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abstract: How reproductive strategies contribute to patterns of se-
nescence in natural populations remains contentious. We studied re-
productive senescence in the dimorphic white-throated sparrow, an
excellent species for exploring this issue. Within both sexes the
morphs use distinct reproductive strategies, and disassortative pair-
ing by morph results in pair types with distinct parental systems.
White morph birds are more colorful and aggressive than tan coun-
terparts, and white males compete for extrapair matings, whereas tan
males are more parental. Tan males and white females share parental
care equally, whereas white males provide little parental support to
tan females. We found morph-specific patterns of reproductive se-
nescence in both sexes. White males exhibited greater reproductive
senescence than tan males. This result likely reflects the difficulty of
sustaining a highly competitive reproductive strategy as aging pro-
gresses rather than high physiological costs of competitiveness, since
white males were also long-lived. Moreover, morph was not consis-
tently related to reproductive senescence across the sexes, arguing
against especially high costs of the traits associated with white morph
identity. Rather, tan females exhibited earlier reproductive senescence
than white females and were short-lived, perhaps reflecting the
challenges of unsupported motherhood. Results underscore the impor-
tance of social dynamics in determining patterns of reproductive senes-
cence.

Keywords: senescence, reproductive strategies, parental care, genetic
polymorphism, life history.

Introduction

Senescence, or the gradual deterioration of performance
with age, places critical limits on lifetime fitness and has
been increasingly documented in nonhuman populations.
A recent review identified 340 studies from 175 species that
provide evidence for senescence in free-living populations
(Nussey et al. 2013). However, quantifying senescence re-
quires tracking marked individuals over long periods of
time and determining reproductive success across the life
span and thus remains challenging in the field (Nussey
et al. 2008; Bouwhuis et al. 2009, 2012). Due to practical dif-
ficulties, work on mechanisms of senescence remains dom-
inated by laboratory-based studies. These studies yield in-
complete conclusions about patterns of senescence and
underlying causal factors, due to the absence of natural so-
cial and environmental challenges (Monaghan et al. 2008;
Briga and Verhulst 2015).
Life history–based theories predict that reproductive strat-

egies and behavioral traits are critically connected to rates
of senescence (Williams 1957; Kirkwood 1977; Nussey et al.
2013). Individuals who invest intensely in reproduction may
suffer a “cost of reproduction,” jeopardizing somatic mainte-
nance and accelerating system-wide senescence, as manifest
by deterioration of body condition, performance, and survi-
vorship with age. For instance, experimentally increasing pa-
rental effort through brood size manipulations can increase
rates of molecular aging as indicated by telomere dynamics
(Reichert et al. 2014) and accelerate actuarial senescence,
or the increase in mortality rate with age (Boonekamp et al.
2014). Costs of reproduction may also affect rates of repro-
ductive senescence, or the decline in reproductive perfor-
mance with age. For example, male houbara buzzards (Chla-
mydotis undulata) who invest more into extravagant sexual
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displays exhibit faster rates of senescence in sperm quality
(Preston et al. 2011), and female red deer with higher early-
life fecundity show faster senescent declines in maternal
performance traits (Nussey et al. 2006).

A common conception is that the competitive repro-
ductive strategy of males is more costly than the more pa-
rental strategy of females, promoting a “live fast die young”
strategy and higher rates of senescence (Bonduriansky et al.
2008). However, empirical data lend equivocal support to
this hypothesis (Lemaître and Gaillard 2013), with some
studies suggesting that parental care is more costly than in-
vestment into sexually selected competitive traits or displays
(Owens and Bennett 1994). Thus, the relative costs and life-
history implications of competition for mates versus paren-
tal care remains an outstanding question (Liker and Székely
2005; Tidiére et al. 2015).

Furthermore, system-wide senescence and reproductive
senescence are commonly predicted to occur in concert in
response to life-history trade-offs, such as costs of repro-
duction. However, the degree to which reproductive strate-
gies involve competition versus cooperation may shape
patterns of reproductive senescence, potentially indepen-
dent of the system-wide costs of different strategies. This
is because more competitive strategies may be harder to
maintain as body condition declines. For instance, faster se-
nescence in polygynous males compared to females could
reflect high physiological costs of competitive reproductive
strategies and associated sexually selected traits (Bondur-
iansky et al. 2008; Nussey et al. 2009; Beirne et al. 2015).
However, this pattern could also arise because successful
competition is not possible for aging males, lowering repro-
ductive success in old age and potentially feeding back to
weaken selection for late-life performance (Graves 2007).
In contrast, cooperative interactions, such as sharing parental
duties, may dampen costs of reproduction (Cram et al. 2015)
while also making sustained performance more feasible in
aging individuals (Sharp and Clutton-Brock 2010).

Our objective was to examine rates of reproductive se-
nescence and life span in a system that exhibits a well-
documented polymorphism in competitive and parental
reproductive strategies. We studied patterns of reproduc-
tive senescence in the polymorphic white-throated sparrow
(Zonotrichia albicollis) using a long-term data set spanning
18 years.White-throated sparrows provide an excellent sys-
tem for investigating the relationship between reproductive
strategies, social dynamics, and patterns of senescence due
to the presence of morph-specific reproductive strategies
and a unique social structure (Tuttle 2003). Birds of both
sexes occur in two alternative morphs, the white morph
and tan morph. Morph is genetically determined by a com-
plex rearrangement on chromosome 2, with white birds
heterozygous for the rearrangement and tan birds homozy-
gous, lacking the rearrangement (Thorneycroft 1966; Tuttle

et al. 2016). Gene variants within the rearrangement are di-
vergent and function as a coadapted supergene to alter mul-
tiple aspects of physiology and behavior (Tuttle et al. 2016).
White males have higher testosterone and corticosterone
concentrations during breeding than tan males, which may
mediate differences in behavior including higher territorial
aggression, singing, and extrapair copulation (Kopachena and
Falls 1993a; Tuttle 2003; Maney et al. 2005; Swett and Breu-
ner 2009; Horton and Holberton 2010). In contrast, tan
males invest more into mate-guarding and parental behav-
ior. In parallel tomales, white females sing and engage in ter-
ritorial aggression, whereas tan females do not sing and are
less aggressive. White-throated sparrows pair disassorta-
tively by morph, seemingly because the rearrangement is
deleterious in homozygotes and due to behavioral incompat-
ibilities within same-morph pairs (Tuttle et al. 2016). The
two alternative pair types, W# T and T#W (male morph
appears first), display distinct parental systems. In W # T
pairs, parental care is female biased, with white males con-
tributing little. In T # W pairs, males and females share
parental dutiesmore equally (Knapton and Falls 1983; Kopa-
chena and Falls 1993b, 1993c; Tuttle 2003; Falls and Kopa-
chena 2010).
In formulating predictions regarding how reproductive

strategy and social dynamics influence reproductive senes-
cence in the white-throated sparrow, we recognized that a
bidirectional relationship may exist between reproductive
strategy and reproductive senescence. First, we generated two
alternative predictions based on the concept that energy-
intensive strategies potentially accelerate senescence system-
wide and in turn cause reproductive senescence. In line with
theory proposing a central role for sexual selection and com-
petitive behaviors in accelerating senescence (Clutton-Brock
and Isvaran 2007; Bonduriansky et al. 2008; Tidiére et al.
2015), white males could experience higher costs of repro-
duction and faster senescence (system-wide) than tan males
because they competemore intensely formates, as evidenced
by higher song rates, aggression, and promiscuity. If com-
petitive behavior drives faster senescence, one would also
predict faster senescence in white females due to costs of sim-
ilar, morph-linked behaviors, including aggressiveness and
song production (Vercken et al. 2007). On the other hand,
given high costs of parental behavior, tan males and females
might senesce faster than white morph counterparts. Costs
of parental care are expected to be particularly high in tan
females, since they receive little parental support. Second,
we also reasoned that the highly competitive reproductive
strategy of white males and the unsupported parental effort
of tan females might be hard to sustain as system-wide senes-
cence proceeds. Thus, the members of the less cooperative
pair type might both be more susceptible to reproductive se-
nescence, even if system-wide senescence occurs at equiva-
lent rates regardless of reproductive strategy.
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Methods

Population Monitoring

Our data derive from a long-term study of white-throated
sparrows breeding at the Cranberry Lake Biological Station
(State University of New York, College of Environmental
Science and Forestry; 447150N, 747480W) in the Adirondack
region of New York. The data set on reproductive success
and survivorship spans 18 years (1998–2015) and includes
145 white males, 128 tan males, 100 white females, and
118 tan females.

White-throated sparrows at our study site are banded
with Fish and Wildlife bands bearing unique identification
numbers and color band combinations that allow visual
identification in the field (Master Banding Permit 22296).
In addition, all nestlings are uniquely banded and color
banded at day 6 of age to allow for monitoring of recruits
throughout their lives. Blood samples are taken at the time
of banding (∼80 mL for nestlings and ∼200 mL for adults)
for later genetic work. We store hematocrit in lysis buffer
at 47C until use (Longmire et al. 1992). For this analysis,
unbanded adults on the central study site were assumed to
be young breeders (1 year old), since the majority (∼90%)
of birds on central territories are banded each year and
adults are philopatric. This assumption introduces a degree
of error to initial ages but should not affect the longitudinal
analysis (within individuals).

White-throated sparrows at Cranberry Lake establish
territories in bogs and glades and along habitat edges of
forests, streams, and ponds. Territories are located in sim-
ilar areas each year, facilitating population monitoring.
Each year, we survey the population to determine the occu-
pants of each territory and between-year survivorship. White-
throated sparrows can fledge two clutches per year and
repeatedly renest following nest depredation.Weuse system-
atic search and behavioral observations across the season to
identify all nesting attempts. Most nests are found during
building, laying, or incubation, allowing for determination
of clutch sizes and hatching rates.

We visit nests every other day tomonitor the progression
of the nesting cycle and nest depredation. When nestlings
are banded on day 6, we place Thermochron iButtons in
nests. We do not revisit the nest until after the nest should
have fledged, on day 9 or 10. We consider nests depredated
if temperature profiles from iButtons indicate that the nest
was empty before day 9 and parents are not seen feeding
fledglings. We consider nests successful if data indicate that
nestlings fledged on approximately day 9 and parents are
observed with fledglings.

We determine the sex of adults at capture by the pres-
ence of a brood patch or cloacal protuberance and confirm
sex through behavioral observations.We assess themorph of
adults using the visual criteria set forth by Lowther (1961),

Piper and Wiley (1989), and Tuttle (1993, 2003). We also
use genetic methods to confirm the sex (Griffiths et al.
1998) and morph (Michopoulos et al. 2007; Romanov et al.
2009) of adults and to sex and morph nestlings.

Genetic Paternity Analyses

To determine cuckoldry levels, extrapair paternity, and the
actual reproductive success of males, we employ genetic
paternity analysis. We extract DNA from blood samples
using the DNA IQ magnetic extraction system (Promega,
Madison, WI) or the Qiagen DNeasy extraction kit. We
conduct paternity analysis using five to eight microsatellite
loci: Gf01 and Gf12 (Petren 1998), MME1 (Jeffery et al.
2001), Dpm01 and Dpm03 (Dawson et al. 1997), and
Zole_C02, Zole_C07, and Zole_H02 (Poesel et al. 2009).
Procedural details are described in Formica and Tuttle
(2009). For this study, we determined the actual reproduc-
tive success of males by adjusting apparent reproductive
success for the occurrence of extrapair offspring. Females
were assigned as the genetic mother of all nestlings in their
nests. We did not encounter cases in which female and off-
spring alleles mismatched, except due to binning errors,
and rates of intraspecific brood parasitism are low (Tuttle
2003). Out of 1,536 nestlings genotyped, 254 (16.5%) were
extrapair offspring. We were able to assign only 127 (50.0%)
of the extrapair offspring to a social father, likely due to the
presence of unbanded males on the boundaries of our study
site. Thus, our estimates of reproductive success underesti-
mate the reproductive success of white males, who are cuck-
olded and pursue extrapair mating at high rates (Tuttle 2003).
This should not bias our results regarding patterns of repro-
ductive senescence.

Statistics

We performed statistical analyses in R, version 2.15.2 (R
Development Core Team 2012). To analyze the relation-
ship between annual reproductive success and individual
age, we employed generalized linear mixed-effects models
(GLMMs) with a Poisson distribution using R package
lme4 (Bates et al. 2012). Significance levels were deter-
mined using Wald Z-tests, as recommended for general-
ized linear models with Poisson error structure in the ab-
sence of overdispersion (Bolker et al. 2009). We performed
analyses in males and females separately, because breeding
males and females are paired in nonconstant combina-
tions across years and thus cannot be treated as indepen-
dent data points. Moreover, we were interested in testing
for morph differences in senescence, and conducting sep-
arate models within the sexes was the simplest way to
achieve this objective. We included year and individual
identity as random effects to account for variation in breed-
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ing conditions between seasons and for multiple measure-
ments on the same individual in different years. We addition-
ally retained an observation-level random effect to control for
overdispersion (Harrison 2014). The observation-level ran-
dom effect effectively eliminated overdispersion in this model
and elsewhere where applied, as assessed by the overdisper-
sion function authored by Ben Bolker and available online
(https://bbolker.github.io/mixedmodels-misc/glmmFAQ
.html). We tested linear and quadratic effects of age and also
included morph, longevity, and a binary term to indicate final
breeding attempt (1, 0; 1 p final breeding attempt, 0 p
otherwise) in the model as fixed effects. We included two-
way interactions between morph and other parameters (age,
age2 [quadratic term], longevity, final breeding attempt) in
the initial model. The quadratic term models the potential
for nonlinear changes in reproductive success with age. In-
cluding longevity in the model controls for selective disap-
pearance of low-quality individuals, which could otherwise
obscure longitudinal (within-individual) changes in repro-
ductive performance with age. The final breeding attempt
term tests for terminal effects on reproductive performance.
Negative terminal effects might arise if individuals in their
last breeding season manifest pathologies that subsequently
result in mortality, whereas positive terminal effects could
occur if individuals with low residual reproductive value in-
vest more into reproduction (Bouwhius et al. 2009; Zhang
et al. 2015). We centered continuous variables to alleviate
problems with multicollinearity (particularly between age
and age2) and facilitate interpretation of main effects when
also including interaction terms (Schielzeth 2010).

Within males, we assessed whether levels of cuckoldry
change with age using GLMMs with a binomial distribution
(R package lme4; Bates et al. 2012). We used the number of
extrapair nestlings as the dependent variable and total
number of nestlings as the binomial denominator. We in-
vestigated how male success at obtaining extrapair pater-
nity varied with age using a GLMMwith a Poisson distribu-
tion. We conducted this model within white males only
because tan males rarely obtain extrapair paternity (Tuttle
2003). Within females and males, we tested how clutch size
and hatching success change with age. For the clutch size
model, we used a GLMM with a Poisson distribution. For
the hatching success model, we used a binomial GLMM
with number of unhatched eggs as the dependent variable
and total number of eggs as the binomial denominator. The
hatching success and clutch size models included clutch
number as a fixed effect and clutch ID as an additional ran-
dom effect. Otherwise, we used the same random and fixed
effects as above.

We also compared annual and lifetime reproductive
success and longevity between the sex-morph classes. To
assess differences in annual reproductive success we used
a GLMM with a Poisson distribution with sex-morph type

as the fixed effect and individual, year, and observation as
random effects. We compared lifetime reproductive suc-
cess of the sex-morph classes using GLMMs with a Pois-
son distribution and first breeding year as a random effect.
To assess differences in longevity we used pairwise Wil-
coxon tests with a Holm correction for multiple compar-
isons.
We reduced all models by sequentially removing pre-

dictor variables with the highest P value, until all predictor
variables were significant (or near significant) at the a p
0:05 level. Model reduction may increase the probability of
type I error. Thus, some advocate for presentation of full
models (Forstmeier and Schielzeth 2011). However, pa-
rameter estimates can be unstable in full models, and our
conclusions would not be qualitatively altered if presenting
full models. For these reasons and for conciseness, we pre-
sent simplified models that do not contain nonsignificant
terms.

Results

Age and Reproductive Performance

In both males and females, reproductive success varied
with age in a morph-specific fashion. In males, there was a
significant negative interaction between age2 and morph (ta-
ble 1, pt. A). This interaction reflected a negative quadratic
effect ofmale age on reproductive success within whitemales
(table 1, pt. B; fig. 1a) but not tan males. In white males, re-
productive success first increased slightly with age and then
declined (fig. 1a). In tanmales, the effect of age on reproduc-
tive success was linear and positive (table 1, pt. C; fig. 1a).
The model predicting reproductive success in males also
contained a positive interaction between age and whether
it was an individual’s last breeding season (table 1, pt. A).
This interaction reflected greater negative terminal effects
in older birds and was significant only within white males (ta-
ble 1, pt. B). Tan morph males had higher annual repro-
ductive success than white morph males (table 1, pt. A;
fig. 1a). There was no relationship between male longevity
and annual reproductive success (b p 0:0935 0:105, Z p
0:883, P p :377).
In females, there was a significant positive interaction

between age andmorph and a negative interaction between
age2 andmorph (table 2, pt. A). These interactions reflected
different linear and quadratic effects of age on reproductive
success in white and tan females. As in whitemales, age had
a negative quadratic effect on the reproductive success of
white females, with success first increasing with age and
then declining (table 2, pt. B; fig. 1b). Conversely, there
was a positive quadratic effect of age on the reproductive suc-
cess of tan females, suggesting large early declines in reproduc-
tive success followed by lower rates of decline (table 2, pt. C;
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fig. 1b). There was also evidence of a negative terminal effect
on reproductive success in females (table 2, pt. A). Within
morphs, this effect was significant only in tan females (ta-
ble 2, pt. C). White females had higher annual reproductive
success than tan females (table 2, pt. A). As in males, female
longevity was unrelated to annual reproductive success
(b p20:0345 0:087, Z p20:389, P p :698).

Paternity Retention and Extrapair Paternity

Retention of paternity varied with age in a morph-specific
fashion, as reflected by a negative interaction between male

age and morph (table 3, pt. A). White males had lower pa-
ternity retention than tan males (table 3, pt. A). Within the
white morph, there was a linear decline in paternity reten-
tion with age (table 3, pt. B; fig. 2a), indicating that older
males were cuckolded more frequently than younger indi-
viduals. In contrast, paternity retention was relatively stable
or even slightly increased across age classes within the tan
morph (table 3, pt. C; fig. 2b). Paternity retention was not
related to male longevity (b p 0:2395 0:500, Z p 0:479,
P p :632) or whether it was an individual’s last breeding
season (b p 0:1715 0:675, Z p 0:255, P p :799), and
associated interaction terms were also nonsignificant (P 1 :10
in all cases).
Within white males, success at obtaining extrapair pater-

nity first increased with age and then declined (fig. 3), as in-
dicated by a negative quadratic relationship between extra-
pair paternity and age (b p20:6645 0:191, Z p23:465,
P ! :001). The main effect of age on extrapair paternity
was positive (b p 1:1255 0:286, Z p 3:92, P ! :001).

Clutch Size and Hatching Success

Hatching success tended to relate to female age in a morph-
specific fashion (table 4, pt. A), as reflected by a marginally
nonsignificant positive interaction between morph and age.
There was a weak, negative quadratic effect of age on hatch-
ing success in white females (table 4, pt. B; fig. 4b). Indeed,
the overall negative quadratic relationship between hatching
success and age (table 4, pt. A) seemed to be driven by white
females. As tan females aged, there was a strong linear de-
cline in hatching success (table 4, pt. C; fig. 4b), with no qua-
dratic component apparent. Female longevity and terminal
effects had no influence on hatching success (P 1 :50). Male
age, longevity, and terminal effects were all unrelated to hatch-
ing success. Clutch size was unrelated to any age-related pa-
rameter (P 1 :10 for simple and quadratic effects of age, lon-
gevity, and terminal effects, as well as interaction terms).

Variation in Reproductive Success and Longevity

Annual reproductive success ranged from 0 to 9 and was
lower in white males than in all other sex-morph classes
(GLMM: P ! :001 in all cases, n p 1,016 observations,
491 individuals, 18 years). White females had higher annual
reproductive success thanwhitemales (b p 0:2535 0:089,
Z p 2:844, P p :004), whereas other pairwise comparisons
were nonsignificant (P 1 :10). Annual reproductive success
had a mean5 SE of 2:8655 0:148 in tan females, 2:5865
0:141 in tan males, 3:1865 0:163 in white females, and
1:7545 0:111 in white males.
Lifetime reproductive success ranged from 0 to 33 (n p

375; 101 tan females, 89 tan males, 81 white females,
104 white males, 17 years), and tan females had lower life-

Table 1: Poisson generalized linear mixed-effects models predict-
ing reproductive success from age and morph in dimorphic white-
throated sparrow males (A), more polygamous and aggressive
white males (B), and more paternal tan males (C)

A. Males Estimate (b 5 SE) Z P 1 FZF

Intercept .730 5 .080 9.148 !.001
Age .231 5 .075 3.094 .002
Age2 2.182 5 .041 24.485 !.001
Morpha 2.100 5 .058 21.731 .083
Last year 2.122 5 .093 21.305 .192
Age # morpha .018 5 .064 .284 .776
Age2 # morpha 2.099 5 .039 22.491 .013
Age # last year .208 5 .096 2.171 .0299

Random effects Variance SD N

Observation .563 .750 607
Individual .025 .159 277
Year .021 .146 18

B. White males Estimate (b 5 SE) Z P 1 FZF

Intercept .609 5 .104 5.860 !.001
Age .242 5 .111 2.178 .029
Age2 2.298 5 .061 24.854 !.001
Last year 2.244 5 .147 21.657 .098
Age # last year .306 5 .145 2.107 .035

Random effects Variance SD N

Observation .842 .918 341
Individual !.001 !.001 147
Year !.001 .023 18

C. Tan males Estimate (b 5 SE) Z P 1 FZF

Intercept .782 5 .082 9.508 !.001
Age .215 5 .063 3.381 !.001

Random effects Variance SD N

Observation .380 .617 267
Individual .035 .188 130
Year .029 .172 18

a White relative to tan morph.
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time reproductive success than tan males (GLMM: b p
0:3115 0:063, Zp 4:942, P ! :001), white females (b p
0:2725 0:064, Z p 4:236, P ! :001), and white males
(b p 0:1265 0:063, Z p 2:011, P p :044). The lifetime
reproductive success of tan males was higher than that of
white males (b p 0:1825 0:061, Z p 2:985, P p :003)
but similar to that of white females (b p20:0315 0:063,
Z p20:496, P p :620). White females had higher lifetime
reproductive success thanwhitemales (b p 0:1355 0:063,
Z p 2:149, P p :032). Lifetime reproductive success had
a mean 5 SE of 4:8425 0:424 in tan females, 6:5175
0:698 in tan males, 6:3465 0:590 in white females, and
5:6355 0:526 in white males. As stated above, the repro-
ductive success of white males is underestimated due to fail-
ure to assign genetic paternity to all extrapair nestlings.

Longevity ranged from 0 to 10 and was higher in white
males than in tan females (pairwise Wilcoxon test, P p :02).
Longevity did not differ between other sex-morph classes
(P ≥ :30 in all cases). Longevity had a mean of 2:7025
0:102 in tan females, 3:2225 0:107 in tan males, 3:1055
0:147 in white females, and 3:9355 0:116 in white males.

Discussion

We demonstrate morph-specific patterns of reproductive se-
nescence in a species with genetically determined alternative
reproductive strategies. Morph-specific relationships between
age and reproductive performance were present in white-
throated sparrows of both sexes and are likely related to
morph differences in aggressive behavior and reproductive
strategy. Morph-specific reproductive and behavioral strate-
gies could entail different physiological costs, explaining dif-

ferences in reproductive senescence. Alternatively, certain
reproductive strategies could bemore difficult to sustain given
age-related declines in body condition and physiological sys-
tems. Belowwe discuss these two contingencies andwhat our
results suggest regarding the relative costs and life-history
outcomes of intrasexual competition versus parental care.
Given high physiological costs of intrasexual competition,

we predicted faster reproductive senescence in white than in
tan birds. In agreement with this prediction, the reproductive
success of white males was stable or increased slightly at
young ages and declined thereafter (fig. 1a), whereas the suc-
cess of tan males linearly increased with age, perhaps due to
reproductive experience (Forslund and Pärt 1995; Martin
1995; Préault et al. 2005; fig. 1b). Older whitemales exhibited
declines in paternity retention and extrapair paternity that
contributed to reproductive senescence. High physiological
costs of reproduction in white males could promote senes-
cence in reproductive performance traits, including sexual
display, sperm quality, and competitive ability (Møller et al.
2009; Velando et al. 2011; Noguera et al. 2012; Rivera-
Gutierrez et al. 2012; Lemaître et al. 2014; Preston et al.
2015). Indeed, compared to tan males, white males exhibit
higher levels of aggression (Kopachena and Falls 1993a; Tut-
tle 2003; Maney et al. 2005), testosterone (Maney et al. 2005;
Swett and Breuner 2009), and sexual display, which all may
increase physiological costs, for instance, by causing oxida-
tive stress and reducing immunocompetence (Torres and
Velando 2007; Peron et al. 2010; Preston et al. 2011; Noguera
et al. 2012). Testosterone has been specifically proposed to
mediate a trade-off between aggression, sexual attractiveness,
and immune function (immunocompetence handicap hy-
pothesis; Folstad and Karter 1992). High testosterone con-
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Figure 1: Relationship between reproductive success and age in dimorphic white-throated sparrow males (a) and females (b). In this species,
white morph males are more polygamous and aggressive than tan counterparts, which invest more in paternal care. White morph females are
more aggressive and receive more paternal support than tan females. Plotted relationships use raw data and quadratic functions in all groups
except for tan morph males, in which a linear model best fit the data. Bars denote standard error within age classes.
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centrations could suppress immunity, resulting in cumula-
tive damage and mediating senescence (Mougeot et al. 2004;
Alonso-Alvarez et al. 2007; Mills et al. 2009).

In addition, morph differences in responsiveness to endo-
crine signals could affect patterns of reproductive senescence.
The ZAL2m supergene encompasses multiple hormone re-
ceptors, including estrogen receptor 1 (ESR1), serotonin recep-
tor 1B and 1E (HTR1B and 1E), and the follicle-stimulating
hormone receptor (FSHR; Tuttle et al. 2016). Polymorphism
in the ESR1 gene alters receptor expression in the brain, af-
fecting morph-specific behaviors (Horton et al. 2014; Maney
et al. 2015). Receptor function could also have pleiotropic ef-
fects on senescence, for example, by affecting maintenance of
immune and reproductive function.

However, rates of reproductive senescence were not con-
sistently associated with morph across the sexes. Rather, in
contrast to males, tan females showed higher rates of repro-
ductive senescence than white females. Terminal effects
were also more pronounced in white males but tan females.
Costs of aggressive behaviors may be mitigated in white
females if they engage in these behaviors only during a brief
period before nesting commences (Arcese et al. 1988; Pav-
lova et al. 2007). Nonetheless, the inconsistent pattern across
the sexes argues against a strong connection between costs of
reproduction and traits associated with the ZAL2m super-
gene. Indeed, neither white males nor white females showed
shorter life spans than tan counterparts, with white males in-
stead showing the highest life expectancies. However, senes-
cence in different systemsmay ormay not proceed in parallel
(Nussey et al. 2013). Thus, white males but not white females
could experience high physiological costs that affect their re-
productive system (e.g., spermatogenesis) but not survivor-
ship (e.g., immunity).

Table 2: Poisson generalized linear mixed-effects models predic-
ting reproductive success from age and morph in dimorphic white-
throated sparrow females (A), more aggressive white females (B),
and more parental tan females (C)

A. Females Estimate (b 5 SE) Z P 1 FZF

Intercept 1.070 5 .073 14.602 !.001
Age 2.025 5 .058 2.430 .667
Age2 .011 5 .038 .279 .780
Morpha .157 5 .051 3.073 .002
Last year 2.195 5 .074 22.632 .009
Age # morpha .142 5 .057 2.467 .014
Age2 # morpha 2.110 5 .038 22.875 .004

Random effects Variance SD N

Observation .179 .423 418
Individual .015 .124 224
Year .028 .169 18

B. White females Estimate (b 5 SE) Z P 1 FZF

Intercept 1.173 5 .067 17.589 !.001
Age .141 5 .079 1.771 .077
Age2 2.103 5 .036 22.836 .004

Random effects Variance SD N

Observation .218 .467 201
Individual !.001 !.001 102
Year .007 .083 18

C. Tan females Estimate (b 5 SE) Z P 1 FZF

Intercept .976 5 .106 9.162 !.001
Age 2.181 5 .084 22.134 .033
Age2 .133 5 .069 1.939 .052
Last year 2.326 5 .107 23.057 .002

Random effects Variance SD N

Observation .132 .363 218
Individual .059 .242 122
Year .033 .181 17

a White relative to tan morph.

Table 3: Binomial generalized linear mixed-effectsmodels predict-
ing paternity retention from age and morph in dimorphic white-
throated sparrowmales (A), more polygamous and aggressivewhite
males (B), and more paternal tan males (C)

A. Males Estimate (b 5 SE) Z P 1 FZF

Intercept 3.596 5 .255 14.122 !.001
Age .012 5 .293 .042 .966
Morpha 21.392 5 .255 25.466 !.001
Age # morpha 2.741 5 .293 22.524 .011

Random effects Variance SD N

Observation 6.950 2.636 403
Individual .290 .538 208
Year !.001 !.001 18

B. White males Estimate (b 5 SE) Z P 1 FZF

Intercept 1.723 5 .184 9.378 !.001
Age 2.615 5 .182 23.389 !.001

Random effects Variance SD N

Observation 3.324 1.823 214
Individual .268 .517 106
Year !.001 !.001 17

C. Tan males Estimate (b 5 SE) Z P 1 FZF

Intercept 6.237 5 .696 8.964 !.001
Age .710 5 .746 .952 .341

Random effects Variance SD N

Observation 15.317 3.913 189
Individual 2.773 1.665 102
Year !.001 .006 18

a White relative to tan morph.
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Alternatively, rather than reflecting differences in costs
of reproduction and rates of systemic decline, faster repro-
ductive senescence in white relative to tan males could re-
sult because the competitive reproductive strategy of white
males is difficult to sustain given age-related declines in
performance. Aging birds will likely be outcompeted for
the best territories, social mates, and paternity (via sperm
competition; e.g., Bowers et al. 2015) in white but not nec-
essarily in tan males. Moreover, senescent declines in tes-
tosterone levels occur in many species (Ottinger 1992,
2007; Wilcoxen et al. 2013) and could have a larger detri-
mental effect on reproductive performance in competitive
white males than in paternal tan males. This could in turn

drive evolution of faster systemic senescence in white males,
due to reduced selection for late-life performance. However,
results do not support this outcome since white males exhibit
long life spans. Rather, intrasexual competition could impose
selection on body condition, favoring genes with positive
pleiotropic effects on viability (Graves 2007; Bonduriansky
et al. 2008).
Given high costs of parental care, we expected higher re-

productive senescence in the tan morph, particularly in fe-
males.We did not observe faster reproductive senescence in
tan relative to white males, perhaps because white females
and tan males share parental duties. On the other hand, tan
females perform parental care with little paternal support,
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Figure 3: Relationship between hatching success and age for white female (a) and tan female (b) white-throated sparrows. White females are
more aggressive and receive more paternal support than tan females. Red dots are mean proportions 5 SE within age groups. Black dots are
proportions within nests and are scaled to clutch size. Red lines are binomial functions.
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Figure 2: Relationship between paternity retention (proportion of within-pair [WP] nestlings) and age in white male (a) and tan male
(b) white-throated sparrows. White males exhibit high rates of extrapair paternity relative to more paternal tan males. Red dots are mean
proportions 5 SE within age groups. Black dots are proportions within nests and are scaled to the number of nestlings in broods. Plots use
raw data, and red lines are binomial functions.
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displayed faster reproductive senescence than white females,
and had the shortest life span of any sex-morph class. These
results suggest that tan females display rapid senescence in
condition and survivorship, as well as reproductive success.
Indeed, sex-biased parental care predicts sex-biasedmortality
in Palearctic birds (Owens and Bennett 1994), and single
motherhood is associated with stress, disease, and mortality
risk in humans (Berkman et al. 2015), demonstrating substan-
tial costs of unsupported parental effort. Conversely, paren-
tal support may lower costs of reproduction and rates of re-
productive senescence. For instance, cooperative breeding
lowers oxidative costs of reproduction in sparrow weavers
(Plocepasser mahali; Cram et al. 2015).

In addition to lowering reproductive costs, the cooperative
parental system of T # W pairs could allow tan males and
white females to better sustain reproduction as system-wide

senescence advances. The hypothesis that cooperative behav-
ior facilitates maintenance of reproductive performance in
aging individuals has rarely been considered, but a study
addressing this idea in meercats (Suricata suricatta) yielded
null results (Sharp and Clutton-Brock 2010). In females, re-
sults regarding hatching success might seem unlikely to have
arisen through this second pathway, because little paternal in-
vestment occurs prior to hatching. However, early in the sea-
son, tan males could buffer white females from reproductive
stress throughmate guarding, which can protect females from
sexual harassment (Lovell-Mansbridge and Birkhead 1998)
and increase foraging efficiency (Fedy and Martin 2009).
Tanmales and white females also achieved higher lifetime

reproductive success than white males and tan females, with
tan females having the lowest lifetime success. The fitness of
white males is underestimated due to incomplete paternity
assignment. Nonetheless, these results again suggest that the
more cooperative parental system yields higher fitness, at least
for females, with disassortativematingmaintaining the poly-
morphism. However, fitness differences between pair types
might also vary geographically.
Differences in detectability or dispersion between sex-

morph classes could bias our analysis of life span. However,
meticulous population monitoring makes it unlikely that
breeding individuals go undetected. Moreover, long-term field
observations suggest that males of both morphs display high
site fidelity and return repeatedly to the same territory in
subsequent years. Females switch territories more often than
males (which may in part explain slightly lower recapture
estimates in females) but with no evidence of a morph bias.
Also consistent with the current interpretation, a recent anal-
ysis of actuarial senescence using long-term mark-recapture
data shows an age-dependent increase in mortality that is

Table 4: Binomial generalized linear mixed-effects models predict-
ing hatching success from age and morph in dimorphic white-
throated sparrow females (A), more aggressive white females (B),
and more parental tan females (C)

A. Females Estimate (b 5 SE) Z P 1 FZF

Intercept 2.961 5 .321 9.237 !.001
Age 2.189 5 .155 21.216 .224
Age2 2.154 5 .074 22.081 .037
Morpha .204 5 .199 1.025 .306
Clutch 2.314 5 .143 22.193 .028
Age # morpha .373 5 .196 1.900 .057

Random effects Variance SD N

Nests .746 .864 434
Individuals .064 .254 188
Year .050 .224 16

B. White females Estimate (b 5 SE) Z P 1 FZF

Intercept 2.813 5 .258 10.904 !.001
Age .185 5 .240 .775 .439
Age2 2.198 5 .107 21.848 .064

Random effects Variance SD N

Nests 1.256 1.121 203
Individuals !.001 !.001 89
Year !.001 !.001 16

C. Tan females Estimate (b 5 SE) Z P 1 FZF

Intercept 2.796 5 .388 7.199 !.001
Age 2.319 5 .114 22.809 .005
Clutch 2.328 5 .190 21.720 .085

Random effects Variance SD N

Nests .530 .728 231
Individuals !.001 !.001 101
Year .195 . 441 16

a White relative to tan morph.
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Figure 4: Relationship between number of extrapair young (EPY)
and age in white morph males of the dimorphic white-throated spar-
row. The black line represents predicted values from the zero-inflated
Poisson model. Dots represent the number of EPY per male and are
scaled to the number of observations.
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most pronounced in tan females and least pronounced in
white males, but with no baseline difference in resighting
probability between sex-morph classes (M. L. Grunst et al.,
unpublished manuscript). Importantly, even if sex, morph, or
age-dependent dispersal does occur in thewhite-throated spar-
row, this would likely not bias our analysis of age-dependent
reproductive success (trajectories shown in fig. 1a), which
suggest morph differences in reproductive senescence.

Overall, our study suggests that more competitive and
less cooperative or supported reproductive strategies are as-
sociated with faster reproductive senescence. Results re-
garding longevity differences between the morphs do not
support high self-maintenance costs of intrasexual compe-
tition but rather suggest high costs of unsupported paren-
tal care. Gaining further insight into why the sex-morph
classes display distinct patterns of reproductive senescence
will require quantifying age-related changes in physiology,
body condition, and behavior. For instance, it will be infor-
mative to assess age-related changes in endocrine signaling.
These data will allow us to better disentangle whether certain
sex-morph classes display faster reproductive senescence due
to physiological trade-offs that drive declines in key func-
tions or due to the difficulty of succeeding in highly com-
petitive (white males) or unsupported (tan females) repro-
ductive behaviors as aging advances. Of course, these two
processes are also likely to interact, on both ecological and
evolutionary time frames.

Data availability: data are deposited to the Dryad Digital
Repository: http://dx.doi.org/10.5061/dryad.vj5pn (Grunst
et al. 2017).
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Female white-striped sparrow (Zonotrichia albicollis) perched showing brood patch. Photo credit: Indiana State University Photo Services.
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