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Hormonal pleiotropy—the simultaneous influence of a single hormone onmultiple traits—has beenhypothesized
as an important mechanism underlying personality, and circulating glucocorticoids are central to this idea. A
major gap in our understanding is the neural basis for this link. Here we examine the stability and structure of
behavioral, endocrine and neuroendocrine traits in a population of songbirds (Parusmajor). Upon identifying sta-
ble and covarying behavioral and endocrine traits, we test the hypothesis that risk-averse personalities exhibit a
neuroendocrine stress axis that is systemically potentiated—characterized by stronger glucocorticoid reactivity
and weaker negative feedback. We show high among-individual variation and covariation (i.e. personality) in
risk-taking behaviors and demonstrate that four aspects of glucocorticoid physiology (baseline, stress response,
negative feedback strength and adrenal sensitivity) are also repeatable and covary. Further, we establish that
high expression of mineralocorticoid and low expression of glucocorticoid receptor in the brain are linked with
systemically elevated plasma glucocorticoid levels and more risk-averse personalities. Our findings support the
hypothesis that steroid hormones can exert pleiotropic effects that organize behavioral phenotypes and provide
novel evidence that neuroendocrine factors robustly explain a large fraction of endocrine and personality
variation.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Upon exposure to a social or environmental challenge, individuals
within a population often differ consistently in their behavioral re-
sponse (reviewed in Réale et al., 2007; Bell et al., 2009; Dall et al.,
2012). Moreover, single behaviors (e.g. aggressiveness) are often linked
within an individualwith other behaviors (e.g. exploration; reviewed in
Groothuis and Carere, 2005). These consistent individual differences
and trait correlations are the basis for the concept of animal personality
(similar to ‘coping styles’, ‘behavioral syndromes’), which has now been
demonstrated in a wide variety of species (van Oers and Naguib, 2013).
This research highlights the constraints on behavioral flexibility, on the
independent evolvability of traits, and suggests that the mechanisms

that underlie one particular behavior might subserve other behaviors
(Réale et al., 2007).

The hypothesis that hormones serve as mechanisms underpinning
animal personality has been the subject of growing interest (Williams,
2008; Koolhaas et al., 2010). Glucocorticoids (hereafter CORT) are pro-
posed to be key steroids involved in one of the major axes of personal-
ity: the shy-bold continuum (Øverli et al., 2007; Carere et al., 2010). In
part, this hypothesis rests on the pleiotropic nature of steroids—these
endocrine products circulate throughout the organism and bind tomul-
tiple receptor types across diverse tissues. Hence, a single hormone can
simultaneously affect multiple targets, thereby precisely modulating
the expression of several behaviors (Ketterson and Nolan, 1999).

As the end products of the hypothalamic-pituitary-adrenal (HPA)
axis, CORT facilitate critical functions in vertebrates: coping metaboli-
cally with the fluctuating demands of normal life, such as day-night
rhythmicity, locomotor activity and predictable daily and life-history
events (Landys et al., 2006). Further, the HPA axis is essential for coping
with unpredictable, acutely challenging events, such as exposure to un-
familiar environments or objects (Lendvai et al., 2011), inclement
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weather (Breuner and Hahn, 2003), predators (Cockrem and Silverin,
2002), but also sexual behaviors and social victory (Koolhaas et al.,
2011). The regulation of the HPA axis consists of several components:
First, low baseline concentrations fluctuate according to diel rhythms
and metabolic demands and are known to promote feeding behavior
(Dallman et al., 1993). Second, within a fewminutes after an acute chal-
lenge is perceived, CORT (following an elevation of their upstream
secretagogues such as adrenocorticotropic hormone, ACTH) becomes
elevated and continues to rise in the blood until it reaches a peak, typi-
cally within 30–90min (Baugh et al., 2013; Droste et al., 2011). At these
stress-induced concentrations, CORT facilitates a metabolic shift from
protein and fat synthesis towards gluconeogenesis by altering transcrip-
tion in target cells (Gray et al., 1990; Hasselgren, 1999; Sapolsky et al.,
2000; Oakley and Cidlowski, 2013). Third, negative feedback reduces
circulating levels, allowing baseline concentrations to be re-achieved
(Romero, 2004).

Regulation of circulating CORT concentrations is made possible by
two intracellular receptors in the brain that bind CORT. The mineralo-
corticoid receptor (MR) has a high affinity and low capacity for CORT
and is therefore thought to be principally active at baseline CORT con-
centrations (Romero, 2004; Landys et al., 2006). In contrast, the low af-
finity and high capacity glucocorticoid receptor (GR) exhibits increased
binding at stress-induced concentrations (deKloet, 1998; Funder, 1997)
and is also thought to play a critical role in regulating negative feedback
through binding to receptors located in the pituitary and hypothalamus,
thereby inhibiting the secretagogues that lead to further elevations in
CORT (de Kloet, 1991; Ronchi et al., 1998; Romero, 2004). Moreover,
because of its upstream location in the HPA axis, receptor expression
in the brain has the potential to explain intraspecific variation in stress
physiology and behavior. Here we examine MR and GR expression in
the hypothalamus and hippocampus, two brain regions known for
their involvement in HPA regulation and roles in mediating behavior
(Nelson, 2005). Higher GR expression in these regions, for example,
might result in stronger negative feedback and thus a systemically less
potentiated HPA axis (i.e. lower CORT at all post-stressor time-points).

Beyond single behaviors, theways inwhich individuals respondhor-
monally to stressors may underlie several of the correlated behaviors
that often characterize personality (Koolhaas et al., 2007). Further, if in-
dividuals vary consistently in functional aspects of theHPA axis—the cir-
culating concentrations of glucocorticoids (CORT) and the expression
patterns of receptors in behaviorally relevant tissues (e.g. nervous
system)—this could give rise to variation in personality. Indeed, there
is often remarkable intra-population variation in concentrations of
baseline and stress-induced CORT (Hau et al., 2016). The fraction of
this variation that represents among-individual variance has been stud-
ied in recent years and has yielded mixed results, reflecting in part the
fact that only a subset of these studies used repeated measures designs
(Baugh et al., 2014). However, understanding the endocrine basis of an-
imal personality requires repeatedly characterizing behavioral, endo-
crine and neuroendocrine traits in the same individuals (reviewed in
Ball and Balthazart, 2008)—a step that, to our knowledge, has not
been undertaken until now.

In the present study we tested for the presence of among-individual
variance in both behavioral traits and functional aspects of the HPA axis
and then tested the hypothesis that variance in HPA axis function ex-
plains behavioral variance. Because environmental context can drive
considerable acute variation in plasma glucocorticoids, we sought to
control experimentally certain aspects of the environment—nutrition
and exposure to conspecifics—but allowed physical aspects of the envi-
ronment to vary naturally (e.g. weather). Using semi-natural enclo-
sures, we studied wild-caught great tits (Parus major), a species that
has been the subject of extensive investigation in animal personality
(van Oers and Naguib, 2013) and, more recently, of intra-population
variation in glucocorticoid physiology (Hau et al., 2016). We predicted
that: (1) risk-taking behaviors expressed in the context of a foraging
task will both vary at the among-individual level (i.e. exhibit

repeatability) and covary at the among-individual level (i.e. exhibit
syndromes); (2) four functional aspects of the HPA axis—baseline
CORT, the stress response, negative feedback strength and adrenal
sensitivity—will likewise vary and covary at the among-individual
level; (3) the expression patterns of MR and GR in two regions of the
brain that regulate the HPA axis (hippocampus and hypothalamus)
will be correlated with HPA function, with higher GR expression pre-
dicted to strengthen negative feedback; and thus GR expression in
these regions is predicted to correlate negativelywith a systemically po-
tentiated HPA axis (Romero, 2004); and (4) repeatable elements of the
behavioral phenotype are correlated with repeatable elements of the
endocrine phenotype; specifically, that birds with lower GR expression
would express a consistently potentiated HPA stress axis andmore risk-
averse personalities.

2. Materials and methods

2.1. Animals

We used a repeatedmeasures study design that included behavioral
testing (N= 27; 15 females), plasma hormone assessment (N= 25; 13
females) and neural hormone receptor mRNA quantification (N = 25;
13 females; unequal sample sizes reflect the fact that two birds died of
unknown causes between behavioral and hormonal assessments;
Fig. 1). In 2009, we collected eggs from 14 nests (7 nests had clutch
sizes of 1; 1 nest had a clutch size of 2; 6 nests had clutch sizes of 3)
from an established nest box population (Westerheide, NL). Eggs were
then distributed to unique and random wild foster parents to decouple
nestling experience and relatedness among siblings. Because other ma-
ternal effects prior to hatching (e.g. yolk hormones)might influence the
adult phenotype, we call this a ‘nest of origin’ effect (hereafter NestID)
rather than strictly genetic relatedness. Ten days after hatching, fledg-
lings were transported to the Netherlands Institute for Ecology (NIOO-
KNAW, Heteren, NL) and hand-raised in captivity until nutritional
independence.

In November 2010, the birds were transported by automobile to the
Max Planck Institute for Ornithology-Radolfzell, where all experimental
and laboratory work was conducted. After two weeks of quarantine,
birds were housed singly in large outdoor aviaries (3 × 3 × 2 m high)
in alternating male-female adjacencies (birds had audible but not visi-
ble contact). These captive conditions facilitated control of the social
and nutritional environments—singly housed birds were fed an ad
libitum diet and fresh water. Each aviary contained an elevated feeding
platform, a nest box, hanging perches and live shrubs. Birds were accli-
matized to these housing conditions for three months before testing
began. We first characterized behavioral traits using three repeated
samplings, and then characterized HPA axis function using two repeat-
ed measures sampling events, and lastly we sacrificed the birds to esti-
mate the expression of hormone receptors in the brain (Fig. 1).

2.2. Behavioral testing

Twenty-seven birds were tested in a behavioral assay for object
neophobia and risk-taking on three repeated occasions (RTA1–3;
Fig. 1). Testing order was randomized with the exception that adjacent
aviaries were never sampled on the same day and the two sexes were
balanced each day. To ensure motivation and to habituate birds to feed-
ing on the ground, each bird was restricted to threemealworms per day
in a bowl centered on the floor of the aviary during a three-daywindow
prior to testing. We tested a maximum of 7 birds per day during the
morning (7:30–12:00). To habituate birds to the experimental set-up,
we placed a camouflaged blind in front of each aviary at a distance of
3 m beginning 24 h prior to testing. The experimenter occupied the
blind during the testing.

Our neophobia/risk-taking assessment was modified from a proce-
dure previously validated as a measure of personality in this species
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(vanOers et al., 2005). Briefly, a small platform (30 cm2) containing live
mealworms and a loaded mousetrap was introduced to the aviary floor
and monofilament was used to trigger the trap from a distant observa-
tion blind (see Supplementary fig. 2). All birds alighted initially on the
aviary floor and then hopped onto the front of the platform near the
mealworm dish, at a distance of approximately 20 cm from the mouse-
trap. No birds were injured during the course of this assay.

We recorded (1) Initial Latency: time elapsed from the start of the
trial until the bird approached the platform and retrieves a
mealworm—because this is each bird's first exposure to the platform,
we assume this latency reflects a low risk response to novelty (object
neophobia); (2) Reward Latency: time elapsed since retrieval of the
first worm and the return to the platform for a second mealworm
(note: all birds flew to a shrub to consume each mealworm). Upon
alighting on the platform for this second mealworm the experimenter
triggered the trap, startling the bird (all birds flew away); and (3) Startle
Latency: time elapsed between triggering the trap and the bird
returning to the platform and retrieving a mealworm—we assume this
latency reflects a high risk response. Trials in which birds did not return
within the maximum trial duration (20 min) were not included in the
repeatability, covariance or PCA analyses because assigning a constant
value (e.g. 1200 s) would artificially inflate these estimates. Although,
exclusion of these incomplete trials could under-represent the most
risk-averse personalities, a pilot study conducted with wild-caught
birds showed that extending this time window to longer durations
(60 min) resulted in few additional latency data. The number of meal-
worms on the platform was counted following each trial to ensure
that the expected number of worms was retrieved. This testing proce-
dure was repeated three times per bird, with a three-day interval sepa-
rating repeated trials. Upon completion of the third trial, each bird was
measured for tarsus length, flattened wing cord length, body mass, and
fat score (Cherry, 1982); body conditionwas estimated using the scaled
mass index method (SMI; Pieg and Green, 2009), and completion of
prebasic molt was confirmed.

2.3. HPA assessments

2.3.1. Validation
In March 2012 we validated the HPA assessments following

(Dickens et al., 2009a), including the pharmacological dosages, time
courses, and the cross reactivity of the pharmacological reagents in
the ELISA. We used wild-caught adult great tits—used only for this
validation—from a nest box population in Radolfzell, Germany
(N = 13) (Supplementary fig. 1).

2.3.2. Blood collection
Twenty-five birds were tested for plasma glucocorticoid dynamics

using a repeated measures HPA assessment (Fig. 1). The first assess-
ment (HPA1) was conducted during a one-week period in late August
following the third and final set of behavioral trials to facilitate analysis
of hormone-behavior relationships. The second assessment (HPA2) was

performed in November preceding the brain collection. Sampling was
limited to 0800–1100. Samples were collected by puncturing the bra-
chial vein and collecting the blood using a heparinized microcapillary
tube. Birds were restrained in small cotton bags during the intervals be-
tween sampling time points.

Our method for assessing the HPA axis has been used previously in
birds (Dickens et al., 2009a; Hau et al., 2015) and reptiles (Romero
and Wikelski, 2010) to simultaneously quantify four aspects of HPA
axis function: (1) Baseline CORT (BaseCORT): this first blood sample
precedes the handling/restraint-induced stress response. BaseCORT
was collected within 2 min following entry into the aviary to reduce
contamination from the stress response (Baugh et al., 2013; Romero
and Reed, 2005) and was followed by placing the bird in a small cotton
restraint bag for 15 min. (2) Stress response (StressCORT): this second
blood sample provides an estimate of the early stage of each bird's
acute response to handling/restraint and was immediately followed
by an intramuscular injection of dexamethasone (DEX; 1000 μg kg−1;
diluted to 50 μL in PBS), which stimulates strong negative feedback of
the HPA axis, thereby down-regulating subsequent CORT secretion
(Dickens et al., 2009a; Hau et al., 2015); this injection was followed by
a 90-min restraint period. (3) Negative feedback strength (DexCORT):
the CORT concentration here reflects the strength of negative feedback
following the DEX injection (higher CORT here indicates weaker nega-
tive feedback); this was followed immediately by an intramuscular in-
jection of adrenocorticotropic hormone (ACTH; Sigma #A6603;
100 IU kg−1 diluted to 50 μL in PBS), followed by a 15-min restraint pe-
riod. (4) Adrenal sensitivity (ActhCORT):finally, birdswere bled a fourth
time to estimate the capacity of the adrenal glands to produce CORT
upon pharmacological stimulation of theHPA axis by the injected secre-
tagogue. Birds were then immediately measured for biometrics, re-
leased into their aviary and monitored for health. Blood samples were
kept on wet ice during sample collection and then centrifuged (1400 g
for 10 min). The plasma fraction was frozen at\\80C until all samples
were assayed simultaneously.

2.3.3. Enzyme immunoassay
In July 2013we estimated plasma CORT concentrations using a com-

mercial enzyme immunoassay kit (Enzo Life Sciences, Cat. No. ADI 900-
097; Donkey anti-Sheep IgG). The details of our EIA procedure, includ-
ing its validation, extraction, recoveries, technical repeatability and
preparation of standards are reported in (Baugh et al., 2014; Ouyang
et al., 2011). The intra- and inter-assay coefficients of variation (CV; 9
plates)—8.1% and 8.2%, respectively. The assay has a detection limit of
27 pgmL−1. The cross-reactivity of the antiserum is 100% for corticoste-
rone, 28.6% for deoxycorticosterone and 1.7% for progesterone.

2.3.4. Neural receptors quantification
Following a 14-day recovery from the secondHPA assessment, birds

(N= 25) were captured by hand net and decapitated. Trunk blood was
collected and kept on wet ice while whole brains were dissected from
the skulls and frozen in aluminum foil on dry ice and maintained at

Fig. 1. Experimental timeline. Birds were tested on a risk-taking assay on three occasions (RTA1–3) with 6-day intervals. Following a 9-day recovery period, theywere sampled using a four
component HPA assessment (A–D), once in August (HPA1) and again in November (HPA2) with a 52 day interval separating these two assessments. Following a 14-day recovery period,
brains and trunk blood were harvested.
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\\80C until cryosectioning. The interval separating entry into the aviary
and frozen tissue was b3 min. We transported brains on dry ice to the
Roslin Institute at the University of Edinburgh, mounted them on OCT
(TissueTek) and sectioned them coronally at 15 μm onto polysine
pretreated slides. Tissue was stored at\\80C. Two slides from each an-
imal (eachwith six sections)were used for radioactive in situ hybridiza-
tion and a custom Python script and ImageJ were used for silver grain
quantification in the paraventricular nucleus of the hypothalamus
(PVN) and the hippocampus (HP)—two regions implicated in HPA axis
regulation (Dickens et al., 2009b). Details of our methods are described
in (Senft et al., 2016).

2.4. Statistical analyses

2.4.1. Behavior: general
We used a repeated measures ANOVA to test for effects of repeat

number and latency type, including covariates for sex, SMI, and fat
score. This permitted us to evaluate whether birds became habituated
to the novel object platform across repeated trials. Effect sizes (partial
eta-squared and Cohen's d) were calculated for significant main effects,
interactions and pair-wise comparisons.

2.4.2. Among-individual variances (i.e. repeatabilities)
All repeatability and covariance analyses were performed in R 3.0.2.

We estimated the within- and among-individual variance components
using Bayesian general linear mixed models (GLMMs) with a Gaussian
error distribution, and used the variance component estimates to calcu-
late the repeatability of each behavioral and hormonal trait (log10 trans-
formed and z-standardized). Our linear mixed models approach (Sokal
and Rohlf, 1995; Nakagawa and Schielzeth, 2010) has important advan-
tages over earlier ANOVA-based methods for repeatability estimation
(intra-class correlation coefficients; Lessells and Boag, 1987), including
the incorporation of environmental covariates and nested terms (i.e. ad-
justed repeatabilities), robustness to data heterogeneity (missing
values, unbalanced designs), and the ability to estimate uncertainty
around the repeatability estimate because variances are estimated di-
rectly. These models were constructed in MCMCglmm (Hadfield,
2010). We ran models without fixed effects (i.e. agreement repeatabil-
ities), with individual identity as the sole random effect, and used
inverse-Wishart priors. A second set of models were conducted to cor-
rect our estimates for nest of origin effects and determine whether the
nest of origin explained some of the variation in traits. Therefore, we
added NestID as a random effect to the models. We then repeated all
the above models, this time accounting for fixed effects (i.e., adjusted
repeatabilities), by adding variation in body condition (SMI, scalar)
and the fat score asfixed covariates (Supplementary table 4 for adjusted
repeatabilities), with a similar prior. Sex was not included as a term in
any of the models because behavioral, endocrinological and quantita-
tive genetics studies in P. major have shown no evidence for sex-
dependent expression of exploratory behavior (Dingemanse et al.,
2002; van Oers et al., 2004a; Carere et al., 2005), risk-taking behavior
(van Oers et al., 2005), or HPA axis function (Stöwe et al., 2010; Baugh
et al., 2014).

We used the variance component estimates to calculate effects of in-
dividual identity and nest of origin.We ran eachmodel for 1,000,000 it-
erations, used default sampling, and we ran model diagnostics to
confirm that the autocorrelation between subsequent stored iterations
was not higher than 0.1. We report the repeatabilities, and variance
components calculated as a ratio of the total variance, with 95% credible
intervals (95CI).

2.4.3. Covariances
We performed bivariate GLMMs to estimate within- and among-in-

dividual covariation. These models were constructed in MCMCglmm
(Hadfield, 2010), where individual identity was fitted as random effect.
Covariances in both the random effect and the residual were allowed to

take on any value (for a similar analysis and sample size, see Araya-Ajoy
and Dingemanse, 2016). We compared the Deviance Information Crite-
rion (DIC, Spiegelhalter et al., 2002) of these models with one from a
model where we fixed the covariance within individuals to zero. A
difference of N5 in DIC was considered statistically significant
(Spiegelhalter et al., 2002). We ran these models with uninformative
priors and ran each model for 2,000,000 iterations. Standard model di-
agnostics confirmed that autocorrelation among sampled iterations
was low.

2.4.4. Linking neural receptors, HPA dynamics and behavior
HPA2was timed to precede brain collection (Fig. 1) to test the hypoth-

esis that MR and GR expression in the HP and PVN predict HPA axis
function. To do this we used the average MR and GR expression in the
PVN and HP calculated across four coronal sections per bird (N = 25).
We constructed general linear models to describe how neural receptor
expression predicts CORT concentrations for the four HPA components.
We also included two fixed variables in thesemodels to represent body
condition, SMI and furcular fat score, that have been shown to be corre-
lated with CORT secretion (Wingfield et al., 1994).

To test the broader relationships among receptors, hormones and
behavior—and in order to reduce family-wise error rates—we reduced
the dimensionality for all three of these phenotypic categories using
principal components analysis and then used path analyses (SPSS ver-
sion 21) to test the strength and direction of relationships among phe-
notypic levels (Fig. 2). We tested two a priori models that minimized
the number of paths: (1) Full model: MR and GR directly influence
both HPA axis function and behavior and the HPA axis also directly in-
fluences behavior; and (2) Reduced model: MR and GR only indirectly
influence behavior via theHPA axis.We calculated thefit of bothmodels
(1 – π(eHPA ∗ eRisk)) and a summary statistic (Q = (1 − FitFull) / (1 −
FitReduced)) and then compared the significance of this quotient with a
Chi-squared test of significance (W = −(N − d) ∗ loge(Q), where
N= sample size and d= thenumber of droppedpaths).Measurements
fromRTA1 andHPA1were used and all datasets were log10-transformed
and z-standardized prior to component extraction. For the behavioral
data, we excluded trials in which the bird did not return to the platform
within the maximum window of time (20 min) because assigning
maximum values here would artificially inflate the eigenvalues (final
Npath analysis = 14). All analyses extracted only one component (PC1)
with eigenvalues N1 (which explained 63–82% of the variance) and
correlation matrices indicated that all pairwise correlation coefficients
varied between 0.1 and 0.9 (Supplementary table 8). Therefore, we per-
formed path analyses using PC1 for each trait category (Fig. 2). Residual
error for these analyses did not deviate fromGaussian, visually or statis-
tically (Shapiro-Wilk; all p N 0.20) and observed power for the omnibus
path model was adequate (power = 0.83).

3. Results

3.1. Behavior: general

Sex (F1 = 0.674, p = 0.443), SMI (F1 = 0.044, p = 0.840) and fat
score (F3 = 0.503, p = 0.694) did not explain significant variance in
behavior. The repeated measures ANOVA therefore only included the
within-subjects factors (latency type and repeat number; Supplementa-
ry fig. 2). Latencies were generally high for Initial Latency and Startle
Latency (mean ± SD, sec: 347.8 ± 279.9; 283.3 ± 232.0,
respectively)—indicating that this assay predictably elicited a neophobic
and startle response, respectively—but low for Reward Latency
(143.5 ± 163.8), suggesting that the first mealworm acted as a
food reward. There was a significant main effect of latency type
(F2,26 = 22.82, p b 0.001, partial η2 = 0.74). There was no main effect
of repeat number (F2,26=1.54, p=0.233), but therewas an interaction
between latency type and repeat number (F4,52 = 3.08, p = 0.024,
partial η2 = 0.73) due to a marginal reduction in the Initial Latency
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between RTA1 and RTA2 (pairwise comparison: p = 0.01, Cohen's d =
0.92 (95CI = 0.19–1.64); Fig. 1). No other pairwise comparison was
significant (Supplementary fig. 2), suggesting that the novelty of the
platform diminishes over repeated exposures.

3.2. Behavioral variances

Repeatabilities for all three latencies were high (0.41–0.53; see Bell
et al., 2009) and statistically significant (i.e. with 95CI that were not
zero-bound; Table 1; Supplementary fig. 5(a–c)). NestID did not explain
significant variance in the three behaviors (Table 1), suggesting that
risk-taking phenotypes may not be strongly explained by relatedness
or pre-hatchingmaternal effects (e.g. yolk hormones) or both. However,
the statistical power to detect NestID effects was not particularly high
because half of the nests did not have siblings, so we cannot exclude
this possibility. Moreover, results stayed qualitatively the same when
accounting for fat score and SMI (Supplementary table 4 for adjusted
repeatabilities).

3.3. Behavioral covariances

There was a significant positive among-individual covariance be-
tween Initial and Startle Latencies (Table 3; Fig. 3a; Supplementary fig.
5(d–m)), demonstrating that birds that are chronically neophobic are
chronically more risk-averse (i.e. personality). There was a similar
trend between Initial and Reward Latencies (Table 3; Fig. 3b). The DIC

Fig. 2. Relationships among traits depicted in a path model. For each level of organization (neuroendocrine: MR and GR expression; endocrine: HPA1 components; behavior: Initial and
Startle Latencies), traits were reduced to the first principal component (PC1). For traits measured repeatedly per bird, agreement repeatabilities (R; subject as random factor) are
indicated inside circular arrows. Estimates of covariance between traits within each category are indicated with bi-directional black arrows at the among- (Cov-A) and the within-
individual levels (Cov-W). The phenotypic correlations (Pearson's r) for MR and GR across the two nuclei are indicated with bi-directional grey arrows. The path model yields beta
coefficients (β) describing the direction and magnitude of effect of independent variables (GR, MR, HPA) on dependent variables (HPA, risk-taking). Error estimates for dependent
variables in the path model are indicated in grey ellipses. The model indicates that higher MR expression in the hippocampus and hypothalamus and lower GR expression in these two
brain areas predicts a more potentiated HPA axis (higher CORT) and more risk-averse personalities (higher latencies). Inset: the reduced model has two dropped paths. * denotes
statistical significance (p b 0.05) for repeatability (R), covariance (Cov) and correlation (r) estimates.

Table 1
Repeatability estimates and 95% confidence intervals for the three behavioral measures.
Agreement (i.e. raw) repeatabilities are shown with and without the rand25 effect of
NestID (i.e. siblings). Estimates for the variance explained by NestID and its 95% confi-
dence interval are also shown for each behavior. Confidence intervals that are not zero-
bound are considered statistically significant.

Behavioral trait R 95CI Nest ID Nest ID 95CI

Initial Latency Rawa 0.41 0.13–0.66 – –
Rawb 0.31 0.00–0.58 0.01 0.00–0.27

Reward Latency Rawa 0.49 0.23–0.75 – –
Rawb 0.35 0.02–0.63 0.02 0.00–0.41

Startle Latency Rawa 0.53 0.23–0.77 – –
Rawb 0.49 0.12–0.75 0.01 0.00–0.31

a Agreement repeatabilities (i.e. no fixed effects) with individual as sole random term.
b Agreement repeatabilities (i.e. no fixed effects) with individual and Nest ID fitted as

random terms.
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of the model in which the covariance between Initial Latency and
Reward Latency was fixed to zero did not fit the data better than a
model in which the covariance was allowed to take on any value
(ΔDIC = 13.6). This was also true for the model including covariances
between Initial Latency and Startle Latency (ΔDIC = 23.8). In both
models the covariance within-individuals was positive and statistically
significant (95CI do not overlap zero), demonstrating that at a given
moment in time a bird exhibiting more neophobic behavior will also
predictably exhibit more risk-averse behavior (Table 3).

3.4. Hormones: general

Our validation study indicated that our drug dosages and timeline
induced predictable variation in CORT concentrations, with low
BaseCORT, moderately high StressCORT, lowDexCORT and high ActhCORT
(Supplementary fig. 1). In our experimental study we observed a main
effect of HPA component (F3,72 = 186.8, p b 0.001, partial η2 = 0.97),
again with low BaseCORT and DexCORT, and high StressCORT and
ActhCORT (Supplementary fig. 3). Therewas also amain effect of season,
with higher CORT concentrations in November (HPA2) compared to Au-
gust (HPA1) (F1,24= 24.29, p b 0.001, partial η2 = 0.51; Supplementary
fig. 3). Lastly, there was an interaction effect between season and HPA
component (F3,72=25.06, p b 0.001, partialη2=0.71), driven byweak-
ened negative feedback (higher DexCORT) in November and a concom-
itant increase in ActhCORT (Supplementary fig. 3). The between-subject
factors of sex (F1,23 = 3.46, p = 0.08), SMI (F1,23 = 2.5, p = 0.12), and
fat score (F1,23 = 1.99, p = 0.17) did not significantly explain variance
in the CORT variables and therefore were not included in the repeated
measures ANOVAs.

3.5. Hormonal variances

One bird had a very low CORT concentration for the first BaseCORT
sample. We ranmodels that included and excluded this statistical outli-
er, and the results did not differ qualitatively (direction and proportion-
ality of estimates), thuswe report the inclusive results. For all four traits,

repeatabilities were statistically significant (i.e. 95CIs were not zero-
bound). DexCORT and ActhCORT exhibited qualitatively higher repeat-
abilities than BaseCORT and StressCORT, but the 95CI did overlap so the
estimates are not statistically significantly different from each other
(Table 2).When accounting forNestID, the amount of variance explained
by differences among individuals was qualitatively lower, and a larger
part of the variance, especially for BaseCORT, was explained by NestID,
but again, 95CIs overlapped (Table 2; Supplementary fig. 6(a–d)).
Results stayed qualitatively the same when accounting for fat score
and SMI (Supplementary table 4 for adjusted repeatabilities).

3.6. Hormonal covariances

The difference in DIC between the bivariate model of BaseCORT and
the StressCORT where covariances were fixed to zero and where they
were allowed to take on any value was large (ΔDIC = 27), thus we as-
sumed that covariance modeling better explained the data. There were

Fig. 3. Graphical representations of the among-individual correlations for the three behavioral traits (a,b) and four HPA components (c,d). All values are log10-transformed and plotted as
standardized (z) scores and best fit lines are linear regressions. Plots show the correlation between the average (per bird) values of the three behavioral trails (a,b) and two HPA
assessments (c,d). A statistically significant positive correlation in (a) is graphical evidence of among-individual correlation (i.e. syndrome) between Initial Latency and Startle Latency
(i.e. consistently neophilic birds are also consistently more risk-taking). The other trait pairs (b–d) were not statistically significant but positive trends here suggest the possibility of
among-individual correlations.

Table 2
Repeatability estimates and 95% confidence intervals for the fourHPA components. Agree-
ment (i.e. raw) repeatabilities are shownwith or without the random effect of NestID (i.e.
siblings). Estimates for the variance explained by NestID and its 95% confidence interval
are also shown for eachHPA trait. Confidence intervals that are not zero-bound are consid-
ered statistically significant. For repeatability estimates adjusted for body condition and fat
score see Supplementary table 4.

HPA trait R 95CI Nest ID Nest ID 95CI

BaseCORT Rawa 0.20 0.04–0.52 – –
Rawb 0.08 0.02–0.32 0.20 0.04–0.57

StressCORT Rawa 0.31 0.08–0.59 – –
Rawb 0.12 0.03–0.43 0.12 0.03–0.48

DexCORT Rawa 0.50 0.16–0.74 – –
Rawb 0.30 0.05–0.59 0.11 0.03–0.43

ActhCORT Rawa 0.59 0.24–0.78 – –
Rawb 0.25 0.06–0.58 0.16 0.04–0.52

a Agreement repeatabilities (i.e. no fixed effects) with individual as sole random term.
b Agreement repeatabilities (i.e. no fixed effects) with individual and Nest ID fitted as

random terms.
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no statistically significant covariances at the among-individual level
(Table 3; 95CI overlap zero), despite a trend for some trait pairs, includ-
ing high BaseCORT being linked with a high StressCORT (Fig. 3c), and
weak negative feedback (high DexCORT) linked to strong adrenal sensi-
tivity (high ActhCORT) (Fig. 3d). The covariances within individuals for
all trait pairs examined were statistically significant and positive
(Table 3; Supplementary fig. 6(h,l,p)). Similarly, the model that includ-
ed covariance between the StressCORT andDexCORTwas statistically sig-
nificant (ΔDIC = 19.5) and the covariance within individuals was
statistically significant and positive, while the covariance among individ-
uals was not different from zero (Table 3; Supplementary fig. 6(e–p)).
Similarly, the covarianceswithin individuals were statistically significant
and positive for the pairs DexCORT versus ActhCORT, and StressCORT
versusActhCORT. Again, the differences inDICs confirmed that themodels
including covariance better explained the data (ΔDICDex vs Acth = 26
and ΔDICStress vs Acth = 16).

3.7. Linking neural receptors, HPA dynamics and behavior

Expression of GR was higher in the PVN than in the HP, and MR ex-
hibited the opposite pattern. Expression ofMRwas positively correlated
across the PVN and the HP and there was a trend for a positive correla-
tion for GR across the two nuclei (Fig. 2 and Senft et al., 2016). In con-
trast, there were no correlations between the two receptor types (MR
versus GR) for any combination of nuclei or PC (all p N 0.15).

Given the widespread covariance among trait items (e.g. Initial and
Startle Latencies), the principal component analyses allowed us to re-
duce our dataset into four trait categories (MR phenotype; GR pheno-
type; HPA potentiation phenotype; risk-aversion phenotype; Fig. 2;
see Supplementary table 8 for PCA details; Budaev, 2010) andminimize
family-wise error rates. Using these trait categories, our path analyses
indicated that higher MR and lower GR predict a more potentiated
HPA axis (higher CORT) andmore risk-averse (longer latencies) person-
alities (Fig. 2). Model fit was significantly higher for the full model
(0.785) compared to the reduced model (0.539) with two dropped
paths (χ2= 9.12, df = 2, p b 0.05; Fig. 2), indicating support for a direct
and an indirect (i.e., via HPA axis) influence of MR and GR on risk aver-
sion. These results were robust to the structural details of the path
model—the qualitative outcome did not change with inclusion/exclu-
sion of items in principal components and the relationships among
these higher-level trait dimensions mirrored patterns detected at
lower levels of analysis. For example, variation in ActhCORT positively
predicted startle latencies (R2 = 0.41, F1,12 = 8.36, p = 0.014); GR
expression in the hippocampus negatively predicted startle latencies
(R2=0.39, F1,12=7.76, p=0.016); GR expression in the PVNnegative-
ly predicted ActhCORT (R2 = 0.24, F1,23 = 6.51, p = 0.019); and MR
expression in the hippocampus positively predicted StressCORT
(R2 = 0.20, F1,23 = 5.82, p = 0.024; see also Supplementary tables 7
and 8, Supplementary fig. 9).

4. Discussion

We found support for the hypothesis that avian personality is corre-
lated with individual differences in HPA axis function. Our repeated
measures design allowed us to partition variance in behavioral, endo-
crine andneuroendocrine traits in the same individuals under semi-nat-
ural conditions, providing an integrative picture of trait lability and
interaction—to our knowledge this is the first such study to integrate
across these levels of organization. The results support our prediction
that individuals with consistently more potentiated HPA axes exhibit
risk-averse personalities. These results help to unify findings from pre-
vious research examining the HPA axis and personality in vertebrates
(Ellis et al., 2006; Koolhaas et al., 1999) including great tits (Hau et al.,
2016) and provide an important test of the assumption that pharmaco-
logical challenges provide a window into upstream neural receptor
phenotypes.

4.1. Personality

Risk-taking behaviors were repeatable—approximately 30–50% of
the variation in each can be attributed to individual differences, a rela-
tively high fraction for behavioral traits (Bell et al., 2009). And in con-
trast to the HPA components, nest of origin explained only a small
fraction of the behavioral variation. This finding extends previous
work that indicates that these types of risk-taking behaviors are compo-
nents of a more general personality suite that includes exploration and
boldness (van Oers et al., 2004b, 2004c; van Oers et al., 2005; Hall et al.,
2015). Moreover, these behaviors are phenotypically correlated, owing
to the joint contributions of positive among- and within-individual cor-
relations. The within-individual correlation implies that either dynamic
internal (e.g., circadian state) or external variables (e.g., temperature)
or both varied across observations of the same individual and that
these variables modulated the expression of both traits simultaneously
(see Baugh et al., 2014). Given that we controlled the social and nutri-
tional environments, thiswithin-individual correlation further indicates
that these two behaviors are codependent on a variety of influences be-
yond nutritional state and social context (see Drosmann et al., 2014).
This within-individual correlation could emerge as a consequence of
ultradian cycles (Droste et al., 2011); for example, baseline CORT and
stress-induced CORTwill both be higher following the periodic and pul-
satile release of ACTH. The among-individual correlation between these
two behaviors, however, provides evidence for their joint contribution
to personality and is only possible given the among-individual variance
(i.e. repeatability) of both behaviors (Baugh et al., 2014). This correla-
tion means that birds that are on average more neophobic are also on
average more risk-averse, and vice versa. This is consistent with the
finding in this species that risk-taking behavior is genetically linked
with general aspects of the shy-bold continuum, including spatial and
object neophobia (van Oers et al., 2005).

4.2. HPA function

Our HPA assessments yielded the predicted results (i.e. low
BaseCORT, stress-induced increases, decrease after DEX- and increase
followingACTH-injection). This is similar towhat has been documented
in someother species (Romero andWikelski, 2010; Schmidt et al., 2012;
MacDougall-Shackleton et al., 2013; Hau et al., 2015), but differs from
the lack of ACTH sensitivity reported in chukar partridge (Alectoris
chuckar; Dickens et al., 2009a). The higher CORT inNovember compared
August suggests a seasonal pattern in DEX sensitivity, with weaker sen-
sitivity in November. There was also a seasonal increase in ActhCORT,
but this is likely due to the positive correlation between DexCORT and
ActhCORT. Although our birds had recently completed prebasic molt at
the time of the August assessment, the enduring physiological conse-
quences of a recent molt or other seasonally variable inputs to the
HPA axis might have downregulated axis sensitivity (Romero, 2006).

Table 3
Estimates (and 95% confidence intervals) of within- and among-individual covariance for
pairs of behavioral measures and pairs of HPA measures. Confidence intervals that do not
overlap zero are considered statistically significant.

Trait pair Cov among-individuals Cov
within-individuals

Estimate 95CI Estimate 95CI

HPA
BaseCORT vs StressCORT 0.15 −0.08–0.45 0.48 0.21–0.81
StressCORT vs DexCORT 0.05 −0.21–0.36 0.38 0.13–0.65
StressCORT vs ActhCORT 0.19 −0.11–0.52 0.32 0.09–1.00
DexCORT vs ActhCORT 0.20 −0.13–0.58 0.59 0.13–0.66
Behavior
Initial Latency vs Reward Latency 0.05 −0.35–0.48 0.23 0.06–0.44
Initial Latency vs Startle Latency 0.36 0.03–0.75 0.24 0.08–0.43
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Despite this seasonality, all four HPA measures exhibited significant
repeatability.

Baseline CORT exhibited the lowest repeatability, consistent with
previous studies in great tits (Baugh et al., 2014) and other species
(Hau et al., 2015; Ouyang et al., 2011). The other three HPA components
contained moderate (StressCORT) to high (DexCORT, ActhCORT)
amounts of repeatability, consistent with the only other report that
has estimated repeatabilities in a subset of these traits (Hau et al.,
2015). The repeatabilities of DexCORT and ActhCORT might be interest-
ing to examine in future functional studies. Variation in negative feed-
back, for example, has been shown to correlate with nutritional state
and mortality in Galapagos marine iguanas (Amblyrhynchus cristatus;
Romero and Wikelski, 2010).

We also demonstrated that there are positive phenotypic correla-
tions between several of these HPA components. Most of the covariance
between traits is at thewithin-individual level. In other words, this sug-
gests that a bird with high baseline CORT at a particular moment will
have high stress-induced CORT minutes later; but that same bird a
month later might have moderate initial CORT and moderate stress-in-
duced CORT. This hypothetical bird is a relatively high-CORT individual
(i.e. there is repeatability in both components), but dynamic variables,
not stable individual differences, are driving the correlation between
the HPA traits (Baugh et al., 2014). The interdependence of these HPA
measures has implications for copingwith repeated stressors; for exam-
ple, a positive trend betweenDexCORT and ActhCORT suggests that birds
with stronger negative feedback are less able tomount a strong second-
ary stress response, owing perhaps to a refractory state. To our knowl-
edge, these are the first estimates of combined phenotypic, within-
and among-individual covariances in these HPA axis traits. Given trends
indicating among-individual correlations between BaseCORT and
StressCORT and between DexCORT and ActhCORT, we suggest future re-
search examine this question further. However, because BaseCORT and
StressCORT concentrations are likely regulated by separate receptor
populations, thereby potentially decoupling them, we would not pre-
dict strong correlations between these measures (de Kloet et al., 1993;
Romero, 2004).

4.3. Linking neural receptors, HPA dynamics and behavior

By estimating the expression of MR and GR in two brain regions
known to regulate the HPA axis—the PVN and hippocampus—we pro-
vide support for the hypothesis that functional aspects of HPA axis dy-
namics can be predicted on the basis of receptor expression. Overall,
we showed that higher MR levels predicted a more potentiated HPA
axis (higher CORT) and, more importantly, higher GR levels predicted
a less potentiated axis. Previouslywe showed that the expressionof hip-
pocampal MR is positively correlated with the expression of MR in the
PVN, and a similar trend was observed for GR across these two nuclei
(Senft et al., 2016). This within-individual correlation across nuclei is
similar to what has been shown across diverse tissues in songbirds
(Lattin et al., 2015) and suggests a neuroendocrine suite that constrains
the flexibility of HPA axis function, which might explain individual dif-
ferences in the HPA components measured in this study. Future re-
search should also quantify receptor protein expression, as transcript
and protein levels have been shown to be uncorrelated in house spar-
row (Passer domesticus) brains (Medina et al., 2013), and transcript ex-
pression might yield different results. For example, in vivo studies in
rodents have demonstrated that GR under-expression, which leads to
reduced negative feedback (i.e. more potentiatedHPA axis) can be com-
pensated for by MR over-expression (Harris et al., 2013), suggesting
that higher MR densities in rodent brains might be associated with in-
creased negative feedback (i.e. less potentiated HPA axis). The classic
model that MR strictly controls basal HPA drive whereas GR controls
negative feedback is being revisited (Kolber et al., 2009), and there is
empirical evidence that it is the ratio ofMR andGR thatmight be critical
to understanding HPA axis function (Harris et al., 2013). Lastly, because

MR and GR are widely distributed throughout the brain, including in P.
major (Senft et al., 2016), links between receptor expression and behav-
ior need to be more thoroughly explored.

We found support for the hypothesis that variation in the neuroen-
docrine stress axis is correlated with personality. Specifically, more
neophobic and risk-averse birds exhibited a more potentiated stress
axis. This finding was confirmed with data reduction methods showing
that the three behavioral measures were largely explained by a single
principal component, and likewise for the four HPA components. PC1
for the behavioral measures might represent behavioral inhibition
under conditions of risk and PC1 for the HPA components might repre-
sent endocrine potentiation. These two principal components were sig-
nificantly and positively correlated: birds exhibiting more risk-averse
personalities also exhibitedmore potentiated HPA axes. It is remarkable
that the expression patterns of two receptors in the brain can explain
such a large amount of variation in HPA axis function and animal
personality. We agree with Ball and Balthazart (2008) that identifying
functional interrelationships between behavior and hormones at the
individual level, which has occasionally failed (Crews, 1998;
Adkins-Regan, 2005), is greatly facilitated by inclusion of target tissue
variables such as neural receptor expression.Wewould further propose
that understanding the behavior and hormonal sides of the equation are
greatly enhanced by multilevel approaches, including the characteriza-
tion of syndromes. Lastly, because recent work has demonstrated links
between immune function and risk-taking behavior (Jacques-
Hamilton et al., 2017) and because glucocorticoids are known to sup-
press the immune system, it will be important for future work to inte-
grate among all three of these phenotypic categories in wild animals.

These patterns expand on earlier studies in this species; we previ-
ously demonstrated a genetic correlation between spatial/object
neophobia and glucocorticoid reactivity, with shy selection line birds
exhibiting stronger stress responses (Baugh et al., 2012). Likewise, in a
study of wild birds we showed that slower explorers exhibited faster
and more enduring glucocorticoid responses (Baugh et al., 2013). The
present study, which used pharmacological challenges in addition to
the more conventional stress series, confirms that the more enduring
stress response in more risk-averse personalities is due to weaker neg-
ative feedbackper se. These results are generally consistentwith studies
of stress and personality in other vertebrates (Baugh et al., 2012).What
is still unclear, however, is the directionality and causality of these hor-
mone-behavior relationships (Koolhaas et al., 2010). Further study is
needed to examine the developmental-organizational programming of
HPA and behavior phenotypes (Schmidt et al., 2013; Marasco et al.,
2016) and new techniques are needed to acutely manipulate endocrine
function in a physiologically relevant manner.

5. Conclusions

Our multilevel and integrative approach—from neural receptor ex-
pression to plasma hormone dynamics and behavior—provides new in-
sight into the network of trait (co)variances that are associated with
animal personality. Our results support the hypothesis that two hor-
mone receptors in the brain play an integral role in HPA axis function,
which is in turn associated with predictable variation in personality.
Further, our findings support the hypothesis that pleiotropic effects of
steroid hormones can act as proximate mechanisms that integrate be-
havioral traits into personality suites. Overall, these results unify earlier
research documenting the relationship between endocrine stress reac-
tivity and the shy-bold continuum in songbirds. Lastly, if thewidespread
trait covariances shown here are the consequences of genetic correla-
tions, as has been demonstrated previously for specific HPA-behavior
trait pairs (Baugh et al., 2012), this would imply that selection targeting
any one of these levels might affect the evolution of suites of concerted
traits (Ketterson and Nolan, 1999; McGlothlin and Ketterson, 2008).

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.yhbeh.2017.05.011.

106 A.T. Baugh et al. / Hormones and Behavior 93 (2017) 99–108

http://dx.doi.org/10.1016/j.yhbeh.2017.05.011
http://dx.doi.org/10.1016/j.yhbeh.2017.05.011


Ethics

Our protocols were approved under permit 35-9185.81/G-10/76 by
District Administration Freiburg Department of Agriculture, Rural
Areas, Veterinary and Food Administration, Baden-Wuerttemberg,
Germany at the Max Planck Institute for Ornithology, Radolfzell,
Germany (MH, ATB) and permit NIOO.10-06 of the Royal Dutch Acade-
my of Sciences (DEC-KNAW) to KVO.

Competing interest

We have no competing interests.

Funding

This work was supported by the Alexander von Humboldt Founda-
tion grant number 1141248 (ATB), the Max Planck Society (MH), The
Netherlands Institute of Ecology (NIOO-KNAW; KVO), The Roslin
Institute at the University of Edinburgh (SLM), HHMI and the Biology
Department at Swarthmore College (ATB, RAS, MF, AL).

Acknowledgements

We thank Sarah C. Davidson and Michael Quetting for assistance
with data collection in the field and two anonymous reviewers for in-
sightful comments that improved this manuscript.

References

Adkins-Regan, E., 2005. Hormones and Animal Social Behavior. Princeton University
Press, Princeton, NJ.

Araya-Ajoy, Y.G., Dingemanse, N.J., 2016. Repeatability, heritability, and age-dependence
of aggressiveness in a wild passerine bird. J. Anim. Ecol. 86, 227–238.

Ball, G.F., Balthazart, J., 2008. Individual variation and the endocrine regulation of behav-
iour and physiology in birds: a cellular/molecular perspective. Philos. Trans. R. Soc.
Lond. Ser. B Biol. Sci. 363, 1699–1710.

Baugh, A.T., Schaper, S.V., Hau, M., Cockrem, J.F., de Goede, P., van Oers, K., 2012. Cortico-
sterone responses differ between lines of great tits (Parus major) selected for diver-
gent personalities. Gen. Comp. Endocrinol. 175, 488–494.

Baugh, A.T., van Oers, K., Naguib, M., Hau, M., 2013. Initial reactivity andmagnitude of the
acute stress response associated with personality in wild great tits (Parus major).
Gen. Comp. Endocrinol. 189, 96–104.

Baugh, A.T., van Oers, K., Dingemanse, N., Hau, M., 2014. Baseline and stress-induced glu-
cocorticoid concentrations are not repeatable but covary within individual great tits
(Parus major). Gen. Comp. Endocrinol. 208, 154–163.

Bell, A.M., Hankison, S.J., Laskowski, K.L., 2009. The repeatability of behaviour: a meta-
analysis. Anim. Behav. 77, 771–783.

Breuner, C.W., Hahn, T.P., 2003. Integrating stress physiology, environmental change, and
behavior in free-living sparrows. Horm. Behav. 43, 115–123.

Budaev, S.V., 2010. Using principal components and factor analysis in animal behaviour
research: caveats and guidelines. Ethology 116, 472–480.

Carere, C., Drent, P.J., Privitera, L., Koolhaas, J.M., Groothuis, T.G.G., 2005. Personalities in
great tits Parus major: stability and consistency. Anim. Behav. 70, 795–805.

Carere, C., Caramaschi, D., Fawcett, T.W., 2010. Covariation between personalities and in-
dividual differences in coping with stress: converging evidence and hypotheses. Curr.
Zool. 56, 728–740.

Cherry, J.D., 1982. Fat deposition and length of stopover of migrant white crowned spar-
rows. Auk 99, 725–732.

Cockrem, J.F., Silverin, B., 2002. Sight of a predator can stimulate a corticosterone response
in the great tit (Parus major). Gen. Comp. Endocrinol. 125, 248–255.

Crews, D., 1998. On the organization of individual difference in sexual behavior. Am. Zool.
38, 118–132.

Dall, S.R.X., Bell, A.M., Bolnick, D.I., Ratnieks, F.L.W., 2012. An evolutionary ecology of indi-
vidual differences. Ecol. Lett. 15, 1189–1198.

Dallman, M.R., Strack, A.M., Akana, S.F., Bradbury, M.J., Hanson, E.S., Scribner, K.A., Smith,
M., 1993. Feast or famine: critical role of glucocorticoids with insulin in daily energy
flow. Front. Neuroendocrinol. 14, 303–347.

de Kloet, E.R., 1991. Brain corticosteroid receptor balance and homeostatic control. Front.
Neuroendocrinol. 12, 95–164.

de Kloet, E.R., 1998. Brain corticosteroid receptor balance in health and disease. Endocr.
Rev. 19, 269–301.

de Kloet, E.R., Oitzl, M.S., Joëls, M., 1993. Functional implications of brain corticosteroid re-
ceptor diversity. Cell. Mol. Neurobiol. 13, 433–455.

Dickens, M.J., Delehanty, D.J., Romero, L.M., 2009a. Stress and translocation: alterations in
the stress physiology of translocated birds. Proc. R. Soc. B 276, 2051–2056.

Dickens, M., Romero, L.M., Cyr, N.E., Dunn, I.C., Meddle, S.L., 2009b. Chronic stress alters
glucocorticoid receptor and mineralocorticoid receptor mRNA expression in the Eu-
ropean starling (Sturnus vulgaris) brain. J. Neuroendocrinol. 21, 832–840.

Dingemanse, N.J., Both, C., Drent, P.J., van Oers, K., van Noordwijk, A.J., 2002. Repeatability
and heritability of exploratory behaviour in great tits from the wild. Anim. Behav. 64,
929–937.

Drosmann, A.J., Brooks, K.C., Mateo, J.M., 2014. Within-individual correlations reveal link
between a behavioral syndrome, condition, and cortisol in free-ranging Beldings
ground squirrels. Ethology 121, 125–134.

Droste, S.K., de Groote, L., Atkinson, H.C., Lightman, S.L., Reul, J.M.H.M., Linthorst, A.C.,
2011. Corticosterone levels in the brain show a distinct ultradian rhythm but a de-
layed response to forced swim stress. Endocrinology 149, 3244–3253.

Ellis, B.J., Jackson, J.J., Boyce, W.T., 2006. The stress response systems: universality and
adaptive individual differences. Dev. Rev. 26, 175–212.

Funder, J.W., 1997. Glucocorticoid and mineralocorticoid receptors: biology and clinical
relevance. Annu. Rev. Med. 48, 231–240.

Gray, J.M., Yarian, D., Ramenofsky, M., 1990. Corticosterone, foraging behavior, and me-
tabolism in dark-eyed juncos, Junco hyemalis. Gen. Comp. Endocrinol. 79, 375–384.

Groothuis, T.G.G., Carere, C., 2005. Avian personalities: characterizations and epigenesis.
Neurosci. Biobehav. Rev. 29, 137–150.

Hadfield, J.D., 2010. MCMCmethods for multi-response generalized linear mixedmodels:
the MCMCglmm R package. J. Stat. Softw. 33, 1–22.

Hall, M.L., van Asten, T., Katsis, A.C., Dingemanse, N.J., Magrath, M.J.L., Mulder, R.A., 2015.
Animal personality and pace-of-life syndromes: do fast-exploring fairy wrens die
young? Front. Ecol. Evol. 25. doi.org/10.3389/fevo.2015.00028.

Harris, A.P., Holmes, M.C., de Kloet, E.R., Chapman, K.E., Seckl, J.R., 2013. Mineralocorticoid
and glucocorticoid receptor balance in control of HPA axis and behaviour.
Psychoneuroendocrinology 38, 648–658.

Hasselgren, P.O., 1999. Glucocorticoids and muscle catabolism. Curr. Opin. Clin. Nutr.
Metab. Care 2, 201–205.

Hau, M., Haussmann, M.F., Greives, T.J., Matlack, C., Costantini, D., Quetting, M., Adelman,
J.S., Miranda, A.C., Partecke, J., 2015. Repeated stressors in adulthood increase the rate
of biological ageing. Front. Zool. 12, 4.

Hau, M., Casagrande, S., Ouyang, J.Q., Baugh, A.T., 2016. Glucocorticoid-mediated pheno-
types in vertebrates: multilevel variation and evolution. In: Naguib, M., Mitani, J.C.,
Simmons, L.W., Barrett, L., Healy, S., Zuk, M. (Eds.), Adv. Study Behav. vol. 48,
pp. 41–115.

Jacques-Hamilton, R., Hall, M.L., Buttemer, W.A., Matson, K.D., Goncalves de Silva, A.,
Mulder, R.A., Peters, A., 2017. Personality and innate immune defenses in a wild
bird: Evidence for the pace-of-life hypothesis. Horm. Behav. 88, 31–40.

Ketterson, E.D., Nolan Jr., V., 1999. Adaptation, exaptation, and constraint: a hormonal
perspective. Am. Nat. 154, S4–S25.

Kolber, B.J., Wieczorek, L., Muglia, L.J., 2009. HPA axis dysregulation and behavioral anal-
ysis of mouse mutants with altered GR or MR function. Stress 11, 321–338.

Koolhaas, J.M., Korte, S.M., de Boer, S.F., van der Vegt, B.J., van Reenen, C.G., Hopster, H., de
Jong, I.C., Ruis, M.A.W., Blokhuis, H.J., 1999. Coping styles in animals: current status in
behavior and stress-physiology. Neurosci. Biobehav. Rev. 23, 925–935.

Koolhaas, J.M., de Boer, S.F., Buwalda, B., van Reenen, K., 2007. Individual variation in cop-
ing with stress: a multidimensional approach of ultimate and proximate mecha-
nisms. Brain Behav. Evol. 70, 218–226.

Koolhaas, J.M., de Boer, S.F., Coppens, C.M., Buwalda, B., 2010. Neuroendocrinology of cop-
ing styles: towards understanding the biology of individual variation. Front.
Neuroendocrinol. 31, 307–321.

Koolhaas, J.M., Bartolomucci, A., Buwalda, B., de Boer, S.F., Flugge, G., Korte, S.M., Meerlo,
P., Murison, R., Olivier, B., Palanza, P., Richter-Levin, G., Sgoifo, A., Steimer, T., Stiedl, O.,
van Dijk, G., Wohr, M., Fuchs, E., 2011. Stress revisited: a critical evaluation of the
stress concept. Neurosci. Biobehav. Rev. 35, 1291–1301.

Landys, M.M., Ramenofsky, M., Wingfield, J.C., 2006. Actions of glucocorticoids at a sea-
sonal baseline as compared to stress-related levels in the regulation of periodic life
processes. Gen. Comp. Endocrinol. 148, 132–149.

Lattin, C.R., Keniston, D.E., Reed, J.M., Romero, L.M., 2015. Are receptor concentrations cor-
related across tissues within individuals? A case study examining glucocorticoid and
mineralocorticoid receptor binding. Endocrinolology 156, 1354–1361.

Lendvai, A.Z., Bókony, V., Chastel, O., 2011. Coping with novelty and stress in free-living
sparrows. J. Exp. Biol. 214, 821–828.

Lessells, C.M., Boag, P.T., 1987. Unrepeatable repeatabilities: a common mistake. Auk 104,
116–121.

MacDougall-Shackleton, S.A., Schmidt, K.L., Furlonger, A.A., MacDougall-Shackleton, E.A.,
2013. HPA axis regulation, survival, and reproduction in free-living sparrows: func-
tional relationships or developmental correlations? Gen. Comp. Endocrinol. 190,
188–193.

Marasco, V., Herzyk, P., Robinson, J., Spencer, K.A., 2016. Pre- and post-natal stress pro-
gramming: developmental exposure to glucocorticoids causes long-term brain-re-
gion specific changes to transcriptome in the precocial Japanese quail.
J. Neuroendocrinol. 28. http://dx.doi.org/10.1111/jne.12387.

McGlothlin, J.W., Ketterson, E.D., 2008. Hormone-mediated suites as adaptations and evo-
lutionary constraints. Philos. Trans. R. Soc. Lond. B 363, 1611–1620.

Medina, C.O., Lattin, C.R., McVey, M., Romero, L.M., 2013. There is no correlation between
glucocorticoid receptor mRNA expression and protein binding in the brains of house
sparrows (Passer domesticus). Gen. Comp. Endocrinol. 193, 27–36.

Nakagawa, S., Schielzeth, H., 2010. Repeatability for Gaussian and non-Gaussian data: a
practical guide for biologists. Biol. Rev. 85, 935–956.

Nelson, R.J., 2005. An Introduction to Behavioral Endocrinology. fourth ed. Sinauer Asso-
ciates, Sunderland.

Oakley, R.H., Cidlowski, J.A., 2013. The biology of the glucocorticoid receptor: new signal-
ing mechanisms in health and disease. J. Allergy Clin. Immunol. 132, 1033–1044.

107A.T. Baugh et al. / Hormones and Behavior 93 (2017) 99–108

http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0005
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0005
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0010
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0010
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0015
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0015
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0015
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0020
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0020
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0020
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0025
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0025
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0025
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0030
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0030
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0030
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0035
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0035
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0040
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0040
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0045
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0045
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0050
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0050
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0055
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0055
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0055
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0060
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0060
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0065
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0065
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0070
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0070
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0075
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0075
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0080
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0080
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0085
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0085
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0090
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0090
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0095
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0095
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0100
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0100
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0105
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0105
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0105
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf1000
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf1000
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf1000
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0110
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0110
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0110
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0115
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0115
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0120
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0120
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0125
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0125
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0130
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0130
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0135
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0135
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0140
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0140
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0150
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0150
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0150
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0155
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0155
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0160
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0160
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0165
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0165
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0165
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0165
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf1005
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf1005
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0170
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0170
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0175
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0175
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0180
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0180
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0185
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0185
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0185
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0190
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0190
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0190
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0195
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0195
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0200
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0200
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0200
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0205
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0205
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0205
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0210
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0210
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0215
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0215
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0220
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0220
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0220
http://dx.doi.org/10.1111/jne.12387
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0230
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0230
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0235
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0235
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0235
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0240
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0240
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0245
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0245
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0250
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0250


Ouyang, J.Q., Hau, M., Bonier, F., 2011. Within seasons and among years: when are corti-
costerone levels repeatable? Horm. Behav. 60, 559–564.

Øverli, Ø., Sorensen, C., Pulman, K.G.T., Pottinger, T.G., Korzan, W.J., Summers, C.H.,
Nilsson, G.E., 2007. Evolutionary background for stress-coping styles: relationships
between physiological, behavioral, and cognitive traits in non-mammalian verte-
brates. Neurosci. Biobehav. Rev. 31, 396–412.

Pieg, J., Green, A.J., 2009. New perspectives for estimating body condition from mass/
length data: the scaled mass index as an alternative method. Oikos 118, 1883–1891.

Réale, D., Reader, S.M., Sol, D., McDougall, P.T., Dingemanse, N.J., 2007. Integrating animal
temperament within ecology and evolution. Biol. Rev. 82, 291–318.

Romero, L.M., 2004. Physiological stress in ecology: lessons from biomedical research.
Trends Ecol. Evol. 19, 249–255.

Romero, L.M., 2006. Seasonal changes in hypothalamic-pituitary-adrenal axis sensitivity
in free-living house sparrows (Passer domesticus). Gen. Comp. Endocrinol. 149,
66–71.

Romero, L.M., Reed, J.M., 2005. Collecting baseline corticosterone samples in the field: is
under 3 min good enough? Comp. Biochem. Physiol. 140, 73–79.

Romero, L.M., Wikelski, M., 2010. Stress physiology as a predictor of survival in Galapagos
marine iguanas. Proc. R. Soc. B 277, 3157–3162.

Ronchi, E., Spencer, R.L., Krey, L.C., McEwen, B.S., 1998. Effects of photoperiod on brain
corticosteroid receptors and the stress response in the golden hamster (Mesocricetus
auratus). Brain Res. 780, 348–351.

Sapolsky, R.M., Romero, L.M., Munck, A.U., 2000. How do glucocorticoids influence stress
responses? Integrating permissive, suppressive, stimulatory, and preparative actions.
Endocr. Rev. 21, 55–89.

Schmidt, K.L., Furlonger, A.A., Lapierre, J.M., MacDougall-Shackleton, E.A., MacDougall-
Shackleton, S.A., 2012. Regulation of the HPA axis is related to song complexity and
measures of phenotypic quality in song sparrows. Horm. Behav. 61, 652–659.

Schmidt, K.L., Moore, S.D., MacDougall-Shackleton, S.A., MacDougall-Shackleton, E.A.,
2013. Early-life stress affects song complexity, song learning and volume of the
brain nucleus RA in adult male song sparrows. Anim. Behav. 86, 25–35.

Senft, R.A., Meddle, S.L., Baugh, A.T., 2016. Distribution and abundance of glucocorticoid
and mineralocorticoid receptors throughout the brain of the great tit (Parus major).
PLoS One 11, e0148516.

Sokal, R.R., Rohlf, F.J., 1995. Biometry: The Principles and Practice of Statistics in Biological
Research. W.H. Freeman, San Francisco.

Spiegelhalter, D.J., Best, N.G., Carlin, B.P., van der Linde, A., 2002. Bayesian measures of
model complexity and fit. J. Roy. Statist. Soc. B 64, 583–639.

Stöwe, M., Rosivall, B., Drent, P.J., Möstl, E., 2010. Selection for fast and slow exploration
afffects baseline and stress-induced corticosterone excretion in great tit nestlings
Parus major. Horm. Behav. 58, 864–871.

Van Oers, K., Naguib, M., 2013. Avian Personality. In: Carere, C., Maestripieri, D. (Eds.), An-
imal Personalities: Behavior, Physiology, and Evolution. University of Chicago Press,
Chicago, pp. 66–95.

van Oers, K., Drent, P.J., de Jong, G., van Noordwijk, A.J., 2004a. Additive and nonadditive
genetic variation in avian personality traits. Heredity 93, 496–503.

van Oers, K., Drent, P.J., de Goede, P., van Noordwijk, A.J., 2004b. Realized heritability and
repeatability of risk-taking behavour in relation to avian personalities. Proc. R. Soc. B
271, 65–73.

van Oers, K., de Jong, G., Drent, P.J., van Noordwijk, A.J., 2004c. A genetic analysis of avian
personality traits: correlated, response to artificial selection. Behav. Genet. 34,
611–619.

van Oers, K., Klunder, M., Drent, P., 2005. Context dependence of personalities: risk-taking
behavior in a social and a nonsocial situation. Behav. Ecol. 16, 716–723.

Williams, T.D., 2008. Individual variation in endocrine systems: moving beyond the ‘tyr-
anny of the golden mean’. Phil. Trans. R. Soc. A 363, 1687–1698.

Wingfield, J.C., Suydam, R., Hunt, K., 1994. The adrenocortical responses to stress in snow
buntings (Plectrophenax nivalis) and Lapland longspurs (Calcarius lapponicus) at Bar-
row, Alaska. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 108, 299–306.

108 A.T. Baugh et al. / Hormones and Behavior 93 (2017) 99–108

http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0255
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0255
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0260
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0260
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0260
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0265
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0265
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0270
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0270
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0275
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0275
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0280
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0280
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0280
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0285
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0285
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0290
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0290
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0295
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0295
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0295
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0300
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0300
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0300
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0305
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0305
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0310
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0310
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0315
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0315
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0315
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0320
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0320
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0325
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0325
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0330
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0330
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0330
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0335
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0335
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0335
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0340
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0340
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0345
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0345
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0345
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0350
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0350
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0350
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0355
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0355
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0360
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0360
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0365
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0365
http://refhub.elsevier.com/S0018-506X(17)30029-6/rf0365

	Risk-Averse Personalities Have A Systemically Potentiated Neuroendocrine Stress Axis: A Multilevel Experiment In Parus Major
	Recommended Citation
	Authors

	Risk-�averse personalities have a systemically potentiated neuroendocrine stress axis: A multilevel experiment in Parus major
	1. Introduction
	2. Materials and methods
	2.1. Animals
	2.2. Behavioral testing
	2.3. HPA assessments
	2.3.1. Validation
	2.3.2. Blood collection
	2.3.3. Enzyme immunoassay
	2.3.4. Neural receptors quantification

	2.4. Statistical analyses
	2.4.1. Behavior: general
	2.4.2. Among-individual variances (i.e. repeatabilities)
	2.4.3. Covariances
	2.4.4. Linking neural receptors, HPA dynamics and behavior


	3. Results
	3.1. Behavior: general
	3.2. Behavioral variances
	3.3. Behavioral covariances
	3.4. Hormones: general
	3.5. Hormonal variances
	3.6. Hormonal covariances
	3.7. Linking neural receptors, HPA dynamics and behavior

	4. Discussion
	4.1. Personality
	4.2. HPA function
	4.3. Linking neural receptors, HPA dynamics and behavior

	5. Conclusions
	Ethics
	Competing interest
	Funding
	Acknowledgements
	References


