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Stress physiology is thought to contribute to individual differences in behaviour. In part this reflects the
fact that canonical personality measures consist of responses to challenges, including novel objects and
environments. Exposure to novelty is typically assumed to induce a moderate increase in glucocorticoids
(CORT), although this has rarely been tested. We tested this assumption using great tits, Parus major,
selected for divergent personalities (bold-fast and shy-slow explorers), predicting that the shy birds
would exhibit higher CORT following exposure to a novel object. We also scored behavioural responses to
the novel object, predicting that bold birds would more frequently approach the novel object and exhibit
more abnormal repetitive behaviours. We found that the presence of a novel object did induce a mod-
erate CORT response, but selection lines did not differ in the magnitude of this response. Furthermore,
although both selection lines showed a robust CORT elevation to a subsequent restraint stressor, the
CORT response was stronger in bold birds and this effect was specific to novel object exposure. Shy birds
showed a strong positive phenotypic correlation between CORT concentrations following the novel
object exposure and the subsequent restraint stress. Behaviourally, the selection lines differed in their
response during novel object exposure: as predicted, bold birds more frequently approached the novel
object and shy birds more strongly decreased overall locomotion during the novel object trial, but birds
from both selection lines showed significant and similar frequencies of abnormal repetitive behaviours
during novel object exposure. Our findings support the hypothesis that personality emerges as a result of
correlated selection on behaviour and underlying endocrine mechanisms and suggest that the rela-
tionship between endocrine stress physiology and personality is context dependent.
© 2017 The Author(s). Published by Elsevier Ltd on behalf of The Association for the Study of Animal

Behaviour. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Wild animals regularly cope with challenges in their natural
environments and benefit from behavioural flexibility. Individuals
are not infinitely flexible, however, and constraints on plasticity can
generate consistent behavioural differences (i.e. personality),
which have been described in a variety of taxa (Gosling, 2001).
Personality is often measured using assays of exploratory behav-
iour (e.g. spatial and object neophobia) with responses that can be
described along a shyebold continuum (Carere, Drent, Privitera,

Koolhaas, & Groothuis, 2005). These personality traits show an
established set of correlated physiological and behavioural char-
acteristics that are stable across time and contexts in both free-
living (reviewed in Carere, Caramaschi, & Fawcett, 2010) and
captive populations (Groothuis & Carere, 2005). Past studies have
shown that more shy personalities (‘slow explorers’) are more
sensitive to environmental changes and often perform better in
dynamic environments, whereas bolder personalities (‘fast ex-
plorers’) may be better adapted to stable environments
(Dingemanse, Both, Drent, & Tinbergen, 2004; Drent & Marchetti,
1999; Korte, Koolhaas, Wingfield, & McEwen, 2005; Marchetti &
Drent, 2000; Verbeek, Drent, & Wiepkema, 1994). These findings
suggest that personalities might also differ in the frequency of
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routine-forming behaviours (i.e. stereotypies; abnormal repetitive
behaviours), which are often observed in stable captive populations
(Garner, Mason, & Smith, 2003; Keiper, 1969; Mason, 1991), with
bolder individuals predicted to exhibit a higher frequency of
abnormal repetitive behaviour.

A variety of neural and hormonal adaptations underlie behav-
ioural responses to environmental challenges. A growing body of
research on the proximate correlates of animal personality has
demonstrated that endocrine phenotypes can be individually
consistent and associated with personality (reviewed in Hau,
Casagrande, Ouyang, & Baugh, 2016; Koolhaas, de Boer, Buwalda,
& van Reenen, 2007; but see Bell, Hankison, & Laskowski, 2009;
Pavitt, Walling, M€ostl, Pemberton, & Kruuk, 2015). Because of
their systemic nature and pleiotropic effects, steroid hormones
have been proposed as key mechanisms that organize behavioural
traits into correlated suites (Carere et al., 2010; Ketterson, Atwell, &
McGlothlin, 2009; Koolhaas et al., 1999). However, the extent to
which hormonal mechanisms evolve alongside behavioural
mechanisms and are responsible for individual variation in
behaviour remains under debate (Carere et al., 2010; Mutzel,
Kempenaers, Laucht, Dingemanse, & Dale, 2011).

Several of the behaviours that typify personality variation (e.g.
shyness in nonhuman animals, neuroticism in humans; Gosling,
2001) are thought to be related, either directly or indirectly, to
differences in how animals cope hormonally with stress (Koolhaas
et al., 1999). Indeed, the proactiveereactive coping model
described in Koolhaas et al. (1999) suggests individual covariation
in boldness, environmental sensitivity and endocrine stress
responsiveness. Therefore, the hypothalamicepituitaryeadrenal
(HPA) axis, which produces glucocorticoids as its main end prod-
uct, is often studied in this context (Hau et al., 2016). The principal
glucocorticoid in birds is corticosterone (CORT), which serves
primarily metabolic functions at baseline levels but becomes
elevated shortly after the perception of a stressor, and continues to
increase until a process of negative feedback permits baseline
levels to be reachieved (i.e. the glucocorticoid stress response;
Romero, 2004). This endocrine stress response is conserved across
vertebrates (Ellis, Jackson, & Boyce, 2006; Wingfield, 2003) and
functions as a critical adaptation that enables organisms to regain
homeostasis following acute challenges. Given the speed with
which the stress response can be initiated (<3 min; Baugh, van
Oers, Naguib, & Hau, 2013; Baugh, Davidson, Hau, & van Oers,
2017; Heading, Nisbet, & Ketterson, 2006; Romero & Reed, 2005;
Small et al., 2017), it is also conceivable that the CORT response
plays a direct role (through activational effects) in modulating
behavioural responses to stressors in addition to the more rapid
response mediated by the sympathetic nervous system (reviewed
in Axelrod & Reisine, 1984).

Indeed, several lines of evidence suggest that shyer individuals
have, on average, a more potentiated HPA axis, typically including
one or more of the following characteristics: a faster onset of the
glucocorticoid response, higher peak levels and weaker negative
feedback (Baugh et al., 2012, 2013, 2017; Baugh, Davidson et al.,
2017; Carere & van Oers, 2004; Koolhaas et al., 1999; Korte,
Beuving, Ruesink, & Blokhuis, 1997; Martins, Roberts, Giblin,
Huxham, & Evans, 2007; Satterlee & Johnson, 1988; van Oers,
Buchanan, Thomas, & Drent, 2011), including in humans
(reviewed in Ellis et al., 2006). Such studies have also been carried
out using individuals derived from artificial selection experiments
in both mammals (Harri, Mononen, Ahola, Plyusnina, & Rekil€a,
2003) and birds (Cockrem, Candy, Castille, & Satterlee, 2010;
Jones, Satterlee, & Ryder, 1992), thus providing an opportunity to
identify genetically correlated traits.

Most of our understanding of interindividual variation in stress
physiology and its relationship to personality stems from studies

applying a standardized handling-restraint stressor (reviewed in
Cockrem, 2007). This method is easy to apply uniformly across
studies and species, universally induces a strong and rapid CORT
response, and likely reflects the HPA response to one type of potent
stressor: interaction with predators (Canoine, Hayden, Rowe, &
Goymann, 2002; Cockrem & Silverin, 2002a; Jones, Smith, Bebus,
& Schoech, 2016; Wingfield & Ramenofsky, 1999). However, re-
straint methods are probably not representative of other less potent
real-world stressors that often provide opportunities for behav-
ioural coping, thus potentially revealing ethologically relevant in-
dividual differences. Interestingly, conventional exploratory assays,
which often involve exposure to novel environments or novel ob-
jects, are typically assumed to induce a mild stress response, but
this is rarely tested in a rigorous manner (but see Cavigelli &
McClintock, 2003). These assays more closely resemble natural
scenarios in which individuals experience novel physical or social
environments, and therefore provide an opportunity to test this
broader hypothesis about the link between personality and gluco-
corticoid phenotypes.

Here we evaluate the assumption that behavioural responses
to novelty are directly related to stress physiology in a species
that has served as a model for personality studies, the great tit,
Parus major. In great tits, novel environment exploration and
boldness towards novel objects are phenotypically correlated and
individually consistent over time, and artificial selection experi-
ments have demonstrated a heritable component (Drent, van
Oers, & van Noordwijk, 2003). Furthermore, this heritable com-
bination of behaviours (‘fast-bold’/‘slow-shy’) correlates pheno-
typically and genetically with other behavioural tendencies, such
as risk taking (van Oers, Drent, de Goede, & van Noordwijk,
2004), aggression and dominance (Verbeek, Boon, & Drent,
1996). Earlier work has also demonstrated that great tits
selected for a combination of slow exploration and shyness (‘slow
explorers’) show elevated CORT concentrations compared to ‘fast
explorers’ in response to social challenges (faecal CORT: Carere,
Groothuis, M€ostl, Daan, & Koolhaas, 2003) and handling-
restraint stress (plasma CORT: Baugh et al., 2012). These results
imply a genetic correlation between behavioural and hormonal
traits.

We tested four specific predictions: (1) exposure to a novel
object should induce a mild CORT increase; (2) this novelty-
induced CORT response should be higher in slow explorers; (3)
the elevation in CORT should be further amplified following a
subsequent restraint stressor, again with slow explorers experi-
encing a higher secondary stress response due to a predicted pos-
itive correlation between initial and subsequent stress responses;
and (4) slow explorers should less frequently approach a novel
object and show a lower frequency of routine-forming (route-
tracing) behaviour.

METHODS

Subjects, Novel Object Exposure and Hormone Sampling

At the Netherlands Institute of Ecology (NIOO-KNAW, Wage-
ningen, NL), we tested birds from the fourth generation of lines
bidirectionally selected for fast exploration and boldness (fast ex-
plorers) and slow exploration and shyness (slow explorers). For
details on the parental population and the artificial selection pro-
cess, including the behavioural screening, see Drent et al. (2003),
van Oers, Drent et al. (2004), van Oers, de Jong, Drent, and van
Noordwijk (2004) and Verbeek et al. (1994).

Three weeks prior to the start of our experiments, adult birds
were transferred from a group-housed aviary to singly housed
cages in three rooms of an indooreoutdoor aviary facility, where
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they remained until and throughout data collection. Cages
(0.9 � 0.4 m and 0.5 m high) consisted of solid walls except for a
wire-mesh front, three perches, and food and water dishes. Rooms
were equipped with large open windows that allowed for natural
lighting and airflow, maintaining the natural lightedark cycle and
ambient temperatures. Birds were provided with ad libitum water,
seed mixture and calcium, supplemented daily with mealworms
and a mixture of sour milk, ground beef heart, commercial egg
product and multivitamins.

We conducted trials in November 2010 and limited our sam-
pling period to 0800e0900 hours in order to control for diel
rhythms in CORT secretion and to provide birds a 45 min period
for morning foraging (automated supplemental light period:
0715e1700 hours). All birds had completed their annual prebasic
moult. To minimize unintended stress, the tripod and digital
camcorder used to monitor behaviour during novel object expo-
sure were placed 1 m in front of the focal bird's cages at 1600
hours on the evening prior to testing so that the birds had an
opportunity to habituate to their presence, and the birds were
subsequently left undisturbed overnight prior to sampling. We
simultaneously sampled two birds per room per day and balanced
selection line and sex for each day. Each trial involved the
following steps: (1) two researchers simultaneously entered the
room; (2) filming was initiated on both camcorders; (3) the
rightmost perch was removed from each cage and replaced with
either an identical empty perch (control treatment; N ¼ 12 slow
explorers, 10 fast explorers), or an identical perch with a bendable
Pink Panther figurine (8 cm) attached to it (experimental treat-
ment; N ¼ 16 slow explorers, 22 fast explorers; see Fig. 1); (4)
researchers exited the room until 10 min had elapsed and then (5)
re-entered the room, captured each bird and collected approxi-
mately 30 ml of blood from the brachial vein (hereafter ‘CORT-10’);
hormone levels in this blood sample potentially reflect the cu-
mulative stress of exposure to humans (both treatment groups)
and the novel object (experimental treatment); (6) each bird was
then immediately restrained in a small cloth bag for 30 min; (7)
we then collected a second 30 ml of blood from the opposite
brachial vein (hereafter ‘CORT-30’); hormone levels in this blood
sample reflect the potentially cumulative effects of the novel ob-
ject stressor and the handling/restraint stressor at the CORT-10
time point. Finally (8) we confirmed the ring number and
completion of moult, measured body mass and subcutaneous fat
(Cherry, 1982), returned the birds to their home cages and

maintained as normal during a 2-day recovery period during
which no other birds from that room were tested. Exactly 48 h
after the start of each trial (i.e. day 2), we entered each room and
collected a blood sample from both birds to estimate baseline
CORT, hereafter ‘CORT-0’. This baseline CORT sample was collected
after and not before the novel object/stress trials to ensure that
the birds' behaviour was not affected by a previous noxious
experience with the experimenter and because we expected the
return to baseline CORT to occur within 48 h (Breuner, Greenberg,
& Wingfield, 1998). Birds were again measured for body mass and
subcutaneous fat (Cherry, 1982) before they were returned to their
home cages.

All blood samples were collected rapidly (<3 min from entry
into room or collection from restraint bag until the completion of
the bleed; hereafter ‘handling time’) because CORT becomes
significantly elevated at longer durations in this species and many
other taxa (Baugh et al., 2013; Baugh, Davidson et al., 2017; Romero
& Reed, 2005; Small et al., 2017). Whole-blood samples were
maintained on wet ice for <1.5 h before being centrifuged (5000
revolutions/m for 10 min; ca. 1400 g). The plasma fractionwas then
stored at -80 �C until transfer on dry ice to the Max Planck Institute
for Ornithology (Radolfzell, Germany) for hormone measurement.
Plasma volumes were too low to quantify for five fast explorers
from the experimental treatment (final N ¼ 16 slow explorers (11
females), 17 fast explorers (10 females)) and one slow explorer from
the control treatment was accidentally handled during perch
replacement and thus omitted (final N ¼ 11 slow explorers (8 fe-
males), 10 fast explorers (6 females)).

Enzyme Immunoassay for Corticosterone

To estimate plasma CORT concentrations, we used a commercial
enzyme immunoassay (EIA) kit (Enzo Life Sciences, Cat. No. ADI
900-097; Donkey anti-Sheep IgG). The details of our EIA procedure,
including its validation and preparation of standards are reported
in Ouyang, Hau, and Bonier (2011) and Baugh, van Oers,
Dingemanse, and Hau (2014). Briefly, concentrations were deter-
mined following a double diethyl-ether extraction of a 10 ml plasma
volume. After drying extracts under a stream of N2 gas, samples
were diluted at a 1:30 dilution using Tris-buffered saline (provided
by kit) and samples were allowed to equilibrate overnight at 4 �C.
Samples were then randomly assigned to wells along with blanks
and five standards (0.032e20 ng/ml CORT). Plates were read on a
VERSAmax microplate reader (Molecular Devices, Sunnyvale, CA,
U.S.A.) at 405 nm. All samples, standards and controls were assayed
in duplicate and any sample that exceeded a coefficient of variation
between duplicates of 15% was reassayed until meeting that crite-
rion. Average recovery, which we determined previously using in-
dividual samples spiked with radioactively labelled CORT, was
uniformly high (mean ± SD ¼ 85 ± 2.7%; N ¼ 9) and therefore we
did not correct for it. The intra- and interassay coefficients of
variation (CV), 7.7% and 7.9%, respectively, were determined by
distributing a minimum of three duplicate samples of stripped
chicken plasma (using activated charcoal and dextran) that were
spiked with commercial CORT (supplied by kit) to a concentration
of 20 ng/ml across each of the seven plates. We previously reported
a high degree of ‘technical repeatability’ (r) for this assay, which
provides a cumulative estimate of measurement error for nonassay
sources of variation, including extraction, pipetting, and freeze-
thaw (r ± SEM ¼ 0.962 ± 0.015, N ¼ 23 birds sampled twice each,
P ¼ 0.0001; see Baugh et al., 2014). The assay has a lower detection
limit of 27 pg/ml. The cross-reactivity of the antiserum is 100% for
corticosterone, 28.6% for deoxycorticosterone and 1.7% for
progesterone.

1 2 3

4 5 6

7 8 9

N.O.

Figure 1. Diagram of individual cage and example flight path. To sequence flight paths,
we assigned nine invisible and equally spaced zones. Each home cage was identical
and contained three perches (zones 4e6). The novel object (N.O.) was always located at
the near end of perch 6 (‘novel object perch’). The ‘novel object zone’ comprised the
rightmost one-third of the cage (right of the dotted line), including zones 3, 6 and 9.
The arrows drawn on this diagram represent an example of a flight path involving two
transitions (triad 5-4-1) that did not involve entry into the novel object zone.

A. T. Baugh et al. / Animal Behaviour 130 (2017) 221e231 223



Behaviour

We manually scored behaviour from the 10 min video files to
estimate total locomotor activity and route tracing, a form of
abnormal repetitive behaviour often observed in caged birds
(Garner et al., 2003; Keiper, 1969). We limited this analysis to the
experimental condition for three reasons: (1) we were principally
interested in estimating individual variation and comparing the
behaviour of the two selection lines in the presence of a novel
object; (2) previous studies in these selection line birds indicated
that the control manipulation (perch replacement alone) does not
influence behaviour (van Oers, n.d.); and (3) estimating route
tracing is extremely labour intensive. We analysed movement from
a total of 38 birds (N ¼ 16 slow explorers (12 females), 22 fast ex-
plorers (13 females)).

Start times began when the replacement perch was installed.
We subsampled each continuous 10 min video file by sampling
behaviour during five evenly spaced minutes (0e1, 2.25e3.25,
4.5e5.5, 6.75e7.75 and 9e10 min; hereafter referred to as Min1,
Min3, Min5, Min7 and Min9, respectively). This sampling scheme
sought to reduce the time-consuming nature of our continuous
scoring of every movement and position for each bird (ca. 400 h).
We verified that this sampling method resulted in representative
estimates for individuals through a sensitivity analysis that
involved scoring five randomly selected trials for the full 10 min
and for this sample of 5 min (slope ¼ 1.74, r ¼ 0.97).

Lastly, two judges that were blind to the study observed the
video trials for a subset of eight randomly selected subjects and
scored them for each of the behavioural measurements included in
this study (e.g. number of transitions, number of triads, sequential
dependency scores, etc.). Interjudge agreement was estimated us-
ing linear regressions and was high for all behaviours scored in this
study (R2 ¼ 0.82e0.97, F1,6 ¼ 27.6e206.8, all P < 0.002).

Behaviour toward the novel object
Each trial video was observed at 0.5� speed and a template of

the cagewas divided vertically into equal thirds (a perchwas placed
in the middle of each one-third). The rightmost one-third con-
tained the ‘novel object perch’ and thus constituted the ‘novel
object zone’ (Fig. 1). We quantified the frequency with which each
bird transitioned onto the novel object perch and into the other
areas of the novel object zone (e.g. floor, cage walls and ceiling but
not the novel object perch), while controlling for the total number
of transitions.

Total locomotor activity
We began by describing each bird's movement pattern. We

hand-traced the bird's movement path on printed templates, using
arrows to denote direction among nine major, evenly spaced
stopping zones. Based on these locations, movement paths were
transcribed into numerical sequences for each sampled minute
(Fig. 1). One coder drew these flight patterns, and another coder
transcribed these drawings into sequences. All coders were blind to
each bird's selection line status, hormone results and sex.

We counted the number of flight transitions for each minute of
observation. A transition was defined as any abrupt stop in move-
ment, including two sequential stops made in the same location
(e.g. hopping and landing on a single perch). These sequences
allowed us (1) to compare the two selection lines for the total
number of transitions and the change in the number of transitions
from the first to the last sampled minute (Min1 �Min9) and (2) to
control for the total number of transitions in our analysis of
abnormal repetitive behaviour, because a bird with a greater
number of transitions might otherwise appear to have more route
tracing and more often approach the novel object.

Abnormal repetitive behaviour: triad analysis
To obtain a basic understanding of repetitive movement pat-

terns, we counted the number of times a sequence of three
numbers (triads; e.g. 3-5-6; 1-1-7) was repeated using a custom
Python script (version 2.7.10, www.python.org). We examined tri-
ads because repetitive three-step sequences capture both longer
and shorter repetitive sequences and have been validated previ-
ously as measures of repetitive behaviour (Asher, Davies,
Bertenshaw, Cox, & Bateson, 2009), and because it allowed us to
look at changes in route-tracing behaviours over time.

To establish operational thresholds for repetitive sequences, we
did the following: in a given sampling minute, a particular
sequence of three positions had to occur at least two times in order
to be considered a ‘repetitive triad’. We then summed the number
of times each ‘repetitive triad’ occurred in each sampling minute
and divided by the total number of transitions made during that
minute. This standardization is needed to examine repetitive se-
quences per se, unconfounded by the fact that an individual who
moves more will, by chance alone, tend to accumulate more
repeated sequences of movement. To optimize our estimates of
repetition, we repeated this process for thresholds of at least four
repetitions and at least eight repetitions of single triads. This triad
analysis permitted us to estimate changes in repetitive behaviour
during the course of the 10 min period.

Abnormal repetitive behaviour: sequential dependencies
The triad analysis is constrained by the length of sequences in a

repeated route. Therefore, we also conducted a Markov chain
analysis of sequential dependency, a sequence length-independent
(i.e. generalizable) measure previously validated for quantifying
route-tracing behaviour, following Asher et al. (2009) and Brilot,
Asher, Feenders, and Bateson (2009). We used a modified chi-
square test statistic for first- versus second-order dependency to
find all transitional probabilities, or the probability that a bird
transitioned from state i to state j, for each of nine states (zones).
This analysis results in a sequential dependency score (SDS) that
can be interpreted as the degree of repetitive route-tracing
behaviour, with a higher score indicating a more repetitive bird.

We calculated a modified chi-square test statistic (Cy; an un-
standardized SDS) for each bird (y) for every possible triad (XYZ)
using following equation:

Cy ¼
X

X

X

Z

ðNXYZ � NXYPYZÞ2
NXYPYZ

(1)

NXYZ is the number of times that a given triad (XYZ) is repeated.
NXY is the number of times the birdwent from location X to location
Y. PYZ is the transitional probability that a bird moves from location
Y to location Z (PYZ ¼ NYZjNY). Equation (1) follows the standard
formula for the chi-square test statistic. Here our observed value is
NXYZ and the expected value isNXYPYZ. CY is the summation of chi-
square test statistics for all 729 possible triads (permutations
with replacement: 93) for bird y. We wrote a Python script (version
2.7.10) to generate these counts and then we calculated a test sta-
tistic for every possible triad and summed these together to
calculate Cy for each bird. To calculate degrees of freedom (df) we
used the following equation:

df ¼ ðA� Nv � 1Þ ðA� 1Þ (2)

In equation (1), we sum over X and Z, not Y, which is why we
have two terms in our df calculation. Here A equals all possible
locations and Nv is all starting locations in the cage that the bird
never visited. The first term (A � Nv � 1) differed for each bird. If a
given bird never occupied a particular zone, then all transitions
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from that zone were impossible. For this study, the second term
(A � 1) was always equal to (9 � 1), because it was technically
possible for a bird to go to any location from all starting locations.
After calculating df we standardized our c2 test statistic using the
following equation:

Z ¼ Cy � dfffiffiffiffiffiffiffiffi
2df

p (3)

Z represents our standardized SDS, which now exhibits an
approximately normal distributionwith a mean of 0 and a standard
deviation of 1 (Canal, 2005). A higher Z corresponds to a more
predictable (repetitive) locomotor sequence. We calculated a P
value for each bird's Z score by comparing the observed Z score to
the normal distribution (one-tailed area � Z). This P value provides
a significance test of whether each bird's sequence of contiguous
events are more repetitive than expected chance. Additionally, to
account for potential differences over time, we binned the first two
and last two sampled minutes, omitting the middle sampled min-
ute, and calculated Z for each of those two collapsed timewindows.

Ethical Note

This study was carried out in accordance with the animal ethical
committee of the Royal Dutch Academy of Sciences (DEC-KNAW)
under protocol NIOO 10.06 (K.V.O.). The great tit is not an endan-
gered or threatened species. The cumulative time spent in trials and
under handling-restraint was kept to the minimum necessary for
blood sampling and assessments of behaviour and stress reactivity.
Components of these protocols have been employed previously in
this species (Baugh et al., 2012, 2013, 2014; Baugh, Davidson et al.,
2017; van Oers de Jong et al., 2004) and ourmethods adhered to the
ASAB/ABS Guidelines for the treatment of animals in research
(2016). We did not detect any adverse health effects in the sampled
birds (see Results), and all birds remained in captivity for the
duration of their natural lives.

Statistical Analyses

To test the first prediction that exposure to a novel object in-
duces a mild CORT increase, we used a repeated measures ANOVA
with treatment group as a between-subjects factor and the three
CORT time points as the within-subjects response variables fol-
lowed by post hoc comparisons. To evaluate the second and third
predictions, that slow explorers would exhibit a stronger CORT
response to novelty and experience a higher secondary stress
response to restraint, we used separate repeatedmeasures ANOVAs
and post hoc comparisons for the experimental and control groups
with selection line as a between-subjects factor. In addition, we
used ANCOVAs to evaluate whether accounting for a bird's state
following novelty (CORT-10) aided in explaining variation in the
subsequent CORT-30 measurement between selection lines.
Moreover, we used comparison of slopes tests to determine
whether the selection lines differed in the relationship between
CORT-10 and CORT-30, which might indicate differential HPA
constraints for the two selection lines. We used Pearson's correla-
tions and t tests to evaluate whether handling times correlated
positively with CORT concentrations and whether selection lines
differed in average handling times for the three bleeds, respec-
tively. Lastly, we calculated the area under the CORT curve for each
bird in two ways: (1) total CORT (area under the three time-point
curve) and (2) response CORT (CORT-30 minus CORT-10).

To test the fourth prediction that slow explorers would
approach the novel object less, we used t tests. To evaluate selection
line differences for general locomotor behaviour (total transitions)

across sampling time points as well as differences in the frequency
of repetitive sequences (triads) corrected for total transitions, we
used repeated measures ANOVAs. Lastly, we used a Markov chain
analysis to estimate each individual bird's route-tracing repeti-
tiveness followed by t tests and Fisher's exact tests to assess se-
lection line differences.

We used SPSS (version 21, IBM, Armonk, NY, U.S.A.) for all sta-
tistical analysis. We included handling time at each time point,
body condition index (residuals from length versus mass) on the
novel object day and on the baseline day and sex as between-
subjects factors in the initial hormone analyses but dropped them
from the final models due to lack of explanatory value (see
Supplementary Tables S1 and S2). We have shown previously in
this species that sex does not explain variance in the behavioural or
CORT traits that we report on here (Baugh et al., 2013, 2014; Baugh,
Davidson et al., 2017; Carere et al., 2005; St€owe, Rosivall, Drent, &
M€ostl, 2010). Hormone data were square-root transformed and
tests were two tailed where relevant. We checked graphically
whether error variances met assumptions for normality, homoge-
neity and sphericity. We used Welch's t test corrections when
variances between the two lines were unequal. Bonferroni correc-
tions were applied to P value calculations for post hoc multiple
comparisons.

RESULTS

Corticosterone

A repeated measures ANOVA demonstrated a significant inter-
action between time point and treatment (F2,51 ¼ 3.0, P ¼ 0.05,
partial h2 ¼ 0.11). Post hoc tests revealed that CORT-10 was higher
in the experimental treatment than in the control treatment
(P ¼ 0.02) while the treatment groups did not differ in CORT-
0 (P ¼ 0.71) or CORT-30 (P ¼ 0.12; Fig. 2). There were no signifi-
cant correlations between any of the behaviours measured during
novel object exposure and any of the CORT measures (see
Supplementary Tables S1 and S2). Below we report the separate
hormone analyses within each treatment group.

Experimental treatment
A repeated measures ANOVA demonstrated a significant main

effect of time point (F2,62 ¼ 186.2, P < 1 � 10-7, partial h2 ¼ 0.92)
driven by increases in CORT in both selection lines among all three
time points (Fig. 2). There was no main effect of selection line
(F1,31 ¼ 0.734, P ¼ 0.398), but there was an interaction between
time point and selection line (F2,31 ¼ 9.775, P ¼ 0.004, partial
h2 ¼ 0.28), with fast explorers having higher CORT-30 concentra-
tions (P ¼ 0.014). Pairwise comparisons showed that all three time
points differed from each other within each selection line (slow
explorers: CORT-0 versus CORT-10: P ¼ 0.044; CORT-10 versus
CORT-30: P < 1 � 10-7; fast explorers: CORT-0 versus CORT-10:
P ¼ 0.005; CORT-10 versus CORT-30: P < 1 � 10-7). Selection lines
did not differ in CORT-0 (P ¼ 0.283), and in opposition to our pre-
diction, slow explorers did not exhibit higher CORT-10 (P ¼ 0.655).
Similarly, an omnibus ANCOVAmodel (response variable: CORT-30;
covariate: CORT-10; between-subjects factor: selection line;
F3,29 ¼ 5.93, P ¼ 0.003, model fit R2 ¼ 0.38) showed a main effect of
selection line (F1,29 ¼ 7.84, P ¼ 0.009), significant covariation be-
tween CORT-10 and CORT-30 (F1,29 ¼ 4.30, P ¼ 0.047) and a signif-
icant interaction between selection line and CORT-10 (F1,29 ¼ 4.80,
P ¼ 0.037). This result reflects the fact that there was a strong
positive phenotypic correlation between CORT-10 and CORT-30 in
the experimental treatment, but only in slow explorers (slow ex-
plorers: r ¼ 0.74, R2 ¼ 0.54, F1,14 ¼ 16.42, P ¼ 0.001; fast explorers:
r ¼ 0.02, R2 ¼ 0.0003, F1,15 ¼ 0.005, P ¼ 0.947). A comparison of
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slopes test showed that the regression coefficient (B) for the cor-
relation between CORT-10 and CORT-30 differed between the se-
lection lines (Bslow explorers � Bfast explorers ¼ -1.162; F1,29 ¼ 4.797,
P ¼ 0.037; Supplementary Fig. S1). This result was unaffected by
inclusion/exclusion of an outlier (a fast explorer with low CORT-10
(DR2exclusion-inclusion ¼ 0.05; Supplementary Fig. S1)).

We then compared the selection lines for the two measures of
area under the curve using an ANOVA. The selection lines did not
differ in total CORT (F1,31 ¼ 2.675, P ¼ 0.112) but did differ in
response CORT (mean ± SD (ng/ml): slow explorers: 231.3 ± 155.6;
fast explorers: 340.1 ± 116.8; F1,31 ¼ 9.80, P ¼ 0.004), again driven
by the higher CORT-30 values in fast explorers.

All blood samples were collected in within 3 min from the
moment of stressor onset (mean ± SD handling time ¼
108.4 ± 51.1 s, range 37e179 s). Handling time did not correlate
with CORT concentrations at any time point (all P >0.24) or differ
between selection lines for CORT-10 or CORT-30 (all P >0.62);
however, handling times were higher at the CORT-0 time point in
slow explorers (mean ± SD: slow explorers: 118.3 ± 39.9 s; fast
explorers: 82.7 ± 34.4 s; t19 ¼ 2.7, P ¼ 0.01). Selection lines did not
differ in tarsus length, subcutaneous fat, body mass or body con-
dition index on either the novel object test day (day 0) or baseline
bleed day (day 2) (all P >0.05) and there was no change in body
condition index from day 0 to day 2 (repeated measures ANOVA:
F1,30 ¼ 1.05, P ¼ 0.315) or interaction with selection line
(F1,30 ¼ 3.18, P ¼ 0.084).

Control treatment
A repeatedmeasures ANOVA demonstrated amain effect of time

point (F2,38 ¼ 84.9, P < 1 � 10-7, partial h2 ¼ 0.86). This was driven

by the increase in CORT in both selection lines between CORT-10
and CORT-30 (Fig. 2). There was no main effect of selection line
(F1,19 ¼ 0.114, P ¼ 0.739) or interaction between time point and
selection line (F2,19 ¼ 1.02, P ¼ 0.325). Pairwise comparisons
showed that CORT-30 differed from CORT-0 and CORT-10
(P < 1 � 10-7, pooled selection lines) and that CORT-0 did not
differ from CORT-10 when selection lines were pooled (P ¼ 0.249).
Similarly, an omnibus ANCOVA (response variable: CORT-30; co-
variate: CORT-10; between-subjects factor: selection line) model
was not significant (F3,17 ¼ 2.07, P ¼ 0.14). This result reflects the
fact that therewas no phenotypic correlation between CORT-10 and
CORT-30 in the control treatment (pooled selection lines: r ¼ 0.28,
R2 ¼ 0.08, F1,31 ¼ 2.64, P ¼ 0.114; slow explorers: r ¼ 0.16, R2 ¼ 0.03,
F1,9 ¼ 0.234, P ¼ 0.64; fast explorers: r ¼ 0.60, R2 ¼ 0.36, F1,8 ¼ 4.52,
P ¼ 0.07). A comparison of slopes test showed that the regression
coefficients (B) for CORT-10 versus CORT-30 between the two se-
lection lines did not differ (Bslow explorers � Bfast explorers ¼ -1.316;
F1,17 ¼ 2.751, P ¼ 0.116). Lastly, the two selection lines did not differ
in total CORT (F1,19 ¼ 0.318, P ¼ 0.580) or response CORT
(F1,19 ¼ 0.856, P ¼ 0.367; GreenhouseeGeisser correction for
violation of sphericity).

All blood samples were collected within 3 min of handling time
(mean ± SD ¼ 90.5 ± 28.1 s, range 40e165 s). Handling times did
not correlate with CORT concentrations at any time point (all
P>0.11) or differ between selection lines for CORT-0 or CORT-30 (all
P >0.05). However, handling times at the CORT-10 time point were
longer for slow explorers than for fast explorers (mean ± SD: slow
explorers: 107.6 ± 18.04 s; fast explorers: 82.9 ± 20.5 s; t19 ¼ 2.9,
P ¼ 0.009). Selection lines did not differ in tarsus length, subcu-
taneous fat, body mass or body condition index on either day 0 or
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Figure 2. Mean corticosterone concentrations in control (N ¼ 11 slow explorers, 10 fast explorers) and experimental (N ¼ 16 slow explorers, 17 fast explorers) treatments. CORT-
0 (i.e. ‘baseline’) samples were collected on day 2 and CORT-10 (novel object stress) and CORT-30 samples (novel object þ restraint stress) were collected on day 0. Control and
experimental treatments differed in one respect: the replacement perch in the experimental treatment had a flexible plastic Pink Panther figurine attached to it. Statistical sig-
nificance was estimated from a repeated measures ANOVA (*P < 0.05; **P < 0.01).
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day 2 (all P >0.07) and there was no change in body condition index
from day 0 to day 2 (repeated measures ANOVA: F1,19 ¼ 0.01,
P ¼ 0.923) or interactionwith selection line (F1,19 ¼ 4.215, P ¼ 0.06).

Behaviour

Behaviour toward the novel object
The selection lines differed in the number of transitions into the

novel object zone (mean ± SEM: slow explorers: 20.4 ± 4.0; fast
explorers: 48.8 ± 6.7; t33.08 ¼ 3.62, P ¼ 0.001, corrected for unequal
variances). This effect was still present after accounting for differ-
ences in total locomotor activity (mean ± SEM: slow explorers:
0.127 ± 0.029; fast explorers: 0.210 ± 0.023; t36 ¼ 2.18, P ¼ 0.036;
Fig. 3, Supplementary Table S3). Slow and fast explorers did not
differ in the number of transitions to the novel object perch
(mean ± SEM: slow explorers: 7.75 ± 2.05; fast explorers:
14.72 ± 4.46; t36 ¼ 1.26, P ¼ 0.21), which was confirmed after
standardization of the number of transitions to the novel object

perch for total activity (mean ± SEM: slow explorers: 0.05 ± 0.015;
fast explorers: 0.06 ± 0.013; t36 ¼ 0.47, P ¼ 0.64; Fig. 3,
Supplementary Table S3). Three birds (two fast explorers) made
occasional physical contact with the novel object by pecking at it.
Although this might suggest that the novel object was perceived as
an intruder, previous validation studies in this population have
shown similar responses (including occasional directed pecking)
towards other novel objects that are more neutral and do not have
eyespots (e.g. penlight battery; see Verbeek, 1998; Verbeek et al.,
1994), which is in stark contrast to their aggressive behaviour to-
wards conspecific intruders (Verbeek et al., 1996).

Locomotor analysis
The repeatedmeasures ANOVA on the number of transitions (i.e.

general locomotor activity) across the five sampled minutes
demonstrated a main effect of time (F4,144 ¼ 7.7, P < 0.0001), no
main effect of selection line (F1,36 ¼ 0.74, P ¼ 0.40) and an interac-
tion between time and selection line (F4,144 ¼ 2.4, P ¼ 0.05). This
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Figure 3. Comparison between slow (N ¼ 16) and fast (N ¼ 22) explorer selection lines (mean ± SEM) in (a) number of movements (‘transitions’) in the final minute compared to
the initial minute of the novel object trial, (b) number of movements into the novel object (N.O.) zone, (c) number of movements into the novel object zone after correcting for
(dividing by) the number of total movements for each bird, (d, e) number of movements onto the novel object perch before and after standardizing by total movements, respectively,
and (f) change in sequential dependency scores (SDS; Z) during the final 2 min compared to the initial 2 min. *P < 0.05; ***P < 0.001.
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interaction was driven by a 50% decrease in movement by slow
explorers in Min9 compared to the other four time bins, whereas
fast explorers exhibited only an 8% decrease (Supplementary
Table S3), which represented a significant change for slow ex-
plorers (pairwise comparisons: all P < 0.05) but not for fast ex-
plorers (all P >0.1). Likewise, fast explorers and slow explorers
differed in the change in the number of transitions between the
first and last minute (Dmean ± SEM: slow explorers: -29.31 ± 6.12;
fast explorers: -6.09 ± 6.06; t36 ¼ 2.63, P ¼ 0.012; Fig. 3,
Supplementary Table S3).

Abnormal repetitive behaviour: triad analysis
The repeated measures ANOVA for the threshold criterion of

two or more repeats demonstrated a main effect of time
(F4,144 ¼ 4.43, P ¼ 0.002) but no main effect of selection line
(F1,36 ¼ 1.32, P ¼ 0.26) and a trend for an interaction between time
and selection line (F4,144 ¼ 2.11, P ¼ 0.08). The main effect of time
was driven by a decrease in repeated triads towards the end of the
trial: Min9 differed from the other four time bins (all P < 0.05);
when we parsed this by selection line, the effect was present for
slow explorers (all P < 0.05) but not for fast explorers (all P >0.1).
Using a threshold of at least four repeats to define a repetitive
sequence, the pattern of results was qualitatively repeated, and
with a threshold criterion of at least eight repeats, the results were
similar with the exception that the decrement in triads in the final
bin was no longer significant (all P >0.05; sphericity assumption
was violated for �8 repeats).

Abnormal repetitive behaviour: sequential dependency
The Markov chain analysis of sequential dependencies showed

that 92.1% of birds had sequences that were significantly repetitive
when all five time bins were included (SDS mean: 7.73; range
0.28e18.44). The selection lines neither differed in their average
SDS (mean ± SD: slow explorers: 7.8 ± 4.4; fast explorers: 7.7 ± 4.8;
t36 ¼ 0.11, P ¼ 0.91) nor in whether they were significantly repeti-
tive (binary: Fisher's exact test: P ¼ 0.999). In the initial time
window (Min1 and Min3), there were 13 birds (35.1%; selection
lines pooled) with significantly repetitive sequences, and in the
final time window (Min7 and Min9), there were five birds (14.7%;
selection lines pooled). Both selection lines experienced a signifi-
cant decrease in SDS from the initial to the final time window
(paired t test: t32 ¼ 3.6, P ¼ 0.001), with slow explorers exhibiting a
larger decrement than fast explorers (t31 ¼ 2.36, P ¼ 0.03; Fig. 3,
Supplementary Table S3).

Summary

We found the following five main results. (1) Birds from both
selection lines exhibited a mild CORT elevation in response to the
novel object. This effect was seen within individuals (i.e. from
CORT-0 to CORT-10) and among individuals in comparison with
control birds that had not been tested with a novel object (at CORT-
10) (Fig. 2). (2) This elevation (at CORT-30) was not higher in slow
explorers, as predicted. (3) Fast explorers showed a stronger
response to a subsequent restraint stressor (CORT-30) following
novel object exposure (Fig. 2). (4) Responses to novelty (CORT-10 in
the experimental treatment) were correlated with CORT responses
to restraint (CORT-30) exclusively in the slow explorers
(Supplementary Fig. S1). (5) As predicted, fast explorers
approached the novel objects more frequently. The selection lines
did not differ in general locomotor activity or abnormal repetitive
behaviours, but slow explorers showed a decrease in movement
during novel object exposure (Fig. 3, Supplementary Table S3).

DISCUSSION

We demonstrated that exposure to a novel object induces a
moderate elevation in plasma CORT concentrations. Although this
hypothesis has been tested previously (Apfelbeck & Raess, 2008;
Galhardo, Vitorino, & Oliveira, 2012; Lendvai, B�okony, & Chastel,
2011; Mettke-Hofmann, Rowe, Hayden, & Canoine, 2006;
Nephew, Kahn, & Romero, 2003; Richard et al., 2008), the mixed
findings to date likely reflect important differences in study design.
Critically, in the present study we measured both baseline CORT
and CORT levels in response to a control manipulation, one or both
of which are often missing in earlier studies (but see: Cavigelli &
McClintock, 2003). In doing so, we found support for a key aspect
of the hypothesis that emotional-behavioural reactivity to novelty
has an underlying HPA axis component. Although this does not
necessarily indicate that novel objects are experienced as noxious,
it suggests that they are appraised as unpredictable as the HPA axis
enters a preparative stage (Faustino, Oliveira, & Oliveira, 2015;
Koolhaas et al., 2011; Sapolsky, Romero, & Munck, 2000). Consis-
tent with this idea, the increases in CORT in response to the novel
object found in this study were much lower than the elevations
observed in P. major after 10 min of a potent stressor such
as handling-restraint found in a previous study (D
mean ± SD ¼ þ1.8 ± 4.02 ng/ml; ca. 36% increase above baseline,
handling stress: ca. þ15 ng/ml, ca. 200% increase above baseline;
Cockrem& Silverin, 2002b). This moderate CORT increase, which is
within the baseline range, was similar between the selection lines,
indicating that these divergent personalities do not differ in their
immediate HPA reactivity to novelty. It is unknown what, if any,
behavioural effects might arise from such a moderate increase
because few studies have experimentally and acutely elevated
circulating CORT using noninvasive methods, thus permitting the
simultaneous measurement of behavioural changes. An experi-
mental study by Breuner et al. (1998), however, in which the au-
thors elevated circulating CORT in adult white crowned sparrows,
Zonotrichia leucophrys gambelii, using spiked mealworms, demon-
strated that an approximately 100% increase in circulating CORT
(ca. 15 ng/ml) resulted in significant increases in locomotor activity
(perch hopping). We also know that small but chronic elevations in
baseline CORT can influence avian behaviour in ways that impact
fitness (Ouyang, Muturi, Quetting, & Hau, 2013). Future studies
should employ noninvasive glucocorticoid manipulations to test
the dynamic range of CORT changes relevant for behaviour,
including experimental tests of personalityeCORT relationships.

Furthermore, the selection lines did not differ in their baseline
CORT concentrations; this is important because baseline CORT is
often positively correlated with stress-induced CORT (Baugh et al.,
2014), and therefore baseline differences could otherwise have
complicated the interpretation of differences in stress-induced
concentrations. We did find, however, that fast explorers experi-
enced a stronger CORT elevation in response to a restraint stressor
compared to slow explorers when the restraint stressor followed
exposure to the novel object (i.e. not in the control condition). This
finding appears to be in contrast with an earlier study that
demonstrated that slow explorers exhibit a stronger stress
response to 30 min of restraint (Baugh et al., 2012). However, these
two studies, besides being conducted in different years and on
different individuals, also differ in a fewmethodological ways. First,
in the earlier study, restraint was not preceded by exposure to an
experimental stimulus (perch change at 0 min). Moreover, the
timeline and number of bleeds differ between the two studies.
Namely, in the present study the CORT-30 time point was preceded
by only one handling/restraint bleed (the CORT-10 time point),
whereas birds in the Baugh et al. (2012) study were bled at two
time points prior to the CORT-30 bleed (CORT-0 and CORT-15).
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Comparing the stress-induced CORT concentrations while con-
trolling for the number of preceding acute stressors (i.e. comparing
CORT-30 in the present study to CORT-15 in the 2012 study), yields
a similar pattern both in absolute concentrations (ca. 25 ng/ml at
both the CORT-30 and the CORT-15 time points) and in the lack of a
difference between the selection lines.

The relevant question to ask here is: why do fast explorers
exhibit a stronger CORT response to a restraint stressor following
exposure to a novel object compared to slow explorers? It is
possible that fast explorers, which approached the novel object
zone more frequently and exhibited higher locomotor activity at
the end of the 10 min novel object trial, were more stimulated than
slow explorers and this heightened arousal translated into
increased HPA activity at the end of this cumulative 40 min period.
However, we did not uncover any correlation between CORT levels
and our locomotor measures, despite the fact that experimental
elevations of CORT are known to increase general locomotor ac-
tivity in songbirds (Breuner et al., 1998), and natural CORT variation
correlates with risk-taking behaviour in fish (Martins et al., 2011).
Moreover, there was no difference in CORT-30 concentrations be-
tween the control and experimental treatments. This suggests that
other mechanisms (e.g. sympathetic responses) underlie the
behaviour observed between selection lines in the present study
(but see Fischer, Franco, & Romero, 2016; Nephew et al., 2003).
Lastly, we observed that in both treatments, collecting blood from
the slow explorers occasionally required more time (ca. 30 s; see
Results). This is potentially relevant because slow explorers are
known to initiate a stress response faster than fast explorers (Baugh
et al., 2013; Baugh, Davidson et al., 2017) and longer handling times
might result in artificially elevated baseline estimates. In the pre-
sent study, we did not find differences between selection lines or
treatments in baseline CORT concentrations or any correlation with
handling time, but handling time remains an important consider-
ation in studies of HPA reactivity (Small et al., 2017).

Our basic prediction that fast explorers would exhibit less
neophobia, as measured by more frequent transitions towards the
novel object, were supported and are consistent with other
methods of estimating neophobia in this species (Verbeek et al.,
1994). Likewise, the finding that the selection lines did not differ
in general locomotor activity (total transitions) is not surprising
given that previous studies with hand-reared great tits have shown
that locomotor activity in the absence of a novel object does not
differ between selection lines (Verbeek, 1998; Verbeek et al., 1994).
In contrast, our prediction that fast explorers would exhibit more
repetitive behaviour was not supported. This might suggest that
these divergent personalities express similar sensitivities to
captivity stress given that abnormal repetitive behaviours are
commonly linked with captive living (Mason, 1991; Schumann,
Günther, Jewgenow, & Trillmich, 2014). Selection lines did differ,
however, in the timeline of activity, with slow explorers exhibiting
a decrease in the frequency of transitions and repetitive sequences
during the final sampling time point during the novel object trial,
perhaps indicating differential habituation between the selection
lines (Martin-Iverson, Pisa, Chan, & Fibiger, 1982). One possible
explanation might be that slow explorers more quickly assess the
novel object as nonthreatening. Hence, in both the hormone and
behaviour data sets, we observed that the selection lines diverged
from each other over time. This finding provides some support for
the hypothesis, tested across several taxa, that personality types
often differ in their flexibility (Dingemanse, Kazem, R�eale, &
Wright, 2010; Faustino et al., 2015). Slow personalities have been
shown to be more responsive to changes in the environment and
adjust their behaviour to a greater extent (Dingemanse et al., 2004;
Exnerova, Svadova, Fucikova, Drent, & Stys, 2009; Guillette,
Reddon, Hoeschele, & Sturdy, 2010). This difference in flexibility

is often interpreted as evidence of adaptive strategies in response to
environmental heterogeneity (Mathot, Wright, Kempenaers, &
Dingemanse, 2012). And recent work suggests that the timeline
of habituation to novelty, termed the ‘temporal activity pattern’
(Montiglio, Garant, Thomas, & R�eale, 2010), might be an important
personality component linked with stress coping styles (Carere
et al., 2005; Koolhaas et al., 1999). Here we show that flexibility
may not be restricted to behavioural traits, and that plasticity in
endocrine systems might be relevant to personality variation
(Baugh et al., 2013; Baugh, Davidson et al., 2017). Although selec-
tion lines did not differ in CORT reactivity to novelty, the CORT-30
levels were tightly linked with CORT-10 in slow explorers but not
in fast explorers. This coupling suggests that slow explorers exhibit
greater state dependence in their HPA reactivity; i.e. slow explorers
with low initial CORT concentrations exhibited low subsequent
CORT concentrations and vice versa, whereas fast explorers show
no such temporal coupling. Interestingly, it is also the slower ex-
plorers in this species that exhibit a more rapid and enduring HPA
response to restraint stress (Baugh et al., 2013; Baugh, Davidson
et al., 2017). Together, these observations suggest that an initial
stressor has both greater immediate valence (resulting in a more
rapid CORT onset) and synergizes to a greater extent with the an-
imal's current state (resulting in correlations across time points) in
slow-exploring personalities. Alternatively, because this correlation
was present only in the experimental condition, it is possible that a
psychological stressor induces a tighter coupling in the stress
response. We think personality-dependent constraints on endo-
crine flexibility and their underlying mechanisms should be tested
in future studies.

Avian studies of endocrine stress responses typically use a
standardized restraint stressor (but see Canoine et al., 2002;
Cockrem & Silverin, 2002a; Jones et al., 2016). In addition to
physical restraint stress, in the present study we aimed to measure
behavioural and endocrine responses to a psychological stimulus
that the animals had an opportunity to cope with behaviourally.
This is important because typical restraint protocols depart from
naturalistic stressors: they are physical and highly potent stressors
that do not permit animals to employ the behavioural coping
mechanisms that likely represent the initial response to many
challenges. A notable exception is a recent study by Jones et al.
(2016) in which the authors demonstrated that starlings (Sturnus
vulgaris) that witness a very brief live raptor attack experience a
CORT response equivalent in magnitude to the conventional
capture-handling-restraint stressor; interestingly, although the
mean CORT responses were equal for these two stressors, there was
considerably greater variance in the raptor witness treatment,
suggesting perhaps that naturalistic stressors better reveal the
scope of individual differences in HPA reactivity.

We occasionally get a glimpse of how animals respond to
repeated stressors (Cyr & Romero, 2009; Dickens & Romero, 2013;
Hau et al., 2015; Lynn, Prince,& Phillips, 2009; Nephew et al., 2003;
Taff & Vitousek, 2016), and examining that question at the level of
the individual has demonstrated that sequential measurements of
CORT concentrations in the same bird over a short period are often
correlated at the within-individual level (Baugh et al., 2014;
Dingemanse, Dochtermann, & Nakagawa, 2012). In other words,
in a particular instance, an individual's maximum CORT level in
response to a stressor can often be predicted based on its early
stress response or its baseline level. In the present study, this
phenotypic correlation was present only in the experimental
treatment of slow explorers: CORT concentrations following
exposure to the novel object were positively correlated with levels
following the 30 min of subsequent restraint stress. Given the
scarcity of studies quantifying endocrine reaction norms and their
stability over time, the extent to which there are heritable or
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developmentally induced differences in hormonal flexibility is
presently unknown, as well as what, if any, relationship these
profiles have to personality (Hau et al., 2016). Our findings suggest
that it will be important in future studies to examine the in-
teractions between HPA plasticity and personality to consider
testing multiple ecologically relevant contexts and timelines
(Dingemanse et al., 2010; Lendvai, Giraudeau, B�okony, Angelier, &
Chastel, 2015).
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