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It is often hypothesized that intra-sexual competition accelerates actuarial

senescence, or the increase in mortality rates with age. However, an alterna-

tive hypothesis is that parental investment is more important to determining

senescence rates. We used a unique model system, the white-throated spar-

row (Zonotrichia albicollis), to study variation in actuarial senescence. In this

species, genetically determined morphs display discrete mating strategies

and disassortative pairing, providing an excellent opportunity to test the

predictions of the above hypotheses. Compared to tan-striped males,

white-striped males are more polygynous and aggressive, and less parental.

Tan-striped females receive less parental support, and invest more into

parental care than white-striped females, which are also more aggressive.

Thus, higher senescence rates in males and white-striped birds would sup-

port the intra-sexual competition hypothesis, whereas higher senescence

rates in females and tan-striped birds would support the parental invest-

ment hypothesis. White-striped males showed the lowest rate of actuarial

senescence. Tan-striped females had the highest senescence rate, and tan-

striped males and white-striped females showed intermediate, relatively

equal rates. Thus, results were inconsistent with sexual selection and

competitive strategies increasing senescence rates, and instead indicate that

senescence may be accelerated by female-biased parental care, and lessened

by sharing of parental duties.

1. Introduction
Actuarial senescence occurs when mortality rate increases with age, and may

reflect declines in somatic and physiological condition that make individuals

more susceptible to environmental challenges [1–4]. Senescence has now

been demonstrated in a wide range of natural populations [3], and evolutionary

and life-history theory offers explanations for differences in ageing rates [5–7].

Yet factors underlying variation in patterns of senescence remain unclear. It is

often proposed that intense sexual selection and intra-sexual competition accel-

erate rates of senescence, which may result in sex differences in rates of ageing

[8–14]. Males usually benefit more than females by pursuing multiple mating

partners, and are thus often subject to higher levels of sexual selection and

intra-sexual competition [15,16]. Sexually selected traits involved in intra-

sexual competition, such as large body size and elaborate ornaments, may be
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costly to produce and maintain, promoting the evolution of

faster senescence. Thus, males are often predicted to adopt

a live-fast, die-young reproductive strategy, and to age at

faster rates than females [9,17]. The steroid testosterone may

support high levels of intra-sexual competition, particularly

in males, and deleterious effects of this hormone have been

proposed to mediate higher rates of senescence in males [9].

Higher levels of intra-sexual competition are especially

expected to promote the evolution of more rapid senescence

when intense competition for mates enforces lower

reproductive success among older individuals, which

may be in suboptimal condition and unable to efficiently

compete [8].

However, high levels of intra-sexual competition need not

always favour a fast pace of life and accelerated actuarial

senescence. Indeed, intense sexual selection on condition

and performance may have pleiotropic effects that lead to

increased longevity [9,18]. In addition, where reproductive

success increases with age due to mate choice dynamics

[19], experience or social status [20], sexual selection is not

expected to greatly increase ageing rates [21]. Empirical

results lend equivocal support to the hypothesis that highly

competitive reproductive strategies, for instance in males

relative to females, are costly and associated with higher

rates of senescence [11,22–28].

As an alternative to intra-sexual competition, levels of

parental investment may be more predictive of the rate at

which senescence progresses. The higher rates of senescence

sometimes reported for males of polygamous species,

especially mammals, may reflect high levels of intra-sexual

competition [8,29,30]. However, in species with more monog-

amous social systems sex differences in senescence are

generally predicted to be smaller, and sex-specific patterns

of senescence may reflect sex-biases in parental care, rather

than the intensity of intra-sexual competition [22,27]. In

birds, parental care and mortality rates are often female-

biased [14,22]. Thus, the relative importance of intra-sexual

competition versus parental investment in determining rates

of senescence remains unclear.

Species with alternative morphs that display discrete

reproductive strategies offer a unique opportunity to study

how reproductive strategies affect patterns of senescence. In

species with alternative male reproductive morphs, one

morph is often more ‘female-like’, and adopts a less competi-

tive reproductive strategy. For instance, in the ruff

(Philomachus pugnax) males occur as one of three alternative

morphs, one of which mimics females in size and plumage

characteristics, and engages in sneak copulation [31,32]. If

intra-sexual competition accelerates senescence, less compe-

titive morphs are predicted to senesce at slower rates than

more competitive morphs. Little empirical work has explored

the possibility for morph-specific patterns of senescence

despite the powerful potential of such work to test theories

of ageing (but see [33]).

We used a species that displays genetically determined

morphs in both sexes, the white-throated sparrow (Zonotri-
chia albicollis), to study variation in actuarial senescence.

The morphs of the white-throated sparrow display discrete

reproductive strategies and disassortative pairing, providing

an excellent opportunity to evaluate the contribution of

intra-sexual competition and parental care to determining

ageing rates [34–36]. Morph is genetically determined by a

large rearrangement on the second chromosome, which is

thought to function as a supergene, and the morphs share

the same habitat [36]. White-striped males (WMs) pursue

extra-pair copulation, are more aggressive, and sing at

higher rates than tan-striped males (TMs), which invest

more into paternal care [37–41]. WMs also have higher

levels of testosterone during the breeding season than TMs

[42–45]. Similar to males, white-striped females (WFs) are

more aggressive than tan-striped females (TFs), participating

in territorial defence and sometimes singing. In addition, dis-

assortative pairing by morph means that social pairs consist

of either WMs and TFs (W � T pairs), or TMs and WFs

(T �W pairs), almost exclusively [37,40]. Parental care is

female-biased in W � T pairs, with TFs receiving relatively

little paternal support. In T �W pairs, care for offspring is

more cooperative and biparental [38,40].

Thus, given a strong effect of intra-sexual competition on

rates of senescence, one would predict higher senescence in

WMs relative to other morph–sex classes, unless male repro-

ductive success increases with age [9]. In our population, the

reproductive success of WMs shows a negative quadratic

relationship with age, whereas the reproductive success of

TMs linearly increases with age [46]. Thus, given a strong

role for intra-sexual competition in increasing rates of

ageing, we predicted higher rates of actuarial senescence

and reduced longevity in WMs relative to other morph–sex

classes. If competitive behaviour contributes to somatic

declines and accelerated ageing, we also expected faster

rates of senescence in WFs relative to TFs. On the other

hand, if the demands of parental investment have a strong

effect on senescence [22], we predicted higher senescence

rates in tan-striped birds of both sexes, with this effect

particularly pronounced in TFs, which, because of social

dynamics, receive little parental support. In combination

with recent work on reproductive senescence in this system

[46], this study provides intriguing new insight into the pro-

cesses underlying senescence in a wild vertebrate population.

2. Methods
(a) Study site and field methods
We used a long-term dataset derived from a population of white-

throated sparrows breeding in the vicinity of Cranberry Lake

Biological Station (State University of New York, College of

Environmental Science and Forestry; 448150 N, 748480 W). The

dataset spans 19 years, from 1998 to 2016, and includes 158

WMs, 147 TMs, 108 WFs and 127 TFs. Birth years were known

for 59 individuals (20 WMs, 16 TMs, 13 WFs and 10 TFs), and

death years for 510 individuals (149 WMs, 139 TMs, 100 WFs

and 122 TFs). We banded adult birds and nestlings (day 6)

with Fish and Wildlife bands bearing unique identification num-

bers and with colour band combinations that allow identification

in the field (Master Banding Permit 22296 to E.M.T.). Banding of

nestlings allowed recruits to be monitored throughout their

reproductive lifespan. In each year following initial banding,

individuals were identified via colour bands in the field or

upon recapture in mist nets. Each year we comprehensively

surveyed the study site to ensure that all breeding individuals

were re-sighted. We could not definitely determine the fate of

juveniles in our population due to high juvenile dispersal rates.

Thus, we only included individuals that survived to their

first breeding season in our model. As a result, survival prob-

ability in the first time step (from age 0 to 1) is equal to 1 for

our analysis.
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(b) Bayesian survival trajectory analysis
To quantify age-specific survival across the morph–sex classes,

we used R package BaSTA (Bayesian Survival Trajectory Analy-

sis) to perform capture–mark–recapture (CMR) analysis under

a Bayesian framework [47]. This method copes with two

common problems of field studies on wild populations: (1)

unknown birth and death dates (left-truncated and right-censored

data); and (2) low recapture probabilities (not an issue in our

study). Survival estimates are adjusted to recapture probabilities,

and missing times of birth and death are estimated from the popu-

lation mean [47,48]. BaSTA attributes an age to individuals with

unknown age through comparison of their survival parameters

with individuals of known age. As a result, individuals of

unknown age contribute relatively little to the precision of

survival parameters. Thus, we acknowledge that the relatively

low number of individuals with known birth years in our dataset

(reflecting the challenges of this field study) presents some

limitation. Nevertheless, meaningful patterns emerged despite

this limitation, and there is no reason to expect that it biased

our conclusions.

We applied BaSTA to optimize parametric mortality (survi-

val) functions using Markov chain Monte Carlo (MCMC)

algorithms. The mortality or hazard function describes how the

risk of mortality changes with age, and is defined as mðxjuÞ,
where x corresponds to age and u is a vector of mortality par-

ameters to be estimated. We tested which of three commonly

applied mathematical functions best-described patterns of actuar-

ial senescence in the white-throated sparrow: (1) the Weibull

function, (2) the Gompertz function and (3) the exponential func-

tion [49]. The Weibull function is a power function that assumes

independence of baseline and age-related mortality, and has

been commonly used to describe patterns of senescence in

wild and captive bird populations. Age-related mortality

in the Weibull function is determined by the equation:

mb(xjb) ¼ b0b1(b1x)b0�1, where b0, b1 . 0, b0 is the Weibull shape

parameter and b1 is the scale parameter [47,49]. In the Weibull

model, the value of b0 determines the shape of the mortality func-

tion, which can show an accelerating increase (b0 . 2), a

decelerating increase (1 . b0 . 2), a decrease (0 , b0, 1) or con-

stant mortality (b0 ¼ 1), whereas b1 affects the magnitude of the

senescence rate. The Gompertz function is an exponential function

in which age-related mortality is scaled by baseline mortality on

an age-specific basis. Age-related mortality in the Gompertz func-

tion is determined by the equation: mbðxjbÞ ¼ expðb0 þ b1xÞ,
where 21 , b0, b1, 1 [46]. In the Gompertz function, b0 is base-

line mortality and b1 determines the pattern of age-dependent

mortality. If b1 . 0 mortality increases exponentially with age, if

b1 , 0 mortality decreases exponentially with age, and if b1 ¼ 1

mortality is constant across age classes. In the exponential func-

tion, no age-dependent mortality occurs, and the function is

defined by the formula: mb(x) ¼ b, where b . 0. We also tested

three different versions of the Weibull and Gompertz function

by specifying a simple, Makeham or bathtub shape. Specifying a

Makeham structure ensures modelling of finite mortality by

adding a constant to the function and making the model converge

to the parameter c, rather than 0, as age increases. The bathtub

structure provides for concave mortality functions (decreasing

mortality at early ages) by adding a declining Gompertz term

and a constant to the basic mortality function [47]. We included

morph–sex class (WM, TM, WF, TF) as a categorical covariate,

modelled as a linear function of the survival parameters (using

the fused covariate structure option).

We ran MCMC optimizations using four parallel simulations

with 50 000 iterations and a 5000 burn in period (number of

MCMC steps to be discarded at the beginning of the simulation),

and thinning set to 100 (minimizes serial autocorrelation). We

compared the fit of the seven possible mortality functions

based on the lowest deviance information criterion (DIC)

[47,50]. The Weibull model with a bathtub shape best fitted our

data. Thus, we compared the posterior distributions of the mor-

tality parameters included in the bathtub Weibull function using

the Kullback–Leibler divergence calibration (KLDC) [51,52]

included in BaSTA. KLDC reflects the probability of values deriv-

ing from one distribution coming from a second distribution.

KLDC ¼ 0.5 when distributions are identical, and KLDC ¼ 1

when distributions do not overlap. KLDC values greater than

95% are conventionally interpreted as reflecting a significant

difference.

We also generated life tables in BaSTA for each morph–sex

class, and compare estimated remaining lifespan at age 2 [4].

3. Results
The Weibull function with a bathtub shape provided the best

fit to our data (electronic supplementary material, table S1),

so we report the results of simulations based on this model.

The model including morph–sex type as a covariate was

not as well supported (DIC: 9605) as the model including

only sex as a covariate (DIC: 9569), the model including

only morph as a covariate (DIC: 9576) or the baseline

model without any covariate (DIC: 9578). The model includ-

ing sex alone was the best-fitting model and had a lower DIC

score than the baseline model (DDIC: 9), whereas the model

including morph alone had a slightly lower DIC score than

the baseline model (DDIC: 2). However, the DIC score of

the model including morph–sex type is calculated with all

of the five bathtub model parameters calculated indepen-

dently, whereas only the Weibull scale parameter (b1)

differed between the groups (see below). As a result, the

DIC score of the morph–sex model is penalized for unnecess-

ary parameters (this is also true for the models with sex or

morph alone included as a covariate, but to a lesser extent

than the model with morph–sex type). Thus, we report

results of the model with sex alone, morph alone, and all

four morph–sex classes included.

In all cases, model parameters converged appropriately,

as assessed by the Gelman–Rubin criterion (potential scale

reduction factors close to 1) [53], and displayed low serial

autocorrelations (less than 0.05). Recapture probability was

94.8% (95% CI: 93.2–96.3%) for all morph–sex classes com-

bined, and was similar across morph and sex classes.

Recapture probabilities were 92.7% (CI: 89.7–95.3%), 89.0%

(CI: 84.9–92.4%), 87.6% (CI: 82.5–91.9%) and 87.4% (CI:

82.3–91.7%) for WMs, TMs, WFs and TFs, respectively.

For both sexes (electronic supplementary material, table

S2), both morphs (electronic supplementary material table

S3) and each morph–sex class (table 1), the Weibull shape

parameter were between 1 and 2 (1 , b0, 2), indicating a

decelerating increase in mortality rate with age. Thus, actuar-

ial senescence occurred in our system, and followed a similar

pattern across morph–sex classes, because b0 did not differ

depending on sex or morph (electronic supplementary

material, tables S2 and S3; table 1). The bathtub parameters

included in the model also did not differ between morph–sex

classes (table 1).

However, there were significant differences in the Weibull

scale parameter (b1), indicating differences in the rate of

senescence between the morph–sex classes. In the best-fitting

model including sex as a covariate, males and females dif-

fered in the Weibull scale parameter (b1), with males having

a significantly lower Weibull scale parameter (b1) than

rspb.royalsocietypublishing.org
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females (electronic supplementary material, table S2; figure 1i).
In the model including morph as a covariate, white-striped

individuals had a lower Weibull scale parameter (b1) than

tan-striped individuals (electronic supplementary material,

table S3; figure 1ii). In the model including morph–sex type

as a covariate, TFs displayed the highest Weibull scale par-

ameter (b1) and WMs the lowest scale parameter. The scale

parameter of TMs and WFs showed intermediate values

(table 1 and figure 1iii). The scale parameter of TFs was

higher than that of WMs and TMs, and tended to be higher

than that of WFs. Compared to WMs, WFs had a higher

scale parameter, and TMs tended to have a higher scale par-

ameter (table 1 and figure 1iii). TMs and WFs did not differ

in the scale parameter.

Life tables for the four morph–sex classes are presented

in table 2, and the probability of death at each age is plotted

in figure 2. Life expectancy at age 2 relative to WMs was

34.8% less in TFs, 21.2% less in WFs and 16.2% less in TMs.

4. Discussion
Our results suggest that actuarial senescence occurs in the

white-throated sparrow, with the Weibull model, in which

mortality hazards are modelled as a power function of age,

fitting the data substantially better than the exponential

model, in which mortality is age-independent, or the Gom-

pertz model, in which mortality increases as an exponential

function of age. The Weibull model with a bathtub shape

provided a better fit to the data than the model with a

simple or Makeham shape, suggesting that early mortality

patterns may be governed by a different process than senes-

cence. For all morph–sex classes, the Weibull shape

parameter was between 1 and 2, suggesting a similar pattern

of senescence characterized by a decelerating increase in mor-

tality rate with age. However, we found support for different

rates of senescence between the sexes and morphs, as indi-

cated by differences in the Weibull scale parameter. The

biggest difference in senescence rate was between the sexes,

rather than between the morphs, suggesting that morph

differences in physiology and behaviour have less effect on

the process of senescence than differences between the

sexes. Nevertheless, there was some evidence for an effect

of morph on the ageing process. The differences suggested

between both the sexes and morphs provide insight into

the relative effects of intra-sexual competition and parental

care on the process of senescence.

Our results did not support the hypothesis that intense

intra-sexual competition promotes investment in reproduc-

tive success at the expense of survivorship, such that male

(or female) phenotypes that invest more heavily in sexual

competition should generally suffer more rapid ageing [9].

Males, the more competitive sex, displayed a lower rate of

senescence than females, and the more competitive and

aggressive white-striped morph a lower senescence rate

than the tan-striped morph. Moreover, when analysed on

Table 1. Coefficient estimates, 95% credible intervals and Kullback – Leiber discrepancy calibration values (KLDC) for BaSTA model parameters for the model
with all four morph – sex types. a0 and a1 ¼ bathtub parameters, c ¼ Makeham parameter, b0 ¼ Weibull shape parameter, b1 ¼ Weibull scale parameter.
Bold KLDC values indicate significant (greater than 95%) differences in posterior distributions.

estimate 95% CI

KLDC

TM WF WM

a0 TF 23.633 25.059, 22.445 0.503 0.512 0.505

a0 TM 23.694 25.101, 22.573 0.523 0.500

a0 WF 23.498 24.813, 22.430 0.529

a0 WM 23.719 25.068, 22.633

a1 TF 0.909 0.693, 0.037 0.501 0.500 0.500

a1 TM 0.932 0.725, 0.031 0.500 0.504

a1 WF 0.944 0.688, 0.039 0.502

a1 WM 0.880 0.678, 0.035

c TF 0.023 0.001, 0.089 0.511 0.509 0.519

c TM 0.021 0.001, 0.076 0.540 0.501

c WF 0.026 0.001, 0.095 0.554

c WM 0.020 0.004, 0.071

b0 TF 1.973 1.704, 2.284 0.593 0.530 0.746

b0 TM 1.880 1.613, 2.165 0.528 0.559

b0 WF 1.921 1.614, 2.269 0.642

b0 WM 1.816 1.581, 2.086

b1 TF 0.354 0.313, 0.396 0.987 0.912 1.000

b1 TM 0.299 0.262, 0.338 0.612 0.928

b1 WF 0.313 0.267, 0.358 0.974

b1 WM 0.263 0.227, 0.296
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the level of the morph–sex class, WMs, which compete more

intensely for mates than TMs (as demonstrated by high terri-

torial aggressiveness, testosterone concentrations during

breeding [43,44], singing rates and rates of extra-pair copu-

lation [40,54]), had a lower senescence rate than both WFs

and TFs, and tended to have a lower senescence rate than

TMs. Thus, results on the levels of sex, morph and morph–

sex class are all inconsistent with highly competitive

strategies being associated with higher senescence rates.

Rather, our results are consistent with the hypothesis that

higher levels of parental investment increase ageing rates

[22]. Females had a higher rate of senescence than males,

and as in many species of birds, female white-throated

sparrows alone incubate the eggs. Incubation represents a

substantial parental investment and may contribute to

increasing rates of senescence in females relative to in

males. Although to a lesser extent, the tan-striped morph

also displayed a higher senescence rate than the white-striped

morph, and tan-striped white-throated sparrows of both

sexes have been observed to be more parental than white-

striped counterparts [36,38–40]. On the level of morph–sex

class, TFs had the fastest rate of senescence, and our past

work also demonstrates fast rates of reproductive senescence

in TFs [46]. TFs perform parental duties with little support

from their white morph mates, and unsupported mother-

hood can have substantial costs [55]. Thus, given high

somatic costs of parental care, the highest costs are expected

in TFs. TFs may also have difficulty sustaining reproductive

success as they age due to lack of parental support, dampen-

ing selection for late-life performance and favouring the

evolution of faster rates of senescence [46].

Sharing parental duties may dampen the somatic costs of

parental care and thereby reduce rates of actuarial senescence

relative to that experienced by unsupported carers. Indeed, in

cooperative breeding species, the presence of helpers at nests

has been demonstrated to lower physiological costs of repro-

ductive effort [56]. In the support of reduced costs of parental

care in cooperative systems, TMs and WFs, which share par-

ental care relatively equally, showed very similar patterns of

actuarial senescence to each other, with rates intermediate

between the low rate of white males and high rate of TFs.

Furthermore, although the competitive behaviours and

conspicuous displays associated with sexual selection are

often proposed to increase mortality risk in males [9,57],

parental effort, particularly when unsupported, may also

elevate mortality risk. For instance, females (or males in

some species) may be prone to depredation when incubating

nests, provisioning nestlings or defending offspring [58–60],

especially if not warned or otherwise supported by their

mates or other conspecifics. Indeed, in eiders (Somateria mollis-
sima), which exhibit uniparental female care, high predation

risk among care-giving females leads to facultative formation

of cooperative care-giving coalitions [61]. High mortality risk

in ageing and unsupported TFs providing parental care

could accelerate rates of actuarial senescence.

Notably, there was a larger sex difference in age-dependent

mortality rate in W � T pairs relative to T �W pairs, which is

consistent with past work suggesting that sex differences in

senescence are more pronounced in more polygamous breed-

ing systems [8,29,30]. However, in white-throated sparrows

the sex difference is in the opposite direction than expected

given a high cost of intense male mating effort, and instead

Table 2. Life tables for the four morph – sex classes: tan females (TF), white females (WF), tan males (TM) and white males (WM). nx ¼ number alive at start
of interval, lx ¼ proportion surviving at start of interval, dx ¼ number of deaths in interval, qx ¼ death rate in interval, ex ¼ remaining life expectancy at end
of interval.

age nx lx dx qx ex age nx lx dx qx ex

TF WF

1 – 2 127 1.0 73 0.574 1.405 1 – 2 106 1 50 0.471 1.698

2 – 3 54 0.425 23 0.425 1.629 2 – 3 56 0.528 19 0.339 1.767

3 – 4 31 0.244 11 0.354 1.467 3 – 4 37 0.349 18 0.486 1.418

4 – 5 20 0.157 12 0.6 1 4 – 5 19 0.179 11 0.578 1.289

5 – 6 8 0.062 6 0.75 0.75 5 – 6 8 0.075 5 0.625 1.375

6 – 7 2 0.015 2 1 0.5 6 – 7 3 0.028 1 0.333 1.833

7 – 8 2 0.018 0 0 1.5

8 – 9 2 0.018 2 1 0.5

TM WM

1 – 2 144 1 66 0.458 1.805 1 – 2 154 1 63 0.409 2.155

2 – 3 78 0.541 26 0.333 1.910 2 – 3 91 0.590 23 0.252 2.302

3 – 4 52 0.361 21 0.403 1.615 3 – 4 68 0.441 22 0.323 1.911

4 – 5 31 0.215 16 0.516 1.370 4 – 5 46 0.298 23 0.5 1.586

5 – 6 15 0.104 7 0.466 1.3 5 – 6 23 0.149 9 0.391 1.673

6 – 7 8 0.055 5 0.625 1 6 – 7 14 0.090 6 0.428 1.428

7 – 8 3 0.020 2 0.666 0.833 7 – 8 8 0.051 5 0.625 1.125

8 – 9 1 0.006 1 1 0.5 8 – 9 3 0.019 2 0.666 1.166

9 – 10 1 0.006 0 0 1.5
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may reflect differences in parental costs. Owens & Bennett [22]

suggested that sex differences in parental care, rather than

the competition over mates, may drive sex-biased mortality

patterns in birds. Our findings suggest that this might also be

true for patterns of actuarial senescence in bird species that

exhibit extensive parental care.

We recently demonstrated differences in reproductive

senescence between the morph–sex classes of the white-

throated sparrow that contrast in some respects to our

findings for actuarial senescence. When combined with the

current results, our past findings regarding reproductive

senescence further inform our understanding of mechanisms

of senescence in this species. For females, reproductive senes-

cence differed between the morphs with the reproductive

success of TFs linearly declining with age, and that of WFs

showing a negative quadratic relationship [46]. Thus, as for

patterns of actuarial senescence, patterns of reproductive

senescence in females are consistent with the hypothesis

that higher parental demands in TFs may accelerate rates of

ageing. However, in males we found faster rates of reproduc-

tive senescence in WMs than in TMs. The reproductive

success of WMs showed an eventual senescent decline with

age (negative quadratic relationship), whereas that of TMs

steadily increased [46]. Thus, this pattern is not consistent

with the pattern of actuarial senescence. Consequently, high

rates of reproductive success among old WMs cannot explain

the trend towards lower rates of actuarial senescence in WMs

relative to TMs, and are unlikely to explain the difference

between males and females.

A possible explanation for the disconnect between

patterns of actuarial and reproductive senescence in male is

that these two types of ageing are determined by different

processes. Specifically, patterns of reproductive senescence

may be more strongly affected by intra-sexual competition

than are patterns of actuarial senescence, because especially

in males, reproductive success often entails direct compe-

tition over mating opportunities. Thus, the high rate of

reproductive senescence in WMs might reflect the difficulty

of sustaining a highly competitive reproductive strategy as

ageing progresses, rather than a high rate of somatic senes-

cence [46]. By contrast, the low rate of actuarial senescence

in WMs could reflect a low rate of somatic senescence,

which could result from lower parental demands. Also,

sexual selection on WMs could also lead to positive pleiotro-

pic effects on survivorship and somatic maintenance [9],

lowering rates of actuarial senescence without necessarily

allowing WMs to maintain high rates of reproductive success

at old ages.

As a caveat, differences in actuarial senescence between

the morph–sex classes could arise from any number of

morph or sex-linked traits, especially given a large number

of genes implicated in the rearrangement on chromosomes

2. Conclusively demonstrating a causative effect of any one

variable, such as mating or parental effort, would require

experimental manipulation, or a meta-analysis approach.

Nevertheless, although the exact source of causation awaits

further study, we can eliminate certain contingencies, such

as the proposition that sexual selection induces faster rates

of actuarial senescence in white males. Moreover, we can

assess whether our data is consistent or inconsistent with

previously proposed theory, as done above.

In conclusion, our data suggest differences in the rate of

actuarial senescence between white-throated sparrow

morph–sex classes with discrete reproductive strategies.

Specifically, TFs, which exhibit high levels of relatively unas-

sisted parental care, displayed the fastest rate of actuarial

senescence, whereas highly competitive WMs displayed the

lowest rate. These results suggest that parental care may

entail higher somatic costs than sexual selection and intense

competition, and may thus drive patterns of actuarial

senescence in this and similar species.
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