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Abstract 

Developmental bias toward particular evolutionary trajectories can be facilitated 

through symbiosis. Organisms are holobionts, consisting of zygote-derived cells 

and a consortia of microbes, and the development, physiology, and immunity of 

animals are properties of complex interactions between the zygote-derived cells 

and microbial symbionts. Such symbionts can be agents of developmental 

plasticity, allowing an organism to develop in particular directions. This plasticity 

can lead to genetic assimilation either through the incorporation of microbial 

genes into host genome or through the direct maternal transmission of the 

microbes. Such plasticity can lead to niche construction, enabling the microbes to 

remodel host anatomy and/or physiology. In this article, I will focus on the ability 

of symbionts to bias development toward the evolution of herbivory. I will posit 

that the behavioral and morphological manifestations of herbivorous phenotypes 

must be preceded by the successful establishment of a community of symbiotic 

microbes that can digest cell walls and detoxify plant poisons. The ability of 

holobionts to digest plant materials can range from being a plastic trait, 

dependent on the transient incorporation of environmental microbes, to becoming 

https://doi.org/10.1111/ede.12291
https://doi.org/10.1111/ede.12291
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fede.12291&domain=pdf&date_stamp=2019-07-22
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a heritable trait of the holobiont organism, transmitted through the maternal 

propagation of symbionts or their genes. 

Key words: holobiont, herbivory, evolutionary bias, niche construction, genetic 

assimilation, EES 

Research highlights: 

The concept that developmental bias can influence evolution is fulfilled when one 
perceives the organism as a holobiont and views development as a multi-species process. 
For herbivory to originate, animals need to obtain the proteins needed to digest plant cell 
walls. This can occur through the acquisition of microbes through symbiosis or through 
the acquisition of such genes by lateral gene transmission from such herbivorous 
microbes. In many instances, the microbes construct niches in the developing organism.  

I. Introduction  

 The perception of biological individuality has changed dramatically over the past 

twenty years. Polymerase chain reaction and high-throughput RNA techniques 

have shown that our anatomical and physiological phenotypes come not only 

from the eukaryotic cells we inherit from the zygote, but also from the trillions of 

microbial cells that we inherit from the mother and acquire from the environment. 

An animal (or plant) plus its microbial communities is called a holobiont. 

Evidence suggests that most, if not all, animals develop as holobionts, consortia 

of symbiotic species. Complex holobionts such as ourselves are both organisms 

and biomes, collections of interacting ecosystems (e.g., Lee and Mazmanian 

2010; Ledón-Rettig et al., 2018) . These symbiotic microbes can be agents of 

developmental plasticity, allowing an organism to develop in particular directions. 

This plasticity can be adaptive, with the symbiont alleles providing instructions for 

specific trajectories of development. While we inherit only 22,000 different genes 

from our parents, we acquire over 8 million different genes by the colonization of 

our gut and other epithelial surfaces by bacteria (Gilbert et al., 2012; Funkhauser 

and Bordenstein, 2013; McFall-Ngai et al., 2013). Thus the microbial component 

of the holobiome has great potential to affect host phenotype, fitness, and 

perhaps other areas of development and evolution.  
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 The holobiont is an anatomical, physiological, developmental, and 

immunological unit (Zilber-Rosenberg and Rosenberg, 2008; Gilbert et al., 2012, 

McFall-Ngai et al., 2013; Rosenberg and Zilber-Rosenberg, 2016; Roughgarden 

et al., 2017). The holobiont nature of animal anatomy and physiology is 

highlighted in several species where the microbes play critical roles in defining 

the organism. A cow is considered an herbivore, but without its community of 

cellulose-digesting enzymes within its specialized rumen stomach, it cannot 

digest plant material. In reef-building corals, the algal symbiont, Symbiodinium, 

enters into the ectoderm of its host (zoon) and transports over 90% of its 

photosynthetically derived carbon compounds to the host cells (Muscatine et al., 

1984). In exchange, the coral gives those endosymbionts critical nutrients and a 

safe, sunlit habitat in an otherwise nutrient-poor habitat (Roth, 2014). 

Remarkably, the immune system of an animal turns out to be a holobiont 

property, as the colonization of the animal is often seen to be facilitated by the 

immune system, and the microbes help induce the host immune tissue (Tauber, 

2009; Eberl, 2010; Pradeu, 2012). 

These properties of holobionts have important evolutionary implications. The 

“hologenome concept of evolution” considers the holobiont with its hologenome 

(the collective genomes of the microbes as well as the zygote-derived cells) as a 

level of selection in evolution (Zilber-Rosenberg and Rosenberg, 2008; 

Roughgarden et al., 2017; Osmanovic et al., 2018; Roughgarden 2019). 

Holobionts meet the criteria for being considered evolutionary agents, as they are 

interactors, replicators/reproducers, and manifestors of adaptation (Roughgarden 

et al., 2017). In addition to their ability to provide heritable and selectable 

variation (see below), symbionts have also been suggested as means to facilitate 

both pre-zygotic and post-zygotic reproductive isolation (Sharon et al., 2010; 

Brucker and Bordenstein, 2013; Rosenberg et al., 2018).  

 In this paper, I aim to show that symbionts can facilitate a major evolutionary 

innovation--herbivory. First, symbionts will be shown to be agents of 

developmental plasticity. Then, given this ability to alter phenotypes, I will show 



 

This article is protected by copyright. All rights reserved. 

A
ut

ho
r 

M
an

us
cr

ip
t 

that symbionts can induce niche construction and be genetically assimilated into 

the heritable repertoire of the organism. Last, we will see that these properties--

plasticity, niche construction, and genetic assimilation--facilitate the origins of 

herbivory in insects and vertebrates. In this way, sympoiesis, the development of 

the holobiont, might be critical in producing evolutionary bias, the symbionts 

scaffolding the anatomical and physiological underpinnings of the herbivore 

radiations in vertebrates and invertebrate lineages.  

II. Symbiosis as a mechanism for developmental plasticity 

 The symbioses mentioned above are obligatory and are considered necessary 

for the normal development of the animal. However, symbionts can also act 

facultatively as environmentally-acquired factors enabling an organism to have 

different phenotypes depending upon the presence or the alleles of the symbiont 

(Dunbar et al., 2007; Tsuchida et al., 2010; Rosenberg and Zilber-Rosenberg, 

2016; Tago et al., 2016).  

 Symbiont-mediated insecticide resistance provides an excellent example where 

symbionts provide an environmentally-dependent adaptive phenotype. 

Conventional evolutionary theories would insist that such resistance would 

spread slowly as an antibiotic-resistant allele is selected and then spreads 

through the population from parents to their offspring (see Yirka, 2012). However, 

symbionts provide an alternative route (Kikuchi et al., 2012; Takeshita and 

Kikuchi, 2017). In Japanese soybean fields, fenitrothion-degrading strains of 

Burkholderia bacteria are present at very low densities. Burkholderia is a natural 

symbiont of the stinkbug, Riptortus pedestris, which promotes its host’s 

development and protects their eggs from other microbes. Burkholderia establish 

a beneficial symbiosis as the second instars ingest the bacteria from the soil 

(Kikuchi et al., 2011), and these symbionts remain in gut crypts for the entirety of 

the bug's life. Experimental applications of fenitrothion to fields have selected 

fenitrothion-degrading bacteria, which have gone from undetectable levels to 

greater than 80% of total culturable bacterial colonies. Moreover, more than 90% 
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of the stinkbugs grown on the enriched soil establish symbiosis with these 

fenitrothion-degrading Burkholderia. The fenitrothion-degrading Burkholderia 

strains confer to the host insects a resistance against fenitrothion that the 

stinkbugs otherwise would not possess. Thus, stink bug resistance to fenitrothion 

evolved rapidly via horizontal transmission of the symbiont from the environment 

(Kikuchi et al., 2007).  

  

 Symbiotic organisms may be especially important in providing variation and 

plasticity to organisms such as Acyrthosiphon pisum, the pea aphid, a clonal 

species, where most eggs develop into females without any male support or 

genome. Here, different strains of Hamiltonella defensa provide environmentally 

mediated defense against parasitoid wasp infection (Oliver et al., 2003), and 

Rickettsiella bacteria provide protection against beetle predation by changing the 

color of the adult aphid from red to green (Tsuchida et al., 2010; Polin et al., 

2015).  

III. Developmental niche construction in the holobiont 

 Niche construction emphasizes the agency of organisms to modify their 

environments and thereby act as codirectors of their own evolution and that of 

other species. The importance of this perspective to evolutionary biology was 

recognized by Richard Lewontin (1982, 1983), who noted that “organisms fit the 

world so well because they have constructed it.” This idea has recently been 

extended by Lewontin (2000) and by John Odling-Smee (1988) and has become 

strengthened by theoretical population genetic and experimental findings that 

show niche construction to be an important factor in an organism’s fitness 

(Laland et al., 1996; Odling-Smee et al., 1996; Laland, 1999; Odling-Smee et al., 

2003; Donohue, 2005). Niche construction has been extended into ecological 

developmental biology as a manifestation of plasticity (Laland et al., 2008; Gilbert 

et al., 2015; Borges, 2017; Schwab and Moczek, 2017).  
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 Niche construction by symbionts acquired through horizontal transmission has 

been studied extensively in the sympoiesis of the squid Euprymna scolopes with 

the luminescent bacterium Vibrio fischeri (McFall-Ngai and Ruby, 1991; 

Montgomery and McFall-Ngai ,1994). The adult Euprymna is equipped with a 

light organ composed of sacs filled with these bacteria. The newly hatched squid, 

however, has neither the light-emitting symbionts, nor the light organ to house 

them. Rather, the symbiotic bacteria interact with the larval squid to build its 

niche. The juvenile squid acquires V. fischeri from seawater by pumping through 

its mantle cavity (Nyholm et al., 2000). The bacteria bind to a ciliated epithelium 

in this cavity; the epithelium binds only V. fischeri, allowing other bacteria to pass 

through. The bacteria then secrete tracheal cytotoxin and lipopolysaccharide A to 

induce hundreds of genes in the epithelium, leading to the apoptotic death of the 

epithelial cells, their replacement by a nonciliated epithelium, the differentiation of 

the surrounding cells into storage sacs for the bacteria, and the expression of 

genes encoding opsins and other visual proteins in the light organ (Koropatnick 

et al., 2004; Chun et al., 2008; McFall-Ngai, 2008; Tong et al., 2009). 

After the bacteria have induced the morphological changes in the host, the 

host secretes a peptide into the Vibrio-containing crypts which neutralizes the 

bacterial toxin (Troll et al., 2010). The bacteria also instruct the epithelial cells to 

make and secrete chitotriosidase (Kremer et al., 2013), an enzyme that degrades 

some of the extracellular chitin into chitobiose. Chitobiose causes the bacteria to 

multiply. The bacteria detach from the epithelial cells and, following the gradient 

of chiobiose from lowest to highest concentration, enter the pores leading to the 

ducts and eventually to the crypts of the nascent light organ (Mandel et al., 2012; 

Kremer et al., 2013). Once the V. fischeri are inside the crypts, bacterial products 

(portions of the cell wall and membrane) induce apoptosis in the squid epithelial 

cells that had once attracted them (Koropatnick et al. 2004). The squid crypts 

collect bacteria in densities high enough for them to emit light (Visick et al., 2000; 

Septer and Stabb, 2003). Both organisms change their gene expression patterns, 

and both benefit from their association: The bacteria get a niche and express 
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their light-generating enzymes, and the squid develops a light organ that allows it 

to swim at night in shallow waters without casting a shadow. 

 Niche construction is also seen in the formation of the mammalian gut by the 

microbial populations colonizing it from the birth canal. For complete 

development of the mouse gut, the microbial symbionts are needed (Hooper et 

al., 1998). Microarray analyses of mouse intestinal cells have shown that 

commensal gut symbionts upregulate the transcription of numerous mouse 

genes to normal levels. These genes include those encoding the enzyme 

colipase (which is important for nutrient absorption), angiogenin-4 (which helps 

direct the formation of blood vessels) and Sprr2a (a small, proline-rich protein 

that is thought to fortify matrices that line the intestine). Thus, the “normal” 

amount of gene expression in the gut is that which is regulated by the microbes 

(Hooper et al., 2001).  

  

 The induction of Angiogenin-4 is a fascinating story of niche construction. 

Stappenbeck and colleagues (2002) have demonstrated that in the absence of 

Bacteroides thetaiotaomicron, the capillaries of the small intestinal villi fail to 

develop their complete vascular networks. Without this bacterial species, gut 

capillaries--those blood vessels that are necessary for gut health and which take 

nutrients from the intestines and bring them to the body-- aren't properly made. 

Stappenbeck and colleagues also showed that B. thetaiotaomicron was able to 

induce angiogenesis in its host by inducing gene expression in the Paneth cells 

of the intestine. In mice without Paneth cells, the capillary network failed to form 

properly even after inoculation with B. thetaiotaomicron or conventional gut 

bacteria. Other experiments showed that the Paneth cells were responding to B. 

thetaiotaomicron by transcribing the gene encoding angiogenin-4, a protein 

known to induce blood vessel formation (Hooper et al., 2001, 2003; Crabtree et 

al., 2007). But angiogenin-4 has another role, in addition to its eponymous ability 

to form capillaries. Angiogenin-4 is bactericidal for Listeria monocytogenes and 
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Enterococcus faecalis, killing 99% of these bacteria within 2 hours. These 

bacteria are pathogens for mammals, and they are also competitors for 

Bacteroides. So while Bacteroides helps us make gut capillaries, we help 

Bacteroides by getting rid of its major competitors (Hooper et al., 2003). 

Molecules such as angiogenin-4 that are able to kill Gram-positive bacteria may 

serve to structure the bacterial community in the natural setting.  

IV. Genetic assimilation and plasticity-first evolution 

 One of the mechanisms explaining the origin of novel and complex phenotypes 

has been the fixation of environmental-mediated plasticity into internal, genetic 

transmission (West-Eberhard, 2003; Pigliucci et al., 2006; Pfennig et al., 2010; 

Gilbert and Epel, 2015; Levis et al., 2018). It has even been proposed that 

macroevolutionary changes may have arisen through such mechanisms of 

genetic assimilation (Pigliucci and Murren, 2006; Jablonski, 2017). When 

considering microbial symbionts as agents that had once mediated phenotypic 

plasticity (section II), but have now become a fixed entity among all individuals in 

a population, we need to ask if they - and the phenotypes they generate - can be 

transmitted directly from generation to generation.  

 Returning to our developmental system of Buchnera and A. pisum, we find that 

the thermotolerance provided by the symbiotic allele has become a matrilinear 

trait passed from generation to generation. The mechanism through which this 

symbiont is transmitted is a fascinating variation of vertical transmission. Rather 

than being transmitted through the germplasm, the symbionts of the aphids are 

transferred by the exocytosis of the bacteria from the bacteriocytes lining the gut 

followed by their endocytosis by the syncytial cells of the posterior region of the 

blastula (Koga et al., 2012). The transfer involves three generations. The 

bacteriocytes releasing the bacteria to the embryos are within a developing larva 

that is still within its mother. Thus, within this system, the transmission of 

Buchnera appears to be strongly vertically transmitted rather than 

environmentally acquired. 
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 Moran and Yun (2015) were able to demonstrate that the thermotolerant 

phenotype of the holobiont aphid depended upon the strain of Buchnera 

symbiont in its cytoplasm. When they replaced the heat-shock protein-deficient 

Buchnera with the heat-shock protein-producing strain, the entire aphid became 

thermotolerant. This replacement caused "a massive effect on host fitness" by 

disrupting 100 million years (about 1 billion generations) of continuous maternal 

transmission of the symbiont lineage. The aphid's Buchnera is thought to have 

evolved from a free-living Gram-negative ancestor similar to modern 

Enterobacteriacaeae such as E. coli. The acquisition of Buchnera by the aphid 

host allowed it to exploit the sap of vascular plants a nutrient source (Bennett and 

Moran 2015). Indeed, sap-feeding insects are thought to be among the first 

herbivores of vascular plants. The genotypes of both organisms have co-evolved 

such that neither Buchnera nor the pea aphid host can survive without one 

another. Buchnera DNA has shrunk to become one of the smallest known 

genomes, and it lacks genes for lipopolysaccharide production, among others 

(van Ham et al., 2003). It has also lost some of the negative regulatory elements 

controlling amino acid synthesis, allowing it to produce the essential amino acids 

that the host aphid cannot make by metabolism or obtain through its diet of plant 

sap. The genomes complement one another (Wilson et al., 2010; McDonald et 

al., 2011). Thus, the fitness of the holobiont came from an allele of the symbiont 

which is really no longer part of the environment, but a genetically assimilated 

feature of the organism.  

 While the pea aphid genetically assimilated its symbiont by making it a 

mitochondria-like organelle, other insects have genetically assimilated particular 

genes from their symbionts (Cordeaux and Gilbert, 2017). Phytophagous, leaf-

eating, beetles in the superfamilies Chrysomeloidea (leaf beetles and longhorn 

beetles) and Curculionoidea (weevils) acquired their abilities to digest plant 

material through the genetic assimilation of genes encoding cellulose-digesting 

proteins (Kirsch et al 2014). This appears to be accomplished by three 

successive episodes of lateral gene transfer. Plant cell walls, rich in pectin and 



 

This article is protected by copyright. All rights reserved. 

A
ut

ho
r 

M
an

us
cr

ip
t 

cellulose, are the largest reservoir of organic carbon on earth (Gilbert, 2010). 

Most animals, as mentioned earlier, do not have genes encoding the enzymes 

that digest these plant polysaccharides (Calderon-Cortes et al., 2012). Bacteria, 

protists and fungi, however, evolving as plant pathogens or saprophytic 

detritovores, have genomes that do synthesize and secrete such enzymes. Most 

of these plant cell wall-digesting enzymes belong to various glycoside hydrolase 

families, constituting cellulases, hemicellulases, and pectinases.  

 Nearly half the number of insect species feed on living plants, and they require 

symbiotic microbes to digest the cell walls. Genes encoding pectin 

depolymerases (polygalacturonidases; PGs) are not found in Hymenoptera, 

Lepidoptera, or Diptera. However, such genes have been found in Coleoptera 

(Kirsch et al., 2014). Clusters of PG-encoding genes are seen in the genomes of 

chrysomelid beetles and curculionid weevils. Using genomic, phylogenetic, and 

functional approaches, Kirsch and his colleagues sequenced and compared the 

DNA sequences encoding pectin depolymerases in several species of beetles. 

Their results indicate that the PG-encoding genes in beetles are derived by 

horizontal gene transfer to the host beetle DNA from three sets of symbionts. The 

ancestor of the phytophagous beetles appears to get its PG genes from a 

pezizomycotine Ascomycote fungus (such as those fungi that become lichens.) 

These PG genes are found in both the Curculionoidea and the Chrysomeloidea. 

The fungus could have originally been a symbiont, an entomopathogen, or a food 

source. A second set of PG genes, also derived from Ascomycota fungi, is seen 

only in the longhorn Lamiinae beetles; while a third set of PG genes, derived 

from Bacteroides bacteria, entered the genomes of the pea and bean weevils of 

the Bruchinae. In addition, the cellulases and hemicellulases (for the digestion of 

the secondary plant cell wall) of the phytophagous beetles also appear to 

originate from horizontal gene transfer (Pauchet et al., 2014). Kirsch and 

colleagues (2014) hypothesize that the horizontal gene transfers have been key 

events promoting the capacity of these beetles to use plants as their primary 

source of nutrition.  
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Therefore, we find that genetic assimilation from environmental microbes could 

have been a critical factor in the evolution of herbivorous insects, with the 

phytophagous beetles acquiring specific genes, while the sap-ingesting aphids 

assimilated entire genomes.  

V. Developmental bias scaffolded by symbionts: herbivory 

 Developmental bias is the hypothesis that the mechanisms of development 

permit some variants to arise more readily than others. This can entail 

constraining the development of certain phenotypes and facilitating the 

development of others. Whereas constraints are readily detectable in normative 

developmental biology (Waddington, 1938; Maynard Smith et al., 1985; Galis, 

1999, 2006), examples of developmentally facilitated bias are less accepted 

(Uller et al 2018). I would contend that some remarkable examples of facilitated 

adaptations can be easily seen once one views development as involving the 

entire holobiont, not just the zygotic genome. One obvious case becomes 

herbivory. 

 Symbionts allow the possibility of herbivory; for, as mentioned above, most 

animals cannot digest plant cell walls. Microbes, however, are poised to enable 

such herbivory because certain species are detritivores and phyotopathogens 

adept at such demolition and whose genomes encode the enzymes necessary to 

metabolize these complex polysaccharides into digestible sugars. Moreover, 

bacteria can also supply essential amino acids to animals whose food sources 

lack them, and they can detoxify the poisons that plants generate to protect 

themselves against such herbivory. In this way, symbionts can provide additional 

resources to organisms as well as removing obstacles that prevent them from 

transitioning to a novel (in this case, dietary) state (Itoh et al 2018). Agents that 

provide this type of facilitation are known as “scaffolds”, a term introduced into 

the philosophy of biology by Jim Griesemer (2014). Here, developmental 

scaffolds (Chiu and Gilbert, 2015) are not just inputs (such as nutrition) or 

constitutive parts of developmental processes (such as regulatory networks), but 
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catalysts that remove the difficulties that would otherwise prevent certain 

developmental pathways. Such a scaffold is sensitive to and responsive to the 

states of the scaffolded system, such that the scaffolded system goes through its 

development through its interactions with the scaffold. The scaffold and the 

scaffolded system are distinct from one another, and in many instances, can be 

seen as constituting an interactive chimera. The scaffold can also, in some 

cases, contribute materially to the scaffolded system, even while retaining its 

separateness (Sterner 2017). Chiu and Gilbert (2015) have argued that microbes 

have scaffolded the reproduction of animals and that animals have scaffolded the 

reproduction of microbes, each facilitating the other.  

 Here, I argue that developmental symbioses have facilitated the evolutionary 

trajectory leading to herbivory. Once plant wall-digesting and plant toxin-

neutralizing symbionts are established, the evolution of herbivory behaviors 

(grazing, browsing, sap-ingestion) and adaptive structures for eating plants 

(teeth, jaws, mandibles; microbial niches in gut) are facilitated and made more 

probable. The facultative developmental symbiosis that provides animals 

plasticity to eat plants must precede the production of herbivore behaviors and 

adaptive structures. 

 The first obstacle to this developmental bias hypothesis is the cultural bias that 

herbivory must precede carnivory as a mode of feeding. Vermeij and Lindberg 

(2000) hypothesize that “the widely held view that the overall pattern of trophic 

evolution in metazoans has been from plant grazers to carnivores has its origins 

in...such pedagogical tools as Elton’s (1927) ecological pyramid and Odum’s 

(1953) food chain.” In these neontological views of ecosystems, herbivores eat 

the herbs, and carnivores eat the herbivores. However, genomic and 

paleontological evidence converge to show that herbivores are derived, and that 

the basal state of both Ecdysozoa and Vertebrata is carnivory (Vermeij and 

Lindberg, 2000). Similarly, "macrophagous primary producers" are relatively late 

additions to marine ecosystems, which for millions of years was dominated by 

filter feeders, detritovores, and the carnivores that ate them.  
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 Among tetrapods, herbivory had to wait until the plant-digesting symbionts were 

established in the carnivore guts. The dental, cranial, and digestive tract 

modifications for plant mastication and digestion "would be relatively ineffectual 

in the absence of endosymbiotic microorganisms for cellulolysis." (Sues and 

Reisz, 1998). These plant-degrading microorganisms thrive in the leaf litter and 

could have been obtained by detritovores through the ingestion of plant litter 

(Hotton et al 1996). They could also be obtained by insectivores, through the 

ingestion of insects that had already been colonized by plant-eating microbes 

(Sues and Reisz, 1998). The transmission of such microbes might have been 

accomplished by juveniles consuming the feces of adult conspecifics (Troyer, 

1982; Modesto, 1992). Such coprophagous transmission is also seen in 

contemporary termites, allowing them to digest wood (Hongoh et al., 2005). 

Herbivory is therefore a derived trait that evolved from carnivorous ancestors. To 

be an herbivore means that the animal developed a community of plant-digesting 

microbes in its gut. 

 In this "microbe-first" model of herbivory, the early herbivores lived in an "under-

filled region of eco-space," (Brocklehurst, 2017), a world-wide food court. As 

expected, extensive adaptive radiations have been detected among the first 

herbivores, such as Captorhinids, who exhibited much greater morphological 

diversity than their sister groups that did not evolve herbivory. Moreover, the 

increase in the rates of morphological diversity was strongest in the areas of 

dentition and mandible. Bellwood (2003) and Brocklehurst (2017) contend that 

there is a causal relationship between the herbivorous diet and radiation.  

The importance of thinking in terms of a holobiont organism is seen in the 

literature of plant herbivory and the "three-way interaction" (Wielkopolan and 

Obrepalska-Steplowska, 2016) among plants, insects, and bacteria (Hammer 

and Bowers, 2015). Here the plant holobiont includes the eukaryotic plant cells 

and their bacteria, which collectively synthesize poisons against the insects and 

can signal predatory wasps to kill the herbivorous invaders. Similarly, the insect 

holobiont includes the zoon that has the jaws to macerate plants and create 
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detritus for the bacteria in its gut, as well as the gut microbes that can digest 

plant cell walls and detoxify the poisons made by the plants.  

 Herbivory is widespread in mammals, and strategies of foregut, rumen, and 

cecal digestion have each occurred (Janis, 1976; Hofmann, 1989; Steele et al., 

2016). But one of the pinnacles of herbivory in tetrapods must be the ruminant 

mammal, as exemplified by the cattle species, Bos taurus. Here, a new portion of 

the stomach, the rumen, has evolved to house plant-digesting symbionts. Daniels 

and Yohe (2015) define the rumen as "a large anaerobic fermentation chamber 

where plant-degrading rumen microbiota (bacteria, protozoa, archaea, and fungi) 

ferment otherwise non-digestible plant-based foodstuffs into primarily the volatile 

fatty acids acetate, propionate, and butyrate.” The stomach of the cow has four 

main sections, and the physical growth of the rumen during calf development and 

its dominance over the other portions of the stomach is occasioned by 

fermentation products of the bacteria.  

 Newborn calves have sterile rumens, and the digestive tube becomes colonized 

by microbes as the calf pass through the birth canal. Within two days of birth, the 

area of the rumen is seen to have microbes within it. However, the baby calf 

does not receive grass or grain to eat until it is weaned. Before that time, it 

receives milk from the mother cow (again, one must remember that cows' milk is 

actually for their calves, not for humans). A calf is born with an esophageal 

groove, muscular folds that come together to form a tube that will bypass the 

rumen. The suckling reflex and milk proteins open this groove, permitting the milk 

to enter the abomasum portion of the stomach. When the calf starts eating grass 

or grain (about three weeks on American farms), the esophageal groove closes, 

bringing the masticated grain into the rumen (Daniels and Yohe, 2015; Baldwin 

and Conner, 2017). There, bacteria such as Ruminociccus flavefaciens produce 

"cellulosomes," plant wall-digesting enzyme complexes that are bound to the 

bacterial cell surface, which efficiently metabolize the complex polysaccharides. 

Over 70% of the cow's energy comes from this microbial digestion of plant fiber 

(Flint et al., 2008; La Reau and Suen, 2018), demonstrating the primacy of 
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microbes in a cow’s herbivorous feeding strategy. The bacteria in the rumen 

multiply when given this food, and as they proliferate, they produce volatile fatty 

acids, including butyrate. Butyrate causes the dramatic growth of the rumen as 

well as the differentiation of the ruminal papillae and musculature (Sander et al., 

1959; Baldwin and Connor, 2017).Thus, the gut bacteria help construct their 

niche, the rumen. 

 When one considers developmental biases in evolution, one must consider the 

bacteria as integral to the developing holobiont. These symbionts have facilitated 

the development of the structures that have enabled them to evolve into 

herbivores. Herbivory is a holobiont property. As Vemeij and Lindberg (2000) 

have noted, "The establishment of symbioses between potential herbivores and 

various microorganisms in the gut may have been a necessary precondition for 

the evolution of feeding on such plant tissues.” [italics mine]. This may explain 

why herbivory evolved numerous times independently across the animal 

kingdom. There are at least five independent origins of herbivory in ants, alone, 

and each episode is tightly coupled with different groups of Rizobiales bacteria 

(Russell et al., 2009). Symbiosis appears to be a major force leading to 

convergent modes of morphologies and behaviors.  

 Whether such biases are constraints or facilitations may depend on the level or 

the time one observes them. Developmental constraint and facilitation in 

holobionts are entangled to a degree where it is difficult to separate them. 

Although avoiding the term "holobiont" (Moran and Sloan, 2015), Bennet and 

Moran (2015) have called obligate symbiosis an "evolutionary rabbit hole," a term 

"implying a generally irreversible journey into an odd world where the usual rules 

do not apply." Just as the nutritional symbiosis between the pea aphid and 

Buchnera bacteria has allowed the aphid to use an abundant and under-utilized 

resource--plant sap, it made the aphid dependent upon that mode of feeding. Its 

mandible has become so specialized that it cannot bite or chew. Buchnera and 

the aphid zoon also became interdependent in their metabolic cooperation. In 

silico systems analysis suggests that the metabolic network linking Buchnera and 
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the aphid are very fragile and renders the symbiont, and hence the holobiont, 

very sensitive to environmental changes (Thomas et al., 2009). The symbiont 

and the host become co-dependent, and mutations in the symbiont can cause 

the death of the matrilineage. Similarly, in the coral-algal symbiosis, increased 

water temperatures cause the death of the coral by facilitating the release of its 

plant symbiont (Gates et al., 1992; Fujise et al., 2014). Stable interactions create 

dependencies as well as new possibilities. 

 In 2002, Margulis and Sagan put forth a hypothesis that major trends in 

evolution involved "acquiring genomes." Microbial symbionts have been shown to 

be agents of phenotypic variation and reproductive isolation. They may also have 

facilitated the major evolutionary transitions to multicellularity and sexual 

reproduction (Alegado and King, 2014, Woznica et al., 2017). Herbivory may 

serve as another outstanding example whereby the acquiring of symbiont 

genomes facilitated the evolution of major new phenotypes of animal form and 

behavior. 
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