.1111/MEC.15461.

Camacho, D.M., Collins K.M., Powers R.K., Costello J.C. & Collins J.J. 2018. Next-Generation 

Machine Learning for Biological Networks. Cell 14: 1581-1592.

Caro, T.M. & O'Doherty, G. 1999. On the use of surrogate species in conservation biology. 

Conservation biology, 13(4): 805-814.

http://mc.manuscriptcentral.com/icbiol

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article-abstract/doi/10.1093/icb/icaa055/5850862 by Sw

arthm
ore C

ollege Libraries, Jessica Brangiel on 22 July 2020



22

Chen, J.W, Scaria J. & Chang Y. F. 2012. Phenotypic and Transcriptomic Response of 

Auxotrophic Mycobacterium avium Subsp. paratuberculosis leuD Mutant under Environmental 

Stress. PLoS ONE 7(6): e37884

Chiquet J., Rigaill G. & Sundqvist M. 2019. A Multiattribute Gaussian Graphical Model for 

Inferring Multiscale Regulatory Networks: An Application in Breast Cancer. In: Sanguinetti G., 

Huynh-Thu V. (eds) Gene Regulatory Networks. Methods in Molecular Biology, vol 1883. 

Humana Press, New York, NY.

Coordinators, N.R. 2018. Database resources of the national center for biotechnology 

information. Nucleic acids research, 46: D8.

Cordero-Maldonado M.L., Perathoner S., van der Kolk K-J., Boland R., Heins-Marroquin U., 

Spaink H.P., Meijer, A.H., Crawford A.D. & de Sonneville, J. 2019. Deep learning image 

recognition enables efficient genome editing in zebrafish by automated injections. PLoS ONE 

14: e0202377.

Curtin, K.D., Huang, Z.J. & Rosbash, M. 1995. Temporally regulated nuclear entry of the 

Drosophila period protein contributes to the circadian clock. Neuron 14: 365-372. 

Cussat-Blanc, S., Harrington, K. & Banzhaf, W.  2019. Artificial Gene Regulatory Networks - A 

Review. Artificial Life 24(4): 296-328.

Das Gupta, M. & Tsiantis, M. 2018. Gene networks and the evolution of plant morphology,

Current Opinion in Plant Biology 45: 82-87.

http://mc.manuscriptcentral.com/icbiol

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article-abstract/doi/10.1093/icb/icaa055/5850862 by Sw

arthm
ore C

ollege Libraries, Jessica Brangiel on 22 July 2020



23

Datta, S.R., Vasconcelos, M.L., Ruta, V., Luo, S., Wong, A., Demir, E., Flores, J., Balonze, K., 

Dickson, B.J., & Axel, R. 2008. The Drosophila pheromone cVA activates a sexually dimorphic 

neural circuit. Nature. 452: 473-477.

da Veiga Leprevost, F., Grüning, B.A., Alves Aflitos, S., Röst, H.L., Uszkoreit, J., Barsnes, H., 

Vaudel, M., Moreno, P., Gatto, L., Weber, J. & Bai, M. 2017. BioContainers: an open-source 

and community-driven framework for software standardization. Bioinformatics, 33: 2580-2582.

Davidson, E. H. & Erwin, D. H. 2006. Gene regulatory networks and the evolution of animal 

body plans. Science 311: 796–800.

Davis M.C. 2013.  The Deep Homology of the Autopod: Insights from Hox Gene Regulation. 

Integrative and Comparative Biology 53: 224-232.

Demir, E. & Dickson, B.J. 2005. Fruitless splicing specifies male courtship behavior in 

Drosophila. Cell 121(5):785-794.

Dickson, B.J. 2008. Wired for sex: The neurobiology of Drosophila mating decisions. Science 

322:904-909.

Donaldson, M.R., Burnett, N.J., Braun, D.C., Suski, C.D., Hinch, S.G., Cooke, S.J. & Kerr, J.T. 

2016. Taxonomic bias and international biodiversity conservation research. Facets 1: 105-113.

Dong, B., Shao, L., Da Costa, M., Bandmann, O.  & Frangi, A.F.  2015.  Deep learning for 

automatic cell detection in wide-field microscopy zebrafish images. 2015 IEEE 12th International 

Symposium on Biomedical Imaging (ISBI), New York, NY, 2015, pp. 772-776.

http://mc.manuscriptcentral.com/icbiol

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article-abstract/doi/10.1093/icb/icaa055/5850862 by Sw

arthm
ore C

ollege Libraries, Jessica Brangiel on 22 July 2020



24

Drapeau, M.D, Cyran, S.A., Viering, M.M., Geyer, P.K. & Long, A.D. 2006. A cis-regulatory 

sequence within the yellow locus of Drosophila melanogaster required for normal male mating 

success. Genetics 172:1009-1030. 

Fiers M. W. E. J., Minnoye, L., Aibar, S., González-Blas, C. B.,  Atak, Z .K. & Aerts, S. 2018. 

Mapping gene regulatory networks from single-cell omics data, Briefings in Functional 

Genomics, 17: 246–254.

Feng, S., Wang, S., Chen, C. & Lan, L. 2011. GWA Power: a statistical power calculation 

software for genome-wide association studies with quantitative traits. BMC Genetics 12:12.

Ferreiro, A., Crook, N., Gasparrini, A. J. & Dantas, G. 2018. Multiscale Evolutionary Dynamics 

of Host-Associated Microbiomes. Cell 172: 1216–1227.

Fraser, L.H., Henry, H.A., Carlyle, C.N., White, S.R., Beierkuhnlein, C., Cahill Jr., J.F., Casper, 

B.B., Cleland, E., Collins, S.L., Dukes, J.S. & Knapp, A.K. 2013. Coordinated distributed 

experiments: an emerging tool for testing global hypotheses in ecology and environmental 

science. Frontiers in Ecology and the Environment 11: 147-155.

Frimpong, E.A., & Angermeier, P.L. 2009. Fish traits: a database of ecology and life-history 

traits of freshwater fishes of the United States. Fisheries 34: 487-495.

Goodfellow, I,. Bengio, Y &, Courville, A. 2016.  Deep Learning.  MIT Press.

http://mc.manuscriptcentral.com/icbiol

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article-abstract/doi/10.1093/icb/icaa055/5850862 by Sw

arthm
ore C

ollege Libraries, Jessica Brangiel on 22 July 2020



25

Grün, S., Grün, D. 2020. Deciphering cell fate decision by integrated single-cell sequencing 

analysis. Annual Review of Biomedical Data Science 3: 1-22.  

Hobbie, J.E., Carpenter, S.R., Grimm, N.B., Gosz, J.R., & Seastedt, T.R. 2003. The US long 

term ecological research program. BioScience 53: 21-32.

Hübner, S., Korol, A.B., Schmid, K.J. 2015. RNA-Seq analysis identifies genes associated with 

differential reproductive success under drought-stress in accessions of wild barley Hordeum 

spontaneum. BMC Plant Biology 15: 134. 

Hulsen, T., Jamuar, S. S., Moody, A. R., Karnes, J. H., Varga, O., Hedensted, S., Spreafico, R., 

Hafler, D. A., & McKinney, E. F. 2019. From Big Data to Precision Medicine. Frontiers in 

Medicine 6: 34. 

Huynh-Thu, V.A. & Sanguinetti, G., 2019. Gene Regulatory Network Inference: An Introductory 

Survey. In: Sanguinetti G., Huynh-Thu V. (eds) Gene Regulatory Networks. Methods in 

Molecular Biology, vol 1883. Humana Press, New York, NY.

Ishaq, O., Sadanandan, S.K. & Wählby C.  2017. Deep Fish: Deep Learning–Based

Classification of Zebrafish Deformation for High-Throughput Screening. SLAS DISCOVERY: 22: 

102–107. 

Jin, X., Ha, T.S. & Smith, D.P. 2008. SNMP is a signaling component required for pheromone 

sensitivity in Drosophila. Proceedings of the National Academy of Sciences 105: 10996-11001.

http://mc.manuscriptcentral.com/icbiol

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article-abstract/doi/10.1093/icb/icaa055/5850862 by Sw

arthm
ore C

ollege Libraries, Jessica Brangiel on 22 July 2020



26

Karaiskos, N., Wahle, P., Alles, J., Boltengagen, A., Ayoub, S., Kipar, C., Kocks, C., Rajewsky, 

N. & Zinzen, R.P. 2017.  The Drosophila embryo at single-cell transcriptome resolution. Science 

358: 194-199.

Kattge, J., Diaz, S., Lavorel, S., Prentice, I.C., Leadely, P., Bönisch, G., Garnier, E., Westoby, 

M., Reich, P.B., Wright, I.J. & Cornelissen, J.H.C. 2011. TRY - a global database of plant traits. 

Global Change Biology 17: 2905-2935. 

Keene, A.C. & Waddell, S. 2007. Drosophila olfactory memory: single genes to complex neural 

circuits. Nature Reviews Neuroscience 8: 341-354.

Kegerreis, B., Catalina, M.D., Bachali, P., Geraci, N.S., Labonte, A.C., Zeng, C., Stearrett, N., 

Crandall, K.A., Lipsky, P.E., & Grammer, A.C. 2019. Machine learning approaches to predict 

lupus disease activity from gene expression data. Scientific Reports 9: 1-12.

Khan, S., Rahmani H., Shah, S.A.A. & Bennamoun, M.  2018. A Guide to Convolutional Neural 

Networks for Computer Vision. Synthesis Lectures on Computer Vision  8: 1-207.

Kronforst, M.R. & Papa, R. 2015 The functional basis of wing patterning in Heliconius butterflies: 

The molecules behind the mimicry. Genetics 200 1-19.

Kültz, D., Clayton, D.F., Robinson, G.E., Albertson, C., Carey, H.V., Cummings, M.E., Dewar, 

K., Edwards, S.V., Hofmann, H.A., Gross, L.J. & Kingsolver, J.G. 2013. New frontiers for 

organismal biology. BioScience 63: 464-471.

http://mc.manuscriptcentral.com/icbiol

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article-abstract/doi/10.1093/icb/icaa055/5850862 by Sw

arthm
ore C

ollege Libraries, Jessica Brangiel on 22 July 2020



27

Lowe, E. K., Cuomo, C. & Arnone, M. I. 2017. Omics approaches to study gene regulatory 

networks for development in echinoderms. Brief Funct Genomics 16: 299–308.

Lynch, M.L., Dudek, M.F. & Bowman, S.E.J. 2020. A Searchable Database of Crystallization 

Cocktails in the PDB: Analyzing the Chemical Condition Space. Patterns. 

doi.org/10.1016/j.patter.2020.100024. 

Lytle, D.A., Martínez-Muñoz, G., Zhang, W., Larios, N., Shapiro, L., Paasch, R., Moldenke, A., 

Mortensen, E.N., Todorovic, S., & Dietterich, T.G. 2010. Automated processing and 

identification of benthic invertebrate samples. Journal of the North American Benthological 

Society 29: 867-874.

Martin, A., Papa, R., Nadeau, N.J., Hill, R.I., Counterman, B.A., Halder, G., Jiggins, C.D., 

Kronforst, M.R., Long, A.D., McMillan, W.O. & Reed, R.D. 2012. Diversification of complex 

butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proceedings of the 

National Academy of Sciences 109 (31):12632-12637. 

Mace, D.L., Varnado, N., Zhang, W., Frise, E. & Ohler, U. 2010. Extraction and comparison of 

gene expression patterns from 2D RNA in situ hybridization images. Bioinformatics 26: 761-769.

Maor-Landaw, K., Ben-Asher, H.W., Karako-Lambert, S., Salmon-Divon, M., Prada, F., 

Caroselli, E., Goffredo, S., Falini, G., Dubinsky, Z., Levy, O. 2017. Mediterranean versus Red 

sea corals facing climate change, a transcriptome analysis. Scientific Reports 7:42405.

http://mc.manuscriptcentral.com/icbiol

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article-abstract/doi/10.1093/icb/icaa055/5850862 by Sw

arthm
ore C

ollege Libraries, Jessica Brangiel on 22 July 2020



28

Merlin, C. & Liedvogel, M. 2019. The genetics and epigenetics of animal migration and 

orientation: birds, butterflies and beyond. Journal of Experimental Biology 222: jeb191890. 

doi.org/10.1242/jeb.191890.

Merrill, R.M., Dasmahaptra, K.K., Davey, J.W., Dell’Aglio, D.D., Hanly, J.J., Huber, B., Jiggins, 

C.D., Joron, M., Kozak, K.M., Llaurens, V., Marin, S.H., Montgomery, S.H., Morris, J., Nadeau, 

N.J., Pinharanda, A.L., Rosser, N., Thompson, M.J., Vanjari, S., Wallbank, R.W.R., Yu, Q. 

2015. The diversification of Heliconius butterflies: what have we learned in 150 years? Journal 

of Experimental Biology 28 (8): 1417-1438.

Mobadersany, P., Yousefi, S., Amgad, M., Gutman, D.A., Barnholtz-Sloan, J.S., Velázquez 

Vega, J.E., Brat, D.J. & Cooper., L.A.D.  2018.  Predicting cancer outcomes from histology and 

genomics using convolutional networks.  Proceedings of the National Academy of Sciences 

115: E2970-E2979.

Nadeau, N.J., Pardo-Diaz, C., Whibley, A., Supple, M.A., Saenko, S.V., Wallbank, R.W.R., Wu, 

G.C., Maroja, L., Ferguson, L., Hanly, J.J., Hines, H., Salazar, C., Merrill, R.M., Dowling, A.J., 

ffrench-Constant, R.H., Llaurens, V., Joron, M., McMillan, W.O. & Jiggins, C.D. 2016. The gene 

cortex controls mimicry and crypsis in butterflies and moths. Nature 534:106-110. 

Nocedal, I. & Johnson, A. D. 2016. How transcription networks evolve and produce biological 

novelty. Cold Springs Harbor Symposia on Quantitative Biology 80: 265–274.

National Research Council (US) Committee on a New Biology for the 21st Century: Ensuring 

the United States Leads the Coming Biology Revolution. 2009.  A New Biology for the 21st 

http://mc.manuscriptcentral.com/icbiol

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article-abstract/doi/10.1093/icb/icaa055/5850862 by Sw

arthm
ore C

ollege Libraries, Jessica Brangiel on 22 July 2020



29

Century: Ensuring the United States Leads the Coming Biology Revolution. Washington (DC): 

National Academies Press (US) 4: pp 112.

Nussinov, R., Tsai, C. J. & Jang, H. 2019. Protein ensembles link genotype to phenotype. PLoS 

Computational Biology 15: e1006648.

Okser, S., Pahikkala, T., Airola, A., Salakoski, T., Ripatti, S., & Aittokallio, T. 2014. Regularized 

machine learning in the genetic prediction of complex traits. PLoS Genetics 10: e1004754.

Olden, J.D., & Jackson, D.A. 2002. Illuminating the “black box”: a randomization approach for 

understanding variable contributions in artificial neural networks. Ecological Modelling 154: 135-

150.

Olden, J.D., Lawler, J.J. & Poff, N.L. 2008. Machine learning methods without tears: a primer for 

ecologists. Quarterly Review of Biology 83: 171-193.

Patrushev, I., James-Zorn, C., Ciau-Uitz, A., Patient, R. & Gilchrist, M.J. 2018. New methods for 

computational decomposition of whole-mount in situ images enable effective curation of a large, 

highly redundant collection of Xenopus images. PLoS Computational Biology 14: e1006077.

Pespeni, M.H., Barney, B.T., Palumbi, S.R. 2013. Differences in the regulation of growth and 

biomineralization genes revealed through long-term common-garden acclimation and 

experimental genomics in the purple sea urchin. Evolution 67(7): 1901-1914. 

Puniyani, K. & Xing, E.P. 2013. GINI: From ISH images to gene interaction networks. PLoS 

Computational Biology 9: 1003227.

http://mc.manuscriptcentral.com/icbiol

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article-abstract/doi/10.1093/icb/icaa055/5850862 by Sw

arthm
ore C

ollege Libraries, Jessica Brangiel on 22 July 2020



30

Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A. & Zhang, F. 2013. Genome 

engineering using the CRISPR-Cas9 system. Nature Protocols 8:2281-2308. 

Rebeiz, M., Patel, N. H. & Hinman, V. F. 2015. Unraveling the Tangled Skein: The Evolution of 

Transcriptional Regulatory Networks in Development. Annu Rev Genomics Hum Genet 16: 

103–131.

Rebeiz, M. & Tsiantis, M. 2017. Enhancer evolution and the origins of morphological novelty. 

Curr Opin Genet Dev 4: 115–123.

Reed, R.D., Papa, R., Martin, A., Counterman, B.A., Pardo-Diz, C., Jiggins, C.D., Chamberlain, 

N.L., Kronforst, M.R., Chen, R., Halder, G., Nijhout, H.F. & McMillan, W.O. 2011. Optix drives 

the repeated convergent evolution of butterfly wing pattern mimicry. Science 333:1137-1141. 

Royle, J.A., Chandler, R.B., Yackulic, C., & Nichols, J.D. 2012. Likelihood analysis of species 

occurrence probability from presence‐only data for modelling species distributions. Methods in 

Ecology and Evolution 3: 545-554.

Rudin, C. 2019. Stop explaining black box machine learning models for high stakes decisions 

and use interpretable models instead. Nature Machine Intelligence 1: 206-215.

Ruta, V., Datta, S.R., Vasconcelos, M.L., Freeland, J., Looger, L.L. & Axel, R. 2010. A 

dimorphic pheromone circuit in Drosophila from sensory input to descending output. Nature. 

468:686-692.

http://mc.manuscriptcentral.com/icbiol

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article-abstract/doi/10.1093/icb/icaa055/5850862 by Sw

arthm
ore C

ollege Libraries, Jessica Brangiel on 22 July 2020



31

Sarov-Blat, L., So, W.V., Liu, L. & Rosbash, M. 2000.The Drosophila takeout gene is a novel 

molecular link between circadian rhythms and feeding behavior. Cell 101: 647-656. 

Schwaerzel, M., Monastirioti, M., Scholz, H., Friggi-Grelin, F., Birman, S. & Heisenberg, M. 

2003. Dopamine and octopamine differentiate between aversive and appetitive olfactory 

memories in Drosophila. Journal of Neuroscience 23(33): 10495-10502.

Shen, X., Shen, S., Li, J., Hu, Q., Nie, L., Tu, C.,  Wang, X., Poulsen, D. J., Orsburn, B. C., 

Wang, J. & Qu, J. 2018. IonStar enables high-precision, low-missing-data proteomics 

quantification in large biological cohorts. Proceedings of the National Academy of Sciences 115 

(21): E4767-E4776.

Shen, J., Petkova, M.D., Tu, Y., Liu, F. & Tang, C. 2020. Deciphering gene regulation from gene 

expression dynamics using deep neural network. bioRxiv doi: https://doi.org/10.1101/374439. 

Siahpirani A.F., Chasman D. & Roy S. 2019. Integrative Approaches for Inference of Genome-

Scale Gene Regulatory Networks. In: Sanguinetti G., Huynh-Thu V. (eds) Gene Regulatory 

Networks. Methods in Molecular Biology, vol 1883. Humana Press, New York, NY.

Skinnider, M.A., Squair, J.W. & Foster, L.J. 2019. Evaluating measures of association for single-

cell transcriptomics. Nat Methods 16: 381–386 doi:10.1038/s41592-019-0372-4.

Smith, S., Bernatchez, L., Beheregaray, L.B. 2013. RNA-seq analysis reveals extensive 

transcriptional plasticity to temperature stress in a freshwater fish species. BMC Genomics 14: 

375.

http://mc.manuscriptcentral.com/icbiol

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article-abstract/doi/10.1093/icb/icaa055/5850862 by Sw

arthm
ore C

ollege Libraries, Jessica Brangiel on 22 July 2020



32

Suri, V., Lanjuin, A. & Rosbash, M. 1999. TIMELESS-dependent positive and negative 

autoregulation in the Drosophila circadian clock. The EMBO Journal 18 (3): 675-686.

Tam, V., Patel, N., Turcotte, M., Bossé, Y., Paré, G. & Meyre, D. 2019. Benefits and limitations 

of genome-wide association studies. Nat Rev Genet 20: 467-484. do.org/10.1038/s41576-019-

0127-1.

Thompson, D., Regev, A. & Roy, S. 2015. Comparative Analysis of Gene Regulatory Networks: 

From Network Reconstruction to Evolution. Annu Rev Cell Dev Biol 31: 399–428.

Urban, M.C., Bocedi, G., Hendry, A.P., Mihoub, J.B., Pe’er, G., Singer, A., Bridle, J.R., Crozier, 

L.G., De Meester, L., Godsoe, W. & Gonzalez, A. 2016. Improving the forecast for biodiversity 

under climate change. Science 353: p.aad8466. 

Valan, M., Makonyi, K., Maki, A., Vondráček, D., & Ronquist, F. 2019. Automated taxonomic 

identification of insects with expert-level accuracy using effective feature transfer from 

convolutional networks. Systematic Biology 68: 876-895.

van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D.A., De 

Goede, R.G., Adams, B.J., Ahmad, W., Andriuzzi, W.S. & Bardgett, R.D. 2019. Soil nematode 

abundance and functional group composition at a global scale. Nature 572: 194-198.

Vinauger, C., Lahondere, C., Wolff, G.H., Liaw, J.E., Parrish, J.Z., Akbari, O.S., Dickinson, M.H. 

& Riffell, J.A. 2018. Modulation of host learning in Aedes aegypti mosquitoes. Current Biology 

28 (3): 333-344. 

http://mc.manuscriptcentral.com/icbiol

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article-abstract/doi/10.1093/icb/icaa055/5850862 by Sw

arthm
ore C

ollege Libraries, Jessica Brangiel on 22 July 2020



33

Visscher, P.M., Brown, M.A., McCarthy, M.I. & Yang, J. 2012. Five years of GWAS discovery. 

The American Journal of Human Genetics 90:7-24. 

Wagner, G.&  Zhang, J. 2011. The pleiotropic structure of the genotype–phenotype map: the 

evolvability of complex organisms. Nature Reviews Genetics 12: 204–213.

Walsh, I., Pollastri, G., & Tosatto, S.C. 2016. Correct machine learning on protein sequences: a 

peer-reviewing perspective. Briefings in Bioinformatics 17: 831-840.

Webb, S., 2018. Deep learning for biology. Nature 554: 555–557.

Wenger, S.J. & Olden, J.D. 2012. Assessing transferability of ecological models: an 

underappreciated aspect of statistical validation. Methods in Ecology and Evolution 3: 260-267.

Westerman, E.L., VanKuren, N.W., Massardo, D., Tenger-Trolander, A., Zhang, W., Hill, R.I., 

Perry, M., Bayala, E., Barr, K., Chamberlain, N., Douglas, T.E., Buerkle, N., Palmer, S.E. & 

Kronforst, M.R. 2018. Aristaless controls butterfly wing color variation used in mimicry and mate 

choice. Current Biology 28(21):3469-3474.e4 doi.org/10.1016/j.cub.2018.08.051.

Westerman, E.W. 2019. Searching for the genes driving assortative mating. PLoS Biology 

17(2):e3000108. doi.org/10.1371/journal.pbio.3000108.

Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M., Baak, A., Blomberg, 

N., Boiten, J.W., da Silva Santos, L.B., Bourne, P.E., Bouwman, J., Brookes A.J., Clark T., 

http://mc.manuscriptcentral.com/icbiol

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article-abstract/doi/10.1093/icb/icaa055/5850862 by Sw

arthm
ore C

ollege Libraries, Jessica Brangiel on 22 July 2020



34

Crosas M., Dillo I., Dumon O., Edmunds S., Evelo C.T., Finkers R., Gonzalez-Beltran A., Gray 

A.J., Groth P., Goble C., Grethe J.S., Heringa J., 't Hoen P.A., Hooft R., Kuhn T., Kok R., Kok J., 

Lusher S.J., Martone M.E., Mons A., Packer A.L., Persson B., Rocca-Serra P., Roos M., van 

Schaik R., Sansone S.A., Schultes E., Sengstag T., Slater T., Strawn G., Swertz M.A., 

Thompson M., van der Lei J., van Mulligen E., Velterop J., Waagmeester A., Wittenburg P., 

Wolstencroft K., Zhao J., Mons B. 2016. The FAIR Guiding Principles for scientific data 

management and stewardship. Scientific Data, 3. doi: 10.1038/sdata.2016.18. Erratum in: Sci 

Data. 2019 Mar 19;6(1):6. PMID: 26978244; PMCID: PMC4792175.

Willcock, S., Martínez-López, J., Hooftman, D.A., Bagstad, K.J., Balbi, S., Marzo, A., Prato, C., 

Sciandrello, S., Signorello, G., Voigt, B., & Villa, F. 2018. Machine learning for ecosystem 

services. Ecosystem Services 33: 165-174.

Wu, S., Joseph, A., Hammonds, A. S., Celniker, S. E., Yu, B. & Frise, E. 2016.  Stability-driven 

nonnegative matrix factorization to interpret spatial gene expression and build local gene 

networks. Proceedings of the National Academy of Sciences. 113(16):4290–4295. 

doi.org/10.1073/pnas.1521171113.

Xu, P., Atkinson, R., Jones, D.N.M. & Smith, D.P. 2005. Drosophila OBP LUSH is required for 

activity of pheromone-sensitive neurons. Neuron 45:193-200.  

Xu, X. & Bai, G. 2015. Whole-genome resequencing: changing the paradigms of SNP detection, 

molecular mapping and gene discovery. Molecular Breeding 35:33. doi.org/10.1007/s11032-

015-0240-6.

http://mc.manuscriptcentral.com/icbiol

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article-abstract/doi/10.1093/icb/icaa055/5850862 by Sw

arthm
ore C

ollege Libraries, Jessica Brangiel on 22 July 2020

https://doi.org/10.1073/pnas.1521171113
https://doi.org/10.1073/pnas.1521171113


35

Yan, K. K., Wang, D., Sethi, A., Muir, P., Kitchen, R., Cheng, C. & Gerstein, M. 2016. Cross-

Disciplinary Network Comparison: Matchmaking between Hairballs. Cell Systems 2: 147–157.

Yang Y., Fang Q. & Shen H-B. 2019. Predicting gene regulatory interactions based on spatial 

gene expression data and deep learning. PLoS Computational Biology 15(9): e1007324. doi.

org/10.1371/journal.pcbi.1007324. 

Figure Legends

Figure 1: A molecular cascade largely encoded by the genome (top row) generates observed 

phenotypic variation on multiple scales from cells to ecosystems (bottom row). Inter-organismal 

phenotype refers to holobiont, populations, and communities in this context. Environmental 

factors can have epigenetic impacts on the genetic program (dashed arrows). Although high-

throughput sequencing has led to a rapid increase in available genomes and transcriptomes 

(large diameter pipelines), the ability to leverage this data to understand the emergence of 

diverse phenotypes is extremely limited (smaller diameter pipelines). Deciphering the genome 

to phenome pathway necessitates a multidisciplinary approach including scientists with 

expertise at each of these scales. Integration of skilled data scientists will be critical for 

increasing the rate of productive analyses at each of these chokepoints. Image credits: 

Sequencing image - www.genomicseducation.hee.nhs.uk/, DNA strand-Tracey Saxby, 

Integration and Application Network, Proteome image -  modified from Shen et al., 2018 Gene 

network - modified from Chen et al., 2015, Epidermis -http://blogs.ubc.ca/, Wild flower filled 

prairie- Grace Hirzel, by permission. All other images by authors. 

Figure 2: Complex phenotypes such as mate preference and color pattern are often  a mosaic 

of smaller, simpler elements, whose genetic underpinnings are easier to identify independently 
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than when assessed as a group. This approach has proven quite fruitful for identifying causative 

genes for color patterning elements, and can be used for other complex traits such as mate 

preference, as illustrated here. Once the genetic underpinnings of these elements are known, 

their combinatorial effects can be explored, as well as pleiotropic effects of genetic background 

and any effects of environment.      
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Figure 1: A molecular cascade largely encoded by the genome (top row) generates observed phenotypic 
variation on multiple scales from cells to ecosystems (bottom row). Inter-organismal phenotype refers to 

holobiont, populations, and communities in this context. Environmental factors can have epigenetic impacts 
on the genetic program (dashed arrows). Although high-throughput sequencing has led to a rapid increase 

in available genomes and transcriptomes (large diameter pipelines), the ability to leverage this data to 
understand the emergence of diverse phenotypes is extremely limited (smaller diameter pipelines). 

Deciphering the genome to phenome pathway necessitates a multidisciplinary approach including scientists 
with expertise at each of these scales. Integration of skilled data scientists will be critical for increasing the 

rate of productive analyses at each of these chokepoints. Image credits: Sequencing image - 
www.genomicseducation.hee.nhs.uk/, DNA strand-Tracey Saxby, Integration and Application Network, 
Proteome image -  modified from Shen et al., 2018 Gene network - modified from Chen et al., 2015, 

Epidermis -http://blogs.ubc.ca/, Wild flower filled prairie- Grace Hirzel, by permission. All other images by 
authors. 
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Figure 2: Complex phenotypes such as mate preference and color pattern are often  a mosaic of smaller, 
simpler elements, whose genetic underpinnings are easier to identify independently than when assessed as 

a group. This approach has proven quite fruitful for identifying causative genes for color patterning 
elements, and can be used for other complex traits such as mate preference, as illustrated here. Once the 
genetic underpinnings of these elements are known, their combinatorial effects can be explored, as well as 

pleiotropic effects of genetic background and any effects of environment.       
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