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A B S T R A C T

Residential colleges and universities face unique challenges in providing in-person instruction during the
COVID-19 pandemic. Administrators are currently faced with decisions about whether to open during the
pandemic and what modifications of their normal operations might be necessary to protect students, faculty
and staff. There is little information, however, on what measures are likely to be most effective and whether
existing interventions could contain the spread of an outbreak on campus. We develop a full-scale stochastic
agent-based model to determine whether in-person instruction could safely continue during the pandemic and
evaluate the necessity of various interventions. Simulation results indicate that large scale randomized testing,
contact-tracing, and quarantining are important components of a successful strategy for containing campus
outbreaks. High test specificity is critical for keeping the size of the quarantine population manageable. Moving
the largest classes online is also crucial for controlling both the size of outbreaks and the number of students in
quarantine. Increased residential exposure can significantly impact the size of an outbreak, but it is likely more
important to control non-residential social exposure among students. Finally, necessarily high quarantine rates
even in controlled outbreaks imply significant absenteeism, indicating a need to plan for remote instruction
of quarantined students.

1. Introduction

In March of 2020, most American colleges and universities closed to
in-person instruction, moving classes online and sending nearly all resi-
dential students home. In the coming fall, as many as 17 million of these
graduate and undergraduate students could return to campuses, over
two million of whom would likely live on campus [1].1 In the midst of
the global COVID-19 pandemic, this presents an unprecedented public
health and logistical challenge. At the same time, reopening to in-
person instruction is viewed as extremely important both pedagogically
and financially [2]. The experience of many institutions in the spring
reveals that on-campus instruction is important even if it does not all
occur in person: there were widespread reports of students experiencing
limited access to computing resources, intermittent internet access, and
even homelessness [3]. In providing these resources, residential col-
leges facilitate both instruction and appropriate evaluation of student
learning.

Residential universities face a unique challenge in balancing the
benefits of on-campus and in-person instruction with the risks and costs
of operating during the pandemic. On the one hand, universities are
extremely constrained in their ability to control the spread of a virus on

∗ Corresponding author.
E-mail address: gressman@math.upenn.edu (P.T. Gressman).

1 In 2015–2016, 10.8 percent of undergraduates and 27.3 percent of graduate students took all of the courses for their degrees online [1]. Approximately 16%
of U.S. undergraduate postsecondary students live in university-owned housing.

2 Source code is available online at https://www.github.com/gressman/covid_university.

campus: students, faculty and staff all have repeated, regular personal
interactions in a closed space, and institutions have limited resources to
test and quarantine students. At the same time, administrators also have
an extremely high degree of control over the parameters of many of
these interactions, and can set what students are in which classes, when
those classes meet, and who students interact with in a residential set-
ting. Because of these unique features, standard epidemiological models
are of limited value for assessing the spread of a COVID-19 outbreak
on a college campus and for identifying the tools administrators could
most effectively use to minimize the likelihood and magnitude of such
an outbreak. Many residential colleges and universities around the
country and the world are therefore currently facing critical decisions
about how to adapt their normal operations to protect students, faculty,
and staff from COVID-19 during the coming academic year. An April
22nd Inside Higher Ed article [4] lists 15 different possible approaches to
the problem, each with clear strengths and weaknesses. In the absence
of relevant prior experience, these institutions are largely in the dark
about how one might expect a COVID-19 outbreak to evolve in the
unique environment of a college campus and how much of an effect
the many possible mitigation strategies should be expected to produce.
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To address the absence of reliable evidence, we have endeavored
to create a simulation which is as realistic as is reasonably possible.
Our simulation2 is a full-scale stochastic agent-based model (ABM)
of a reasonably large research university. In it, we are able to study
the spread of a highly virulent illness like COVID-19 and monitor the
efficacy of tools like quarantining and contact tracing, mask-wearing
policies, partial transitions to online instruction, and others. Agent-
based models such as ours are uniquely well-suited to the situation
we study because behavior of both instructors and students in an
academic environment is highly structured spatially and temporally,
which can lead to consistent overestimates of disease incidence when
other tools like structured metapopulation models are used [5]. The
modest scale (22,500 total agents) of a university community also means
that concerns about computational complexity of ABMs like ours are
not applicable.

It is important to emphasize that despite the many realistic features
we have incorporated, any such simulation is, by its nature, a funda-
mentally limited caricature of a complex real-world situation. However,
there are some key lessons that we believe can be reasonably carried
over to inform real-world decisions:

• Testing accuracy is a critical issue which needs immediate
attention. In an aggressive contact-tracing scenario, it is reason-
able to expect every positive test result to lead to the quarantining
of 10–20 students. In a population with a low infection rate, a
high quarantine rate can still result if testing is not extremely high
accuracy. In particular, the most important driver of quarantine
population is the false positive rate of the test. The functional
difference between tests with 1% and 0.01% false positive rates
is enormous in the university setting, but none of the existing
molecular tests have been examined closely enough to carefully
determine the order of magnitude of the false positive rate. At
least a few have been shown to have rates higher than 1%, which
could lead to the unnecessary quarantining of literally thousands
of students over the course of a semester.

• Holding large classes greatly increases the risk of a sig-
nificant outbreak on campus. Our simulation finds that all
reasonably successful strategies involve moving instruction for
large classes entirely online. In particular, dividing large classes
into smaller sections which still physically meet does not appear
to have a strong enough effect to protect students and instructors.

• It is extremely important that students refrain from all con-
tact outside of academic and residential settings. Even very
small rates of contact in large group settings like dining halls
or parties may be sufficient to sustain an outbreak on campus
regardless of any other protective measures which have been put
into place.

• All instructors need to prepare for extended student absences
due to quarantine. In our best-case scenario, classes spend an
average of 1–2 weeks of the semester with at least 10% of the
students absent due to quarantine. For this reason, we expect
that even small classes which are permitted to meet in person
will still need procedures in place for continuity of instruction for
quarantined students.

Our study is a complement to recent work by Weeden and Cornwell
on how large enrollment networks might contribute to the spread of
disease on campus [6]. They show that students are highly intercon-
nected through their courses and argue that the ‘‘small world’’ nature
of enrollment networks makes the student population susceptible to
high rates of disease transmission. Removing large courses from the
university network (by moving them online) decreases the connectivity
in these networks, but is not by itself enough to contain outbreaks. Our
work examines these enrollment networks with simulated rather than
empirical network data, and includes instructor interactions, models
residential exposure, and allows for non-residential exposure. We also
include heterogeneity in the amount of contact that students experience

with one another in classes and account for temporal variation as
courses meet throughout the week. Incorporating current best-known
immunological and epidemiological parameters also allows us to ex-
amine how different intervention measures might complement one
another in slowing disease transmission. Because the specific question
about the effect of moving large classes online is so important, we also
include a simpler analytical model in the Appendix which reinforces
what we see in our ABM.

The remainder of the paper describes the structure of our ABM
and discusses some of its most significant parameters (Section 2). We
then present some key implications for the spread of infection and the
size of the quarantine population corresponding with different control
methods (Section 3). Section 4 concludes.

2. Methods

In this section we give a description of the overall structure of our
model and highlight several of the more significant parameters. Our
choice of ABM to approach this problem is motivated by several factors.
First and foremost, ABM allows us to incorporate very precise informa-
tion about contact heterogeneity between populations (instructors and
students) and even among students at different stages of their university
careers. It is well-known that contact heterogeneity can significantly
affect dynamics [7,8] as can temporal contact structure [9], which
are both fundamental features of interaction in a university setting.
In situations when behavior is highly structured, it is known that
maintaining the identity of individuals is important [5,10]. For these
reasons, ABMs are uniquely well-suited to small-scale problems such
as ours and have already been used in studies of COVID-19 [11,12].

2.1. Viral dynamics

Each individual has a state which reflects their health status: Suscep-
tible (S), Infected (I), or Removed (R). Infected individuals have refined
states which reflect the incubation period they will experience, whether
or not they are symptomatic, and how many days their infection has
progressed. Independently of health status, individuals may also be
quarantined; when quarantined it is assumed that susceptible individ-
uals cannot become infected and infected individuals cannot transmit
infection to others.

Our simulated university consists of 20,000 students and 2,500 in-
structors interacting on a daily basis. Other roles on campus, e.g., ad-
ministrative staff, which do not have daily, in-classroom contact with
students are not modeled in an effort to focus on transmission through
academic contacts. In some cases, individuals in such positions may
more readily reduce their exposure to students through telework or
other adaptations. The sequence of events in a simulated day is straight-
forward:

1. Illness Testing: A predetermined fraction of the population is
randomly selected for testing. The default value is set at 3%,
which means that members of the community will be tested
approximately once per month. Anyone who was flagged via
contact tracing on the previous day is also tested.

2. Quarantining: Anyone from the Illness Testing step whose test
results were positive and any symptomatic infected individuals
who develop symptoms on this day are quarantined immediately
if not already quarantined. Additionally, such individuals are
flagged to have their recent contacts traced.

3. Status Updates: All Individuals who have been quarantined for
14 days are released; no individual is released from quarantine
for any reason before their 14th day. If they were susceptible
when entering quarantine, they emerge as still susceptible; those
who were infected or removed upon entering quarantine emerge
as removed. Similarly, individuals who have been infected for
14 days are updated to removed (R) status. We note that while
there is some evidence to suggest that a small fraction (∼1%) of
infected individuals become symptomatic 14 days or more after
infection [13], we neglect this possibility.

2
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4. Contact Tracing: Every individual who was flagged earlier in the
day (due to testing positive or developing symptoms) has their
contacts traced. Individual contacts are categorized as traceable
or nontraceable when they occur, depending on the context of
the interaction (traceable contacts representing more familiar
or easily-identifiable events, and nontraceable being reserved
for interactions which would not be particularly memorable to
either party). Simulated contact tracing identifies all of an indi-
vidual’s traceable (non-quarantined) contacts from the previous
two days (not including today, and not including days when
the flagged individual was quarantined).3 These contacts are
flagged for testing tomorrow and are quarantined immediately.
The purpose of testing these individuals after they have already
been quarantined is to trace their contacts (after the test on the
next day) if the test is positive.

5. Infection Transmission: Non-quarantined susceptible individu-
als who contact non-quarantined infected individuals become
infected themselves with a probability that depends on the in-
fection state of the infected. Additional details about the model
of transmission dynamics appear below.

6. Outside Transmission: Agents in our model are limited to
university-affiliated individuals. However, as universities do not
exist in complete isolation from their surrounding communities,
it is important to account for the effects of off-campus interac-
tions. To model these transmission dynamics, it is assumed in the
model that on any particular day, there is a 25% chance that one
non-quarantined susceptible individual becomes spontaneously
infected4 due to presumed transmission from non-university
contact. By the state-level standards in the ‘‘Process to Reopen
Pennsylvania’’, this rate is rather low, roughly 1∕3 of the amount
which allows transitioning from the most restrictive ‘‘Red’’ phase
to the ‘‘Yellow’’ phase (which corresponds to at most 50 new
cases total per 100,000 in a 14-day period). Thus our default
scenario models a relatively low level of transmission outside
the university. Whether this low level can be achieved broadly in
the U.S. by late August is a question of growing concern; results
based on higher levels of outside transmission are summarized
in Tables 4 and 5 in the Appendix.

The incubation period for each infected individual is fixed to have
mean 5.2 days and is randomly assigned to an individual upon infec-
tion. The exact distribution used is a discretized Gamma distribution
with shape parameter 𝑘 = 4 (details are in Appendix A.1.3 of the
Appendix). The overall mean of 5.2 days is consistent with several
estimates in the literature [13,14].

The degree of infectiousness of an infected individual is a function
of the time since infection. The serial interval is based on an estimate
of 5.8 days [15] by setting transmission probability, which is the
probability that any one potential transmission contact actually results
in infection, to be proportional to probability density function of a
discretized Gamma distribution with mean 5.8 and shape 𝑘 = 4. In other
words, the infectiousness of an individual is continuous rather than
discrete and has a time profile that matches (up to proportionality) the
profile of the Gamma distribution.5 This is a more subtle approach than

3 The choice of two days is consistent with current CDC guidelines (revised
May 29, 2020) on the contact elicitation window. This protocol matches the
recommendations of the WHO, European CDC, and Public Health Canada.

4 Since our agents are limited to those affiliated with the university, we do
not model the individual contacts or the disease state of the infected person
who is responsible for off-campus to on-campus transmission; only the end
result, i.e., the new person who has been infected and the day of infection, is
needed.

5 In particular, infected individuals ‘‘become infectious’’ on the first day
but the infectiousness on day 1 is only roughly 30% of its peak value, so
transmission events on day 1 are substantially less likely than on day 4, for
example. Models like [16] which approximate latency and infectious periods

our model of incubation period, which reduces the experience of symp-
toms to a simple binary yes/no situation. Transmission probabilities are
unknown parameters, so we calibrate the model in such a way that
the basic reproduction number 𝑅0 for non-residential contacts roughly
matches the most relevant estimates in the literature. In particular,
we normalize transmission probabilities based on expected rates of
contact (described in the next section) so that an infected individual not
subject to quarantine would transmit the disease to an average of 3.8
individuals over the course of the illness. In other words, probabilities
have been adjusted so that when residential effects are ignored, the
basic reproduction number 𝑅0 for the simulation is effectively 3.8. As
with the expected number of contacts, it is important to emphasize that
the effective reproduction number observed in each simulation will depend
on the circumstances being simulated: as various prevention measures are
taken, the value of the effective reproduction number decreases relative
to a scenario where all contacts are susceptible and no measures are
taken to combat illness. While the earliest analyses of the Wuhan out-
break estimated 𝑅0 to be closer to 2.2, subsequent work tends to point
towards somewhat higher values. For example, Sanche et al. estimate
𝑅0 to be 5.7 (95% CI: 3.8–8.9) [17] and Flaxman et al. find a similar
value of 3.87 (95% CI: 3.01–4.66) [18]. Given the reasonable expectation
that contact rates on college campuses will be higher than the general
population, it is natural to assume that these higher estimates are more
appropriate for the current modeling purposes. This is consistent with
estimates of 𝑅0 for influenza outbreaks [19], which tend to be higher
in confined settings like schools, military bases, and ships.6 We have
also investigated the stability of our results with respect to alternate
choices of 𝑅0 and have summarized the results in Tables 4 and 5 in
the Appendix.

Additional features of the dynamical aspects of the simulation are
as follows:

• We assume that 75% of those infected have cases which are mild,
asymptomatic, or simply unreported. These individuals do not
spontaneously self-report for quarantine in Step 2 above; they are
modeled as half as infectious as symptomatic counterparts [16].

• There is a global parameter to account for a variety of nonphar-
macological interventions (e.g., mask-wearing). The default value
is chosen to so that transmission probabilities are reduced to
50% of the values identified above. This decreased transmission is
included to reflect the expected effects of universal mask-wearing
policies. MacIntyre et al. [20] find that masks in the home reduce
transmission rates to roughly 30% of their otherwise-expected
values, and a recent meta-analysis of Chu et al. [21] finds similar
risk reductions for the combination of mask-wearing and social
distancing. Because mask-wearing is modeled as universal (every
simulated interaction is between two masked individuals), this
50% reduction can be understood as broadly capturing both the
ability of masks to trap virus-laden droplets expelled by the
infected as well as particle filtration effects which benefit the
susceptible [22].

• We assume that on the first day of classes, 5% of the community
has already obtained immunity (and hence reside in the R state).
These individuals are not assumed to be known to the adminis-
tration, and consequently are subject to quarantine if they have
been identified to have recent contact with an individual known
to be infected.

in binary on/off ways estimate parameter values which correspond roughly to
the period in our model when an individual is in the range of 85%–100% peak
infectiousness.

6 A review of the literature on 𝑅0 estimates for influenza [19] finds
generally higher point estimates for 𝑅0 in confined settings in all but the 1968
pandemic. Median 𝑅0 point estimates in confined settings were 3.82 for the
1918 pandemic and 1.96 for the 2009 pandemic compared with 1.80 and 1.46
in community settings.

3
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Each simulation is initialized with zero infected individuals and runs
for 100 days. New infections arrive from off-campus transmission, as
described above, and propagate through the community.

2.2. False Positive Rate (FPR)

One feature which is critical to the dynamics of quarantine pop-
ulations is false positive results during the Illness Testing phase. We
assume that the false positive rate (FPR) is 0.1% and the false negative
rate is 3.0% in the main analysis. We have endeavored to select these pa-
rameters to be consistent with what is possible with existing tests [23].
Tables 6 and 7 also show results for a wide range of values of the FPR
and FNR; there is additional discussion of the FPR in Section 3. One
can see from the tables that outcomes do not depend sensitively on the
FNR but can vary by orders of magnitude under different values of the
FPR.

It is extremely difficult to identify a reasonable value for the FPR
given the current data on available tests. The clinical evaluations
reported in Emergency Use Authorizations (EUAs) for many molecular
tests currently approved by the FDA involve testing only 30 negative
reference samples. This sample size is too small to guarantee an FPR
of much below 3%, which in our simulation leads to catastrophically
high rates of quarantine. To arrive at a reasonable order of magnitude,
we consulted results from the Foundation for Innovative New Diagnos-
tics, which established an average clinical specificity of 99.4% for a
number of the most widely-used molecular tests [24]; these results are
considered tentative, as it is perhaps possible that they are a function
of improperly defined negative reference standards (i.e., the level at
which a result is considered negative) rather than true false positives.
We also reviewed 61 EUAs approved by the FDA for molecular tests and
found six that reported false positive test results with small sample sizes
(∼30) [25]. Thus it may be reasonable to expect that a realistic FPR may
be on the order of 0.3%–0.6%. Scholarly work on the FPR of COVID-19
testing is extremely rare, but once source makes a conservative estimate
of the FPR at 0.8% based on external quality assessments of similar
assays [26].

A simple calculation illustrates a serious problem with this FPR:
in a community of 22,500 people, 3% daily testing means conducting
675 tests per day. A false positive rate of 0.8% means that an average
of 5.4 tests per day will result in false positives assuming that the
prevalence of true infections is small or zero. In isolation this is a
modest number; however, when combined with contact tracing, 5.4
false positives per day is clearly infeasibly high when one considers
that 10–20 individuals will be quarantined for each (falsely) positive
individual. This means that a university that is entirely disease-free
would send 54–108 people per day into quarantine. If individuals are
kept in quarantine for 14 days, this means a peak quarantine population
would be 750–1,500 in quarantine at any given moment (about 3%–
7% of the university population). Over the course of the semester,
5,000–10,000 individuals would be sent into quarantine at one point or
another, which is 22%–44% of the population, even in the absence of any
true infections.

In short, a naive approach to mass testing in a university envi-
ronment can be reasonably expected to quickly lead to a crisis of
over-quarantining. The good news is that such a scenario is entirely
avoidable with proper planning. By developing testing protocols under
which (for example) positive samples are always retested, the FPR can
be effectively lowered to a more sensible level. Pooling samples may
also allow for reasonable retesting strategies at minimal cost. As the
benefit of such protocols so vastly outweighs this cost, we assume
that reasonable institutions will do so and set the FPR for the testing
protocol in our main simulation to 0.1%.

The selection of a FNR of 3% is also consistent with values reported
in many EUAs. When the overall prevalence is illness is low, we find
that the disease and quarantine dynamics are not significantly affected
by substantial variation of this parameter (see the Appendix). This is to

be expected when overall prevalence is low, simply because the total
number of tested individuals who are genuinely infected will be very
small, so the number of errors will be very small. For example, when
the total number of infected individuals is below 100 for the entire
semester (as it is in a number of scenarios we model), the number
of false negative results encountered is correspondingly small—only
2 or 3 total in a semester. This means that testing errors will only
mistakenly classify 2–3 infected individuals as negative. The effect of
2–3 additional infected individuals on campus out of 100 is relatively
small. This is vastly different than the case of the FPR when tens of
thousands of true negative tests can lead to hundreds of false positive
results.

2.3. Contact patterns

Every run of the simulation consists of 20,000 students and 2,500
instructors who interact daily for 100 days. Every day, simulated
individuals experience contacts with each other, and these contacts
are the basis for both disease transmission and the mitigation strategy
of contact tracing. We allow for contacts to be asymmetric, meaning
that the likelihood of transmission from person 𝑎 to person 𝑏 need not
necessarily be the same as the likelihood of transmission in the reverse
direction (which would be the case in a classroom setting because an
infected instructor giving a lecture would be expected to shed more
virus particles in class than an infected student would by listening to
such a lecture), but in almost all situations we model both directions of
transmission as equally likely. We also categorize contacts as traceable
or nontraceable. This latter category is meant to model contacts which
are incidental or otherwise not sufficiently memorable to be recalled
upon reflection.

There are two main sorts of contacts in the simulation. The most
common sort of contact is Poisson contact, generated by a Poisson point
process whose rate is determined by a detailed scoring system which
takes into account whether the two individuals have any common
activities on a given day and the nature of their roles in those activities
(e.g., a student and an instructor in a class will have a higher rate
of contact than two random students in the same class, but lower
than the rate of contact of two close academic contacts in the same
class). Activities and shared characteristics which give rise to contact
opportunities include membership in common classes, recitations, or
departments, or study groups (which are formed at the beginning of
the simulation between smaller groups of individuals within larger
classes, recitations, and departments). These contacts model a wide
variety of possible scenarios that one might encounter in a university
setting. Details can be found in A.1.2 of the Appendix. In particu-
lar, there are several key ‘‘scales’’ on which contacts occur: a close
contact scale which captures interactions like small study groups and
nearest classmates in a classroom, a classroom scale which includes
all individuals in a room at the time of class, environmental contacts
that occur around physical presence in a building or department (like
shared elevators or hallways), and broad environmental contacts which
can occasionally occur between any two individuals on campus. We
model contacts on each of these four scales as roughly equally likely
to occur (so in particular, each scale generates its own collection of
contacts each day and contact rates are normalized independently
within each scale to produce comparable numbers of contacts across
scales). We also consider the close contact and classroom scale contacts
to be traceable and the department and broad environmental contact
scales to be nontraceable. For convenience, we refer to all the forms
of contact above as ‘‘academic contacts’’ to emphasize that they are
all heavily influenced by the overall rate of in-person (as opposed to
online) academic activity. We also include a category of broad social
contacts within the Poisson contact system to capture contacts at a large
social scale which are not directly tied to the acts of going to or from
classes.

The second type of contact is residential contact, which is guaranteed
to occur every day. Residential contacts are de facto stronger than other

4
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contacts in the sense that transmission in both directions is always
possible every day (whereas under normal circumstances there is effec-
tively only a 50% chance of a particular direction of transmission being
allowed for a Poisson contact.) As a robustness check, we constructed
two distinct models of residential contacts: a ‘‘discrete’’ model in which
students are assembled into permanent, small residential groups of
fixed size, and a ‘‘linear’’ model in which students are effectively
arranged in linear dormitories and have permanent contact with small
numbers of adjacent students. Both models gave very similar results,
so we have adopted the linear model as standard. We assume under
normal circumstances that students have an average of 1 residential
contact, which means that the typical residential arrangement is that
students are housed in pairs (i.e., an average student has one daily
residential contact with some other student). We also test the effects of
increasing the number of these types of residential (and other) contacts.

It is important to emphasize that the average daily number of
contacts for a simulated individual is a function of many factors and
is not an adjustable parameter. Our contact system is normalized to
yield an average of approximately 11 traceable and 8 nontraceable
contacts per person per day when all classes are meeting physically
and no social distancing is being exercised. This is consistent with a
number of surveys of the general public which found that participants’
self-reported average daily contacts fell in the range of 10 to 14 per
day [27,28]. Studies specific to university settings find similar average
rates of contact among students, faculty, and staff [29]. Determining
a realistic rate for nontraceable contacts is a bit more challenging, but
we note that under our normalization, the attack rate in a residential
setting (i.e., the rate of transmission to individuals contacted every
day) is 32.9%, which is similar to the observed secondary attack rate
to spouses in a household setting [30]. We examine the sensitivity
of the results to the total number of daily contacts in Tables 2 and
3 in the Appendix. We emphasize that the average student in our
simulation has at least one class in common with 244 others on average,
so the contact process necessarily assumes that it is rather unlikely
that a student will experience contact with any particular one of those
individuals on any given day.

The number of courses is variable but is 3,750 in expectation. Very
large classes with more than 150 students are split roughly evenly into
enough sections to keep each one below 150. Classes are independently
randomly scheduled as Monday, Wednesday, Friday (40%), Tuesday–
Thursday (40%), or Monday–Wednesday (20%). Classes of more than
50 students are also assigned teaching assistants who run additional
once-per-week recitations with 20 students at once. Each assistant is
also a student; any student who is not taking the given course or
any other course of lower difficulty is eligible to be an assistant,
and assistants are limited to be responsible for at most 80 students.
Recitations meet only one day per week, and never on the day that the
corresponding lecture is held.

Students are evenly distributed into 8 large cohorts. An individual’s
cohort affects the probability that they will enroll in a particular
course, with students in cohort 0 (corresponding to freshmen) being
most likely to select courses of lowest difficulty and students in cohort
7 (roughly, advanced graduate students) being most likely to select
courses of highest difficulty. Each student enrolls in either 4 or 5
courses (with both being equally likely) The precise distributions for
course preferences were designed in an ad hoc way to generate a
distribution of class sizes which is consistent with reported data at the
University of Pennsylvania. The distribution of class sizes for a typical
randomly-generated university is summarized in Fig. 1. Additional
implementation details are given in A.1.1 of the Appendix. We also note
a few important statistical features of our simulated contact process
which are similar to the values found in the actual academic enrollment
network at Cornell as reported in [6]:

• The mean class size in our simulated university is 24.
• Roughly 90% of classes have 50 or fewer students.

Fig. 1. Distribution of class sizes (before splitting very large classes into smaller
sections) averaged over 100 randomly-generated universities. Here the proportion
indicates the fraction of all ∼3,750 courses which fall into the given size bin. The
largest class in the university has approximately 800 students before subdivision.

• The graph-theoretic properties of our simulated university also
closely mirror real-world data: students are, on average, con-
nected 1.2% of the entire student body through common courses
(i.e., the average student has a common classmate with 244
others). The collection of classmates-of-classmates for an average
student includes nearly half the student body (i.e., the average
student is connected to 50.0% of all others via a 1- or 2-edge path),
and by the next step, 99.2% of the student body can be reached
via a path of length at most 3. There are, on average, 2.5 ‘‘degrees
of separation’’ between a typical pair of students (i.e., the average
geodesic distance in the classmates graph is approximately 2.5).

Within each class with at least 5 students, it is assumed that students
make smaller study/social groups (the so-called ‘‘close contact’’ scale
from the previous section) with size that scales like the square root of
the overall class size (e.g., a class of 100 students would be subdivided
into roughly 10 social groups of 10 students each). This is meant to
reflect natural social tendencies of students and to reflect the fact that
students tend to arrange themselves in the classroom in similar ways
from day to day, so that contacts inside a classroom environment are
unlikely to be uniformly random. Study groups are most likely to meet
on the days when their common activity is in session, but still have a
smaller but positive rate of contact on other days as well.

Classes are also randomly assigned to one of 120 departments
with frequency which is exponentially decaying, so that the largest
department is expected to be ten times the size of the smallest de-
partment in terms of the number of courses offered. Once classes are
assigned to departments, instructors are assigned to departments in
proportion to the number of classes taught by each department (very
small departments are guaranteed at least one instructor). Instructors
within the same department have additional positive contributions to
their Poisson contact rates during the week but not during the weekend.
As with students, instructors also form close associates within their
department.

2.4. Outcome variables and modeled interventions

Our two main outcome variables are the total number of peo-
ple infected and the peak number of students in quarantine during
the semester. These two outcomes summarize the risk to the campus
community from the disease and the costs and academic disruption
involved in having students in quarantine on campus. Our baseline
level of intervention (the ‘‘standard intervention’’7) consists of the com-
bination of quarantine and contact tracing, universal mask-wearing,

7 We have constructed the standard intervention as a tool to study the
most widely-discussed and broadly-applicable on-campus infection mitigation
strategies, but we note that there are many other potential strategies which
institutions might develop around their own needs and capabilities. One such
interesting idea is the formation of smaller, separated academic cohorts [31],
which may be able to capitalize on the structure of social networks to limit
disease spread [32].
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daily randomized testing of 3% of the university community, and transi-
tioning all classes with 30 or more students to online-only interaction.8
As part of the online transition, we model the social distancing which
is afforded by moving smaller classes into the physical classrooms
vacated by larger classes which have moved online. It is worth noting
that there are two main classes of intervention: those that reduce
both infections and quarantine (mask-wearing, social distancing, tran-
sitioning large classes) and those that reduce infections but increase
quarantine (quarantine and contact-tracing, randomized testing). In-
creasing testing accuracy (reducing the FPR) would be expected to
reduce quarantine without significantly affecting infections.

3. Results

As a small validation of the model, we analyzed the early-phase
doubling period for uncontrolled growth when no intervention sce-
narios are applied. Specifically, we compute the doubling period for
cumulative infections over the range of days beginning with the first
infection and ending on the day when at least 2,000 individuals have
been infected (note: all 500 simulated runs exceeded 2,000 infected
individuals). We found that the median early-phase doubling period
for our model was 2.185 days, with 50% of simulations falling between
2.004 and 2.365 days. The observed doubling period of cases in the
United States between March 1 and March 31 was 2.53 days [33]. It is
reasonable to expect the doubling period within an American university
to be somewhat shorter than was observed in the general population.
To develop a sense of what realistically short doubling periods might
be, we observe that data from Quebec’s Federal Training Centre prison
showed a doubling period of approximately 1.94 days between April
10 and April 21 [34].

3.1. Overview of control measures

Although implementing the standard intervention is costly, it is
also crucial for controlling disease outbreaks. In the absence of any
intervention, all scenarios end with effectively all susceptible commu-
nity members developing COVID-19 by the end of the semester, with
peak infection rates reached between 20 and 40 days into the semester
(Fig. 2). In contrast, the standard intervention avoids the epidemic tip-
ping point altogether (i.e., the effective reproduction number remains
well below 1) and keeps cumulative infections below 66 in more than
95% of simulations.9 As we discuss later, the results are sensitive to the
rates of social contact among students: increasing expected broad social
contacts from 2 per day (as in panel (b)) to 17 per day (as in panel (c))
increases the median cumulative number of infections from 44 to 461
even with the full standard intervention.

Which measures in the standard intervention are the most impor-
tant? To control infections, the online transition for classes with more
than 30 students is very effective: allowing in-person meetings of large
classes increases infections from 43 to 538 in the median simulation
run (Fig. 3). Requiring masks is moderately important: not requiring
masks increases median infections to 131. Random testing and contact
tracing have the lowest individual impacts, and removing either of

8 We investigated several other possible interventions, including dividing
large classes into many smaller sections and/or bringing only certain cohorts of
students back to campus. These alternatives were found to be far less effective
than moving large classes online, primarily because the risk associated to
large classes is so extreme in comparison to small classes that splitting a
150-person section into 2 75-person sections still involves preserving many
more transmission opportunities than moving both of those 75-person sections,
or equivalently the original 150-person section, online. We will not focus on
mitigations with reduced effectiveness here.

9 Regular flatter portions of the graph indicate weekends: the number of
new infections is largest during the week when classes are in session. We note
that others have observed that weekends play a critical social distancing role
in reducing influenza spread [35].

Table 1
Effect of increased rates of contact on cumulative total infected (left) and peak
quarantine size (right).
Cumulative Total Infected Peak Quarantine Size

Extra Contacts/Day Extra Contacts/Day

+5 +10 +15 +5 +10 +15

Academic 50 60 71.5 Academic 168 197 227
Residential 89.5 163.5 279 Residential 334 621 1059.5
Broad Social 72 162 461 Broad Social 408.5 964 2587.5

these measures (while keeping all others) increases median infections to
50 and 47, respectively.10 The effect of moving classes into larger spaces
(social distancing) is also small; failing to capitalize on this opportunity
raises the median infection total to 48.5.11

The standard intervention results in a median peak quarantine
level of 150. In-person large class meetings drastically increase this
number both by increasing the number of infections and increasing the
number of students exposed to each positive case: 1,815 students are
in quarantine at peak. Removing contact tracing and random testing
all reduce this number (to 20 and 50) at the cost of increasing the
cumulative number of infections. Not requiring masks nearly doubles
the peak number of quarantined students to 272. To emphasize the
challenge these numbers represent, let us also note that in the standard
intervention, the median number of unique individuals quarantined at
some point during the semester is 602, which means that even in
this full-strength mitigation scenario, it often happens that 3% of all
students spend some fraction of the semester in quarantine.

As noted in Section 2.1, we find that the false positive rate has a
very large effect on the peak quarantine size. Table 7 in the Appendix,
for example, shows that a FPR of 2% can increase the median peak
quarantine size from 150 to 1,443. Given the uncertainty around what
constitutes a realistic FPR, we also simulated a ‘‘high specificity’’ testing
regime in which the FPR is set to 10−6 and the false negative rate is set
to 6%. This corresponds roughly to a policy of mandatory retesting of
every positive result and a presumption of negativity when the second
test is negative. Even with the increased false negative rate, the change
to high specificity testing has only a minor effect on total infections
(the median is 45 instead of 43). The main difference is a more than
twofold reduction in the number of students in quarantine: median
peak quarantine is lowered from 150 to 66. The effect on the total
number of individuals quarantined is even more dramatic: the median
number of unique individuals experiencing quarantine drops from 602
in the standard intervention to 178 with high specificity testing.

We also examine the dependence of these results on increasing the
rates of different types of social interactions. We increased interaction
rates for academic interactions (in and around the classroom), residen-
tial, and broad social contacts to simulate an additional 5, 10, or 15
contacts per day. (In the case of academic contacts, we note that the
standard intervention leads to only some fraction of these additional
contacts actually occurring). Table 1 summarizes the new levels of
cumulative total infected and peak quarantine size under these different
scenarios.

Our model is relatively insensitive to additional academic contacts
when large classes are taking place entirely online12; an additional 15
academic contacts per day almost doubles the overall rate of academic
contact but does not double the total number of infected individuals or
the peak quarantine size. On the other hand, an increase of 5 additional

10 We note, however, that although random testing has only a small direct
effect on reducing infections it may be essential for monitoring and responding
to the prevalence of the disease on campus.

11 Infection and quarantine rates for additional intervention bundles are
reported in the robustness checks in Appendix Tables 2 and 3.

12 We note that additional academic contacts are indeed much more
influential when classes have not been moved online.
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Fig. 2. Cumulative infections over a 100-day semester. The black curve is the median daily value for 500 independent runs of the simulation and the dark and light regions
indicate quantiles around the median containing 50% and 90% of outcomes, respectively. Under no intervention the median cumulative number of new infections reaches 20,126
(falling between 20,026 and 20,212 in 90% of simulations), or 89.4% of the total campus population.

Fig. 3. Median number of total community members infected over the course of the semester and peak number of students in quarantine by intervention bundle, plotted on a
log scale. Bars indicate quantiles around the median containing 50% and 90% of outcomes, respectively.

residential contacts raises the total number of infections to 89.5, which
is more than double the default level of 43. Peak quarantine size is also
more than doubled. Increasing broad social contacts by 5 per day has
a slightly weaker effect on total infections than does the corresponding
increase for residential contacts, but peak quarantine size increases to
476, which is 272% of the default level. Thus there is a clear difference
in our model between the risk involved with additional academic versus
non-academic contact, and it is the latter which has stronger undesir-
able consequences. Between residential and broad social contacts, the
comparison is more difficult, but as the number grows larger, broad

social contacts become clearly more problematic than residential con-
tacts. This is likely due to the fact that residential contacts are far more
compartmentalized than broad social contacts, which places stronger
limits on the overall rate of transmission that can occur exclusively
within the residential contact network. Because residential contacts are
a closer form of contact than broad social contact (residential contact
occurs every day whereas broad social contacts between the same
individuals occur much less frequently on average), it further seems
relatively unlikely that real-world students would be able to form very
close residential contacts with 10 or more individuals, while it would
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be rather easy to come into regular broad social contact with much
larger numbers of people through extracurricular activities and social
events.

3.2. Moving large classes online

A key component of managing both infection rates and quarantine
peak is to move the largest classes online. Our baseline standard
intervention scenario moves all classes with more than 30 students
online; this represents approximately 20% of the classes in our modeled
university (Fig. 1). This intervention is highly effective and presents
important tradeoffs. Teaching effectively online is more costly than
face-to-face instruction in terms of course preparation13 and is poten-
tially less appealing to students. Limiting large classes also drastically
reduces infection rates by reducing the number of students exposed
to an infected individual and reduces quarantine rates by reducing
the number of students identified for quarantine via contact tracing in
response to a positive test. Large classes are also more dangerous for
instructional staff. Moving large classes online has the added benefit
of facilitating social distancing measures in existing classes by making
larger capacity classrooms available for smaller classes.

How sensitive are our outcomes to the threshold for moving to
online instruction? Fig. 4 shows the response of both the infection count
and peak quarantine to changes in the in-person class size cap. These
figures show that eliminating the largest classes is crucially important:
allowing all classes to meet in person increases the median number
of infections from 43 to 527 and the median peak quarantine from
150 to 1,813. In 5% of simulations, the peak number of students in
quarantine reaches 2,697 and 893 people are infected by the end of
the semester. The responses to class size are very nonlinear: relaxing
the cap at 30 leads to only mild growth in infection and quarantine,
while increasing beyond 100 leads to larger growth, and increasing
beyond 120 rapidly expands the magnitude of the outbreak. The exact
threshold at which this rapid escalation occurs is, of course, a function
of the other interventions in place (3% daily random testing, contact
tracing and quarantine, and mask wearing) and should not be expected
to persist in all or even most real-world environments. However, there
does appear to be a general principle at work here, which is that
although the connectivity of the academic network graph is still high,
the number of transmission opportunities is greatly diminished: with
no online transition, students are classmates with an average of 1.2%
of the student body, and when classes of 30 and greater transition
online, the proportion drops to only 0.2%. This roughly means that
more than 80% of the edges in the graph connecting students result
from the largest 20% of classes. Such a drop does not in and of itself
guarantee successful containment, but in our model combines with the
other interventions to result in a decrease of the median effective repro-
duction number from 1.125 in the uncapped case (which is technically
uncontrolled, but close enough to 1 that exponential growth is difficult
to detect on the span of 100 days) down to 0.44, which is safely outside
the range of uncontrolled exponential growth.

The class size cap also has a significant impact on the viability
of courses as the semester progresses. Fig. 5 plots the number of
days in which more than 10% of students in an average class are
quarantined as a function of the online class size threshold. This reflects
a heightened likelihood that a substantial number of classes have a
practically meaningful number of students absent due to quarantine.
This follows the pattern of the number of students in quarantine:
there is prevalent absenteeism for about 5.5 days on average when
classes are capped at 100 students, with this increasing to about 10.5
days for the top 5% most extreme simulations. Capping class size at
150 leads to an expected 22 days of significant absenteeism, with

13 Many curricula involve teaching courses annually rather than several
times per year, so even the partial progress made this spring in creating online
content may be of limited benefit in such cases.

the top 5% of simulation runs resulting in more than five weeks of
widespread absence. This presents a significant challenge for large, in-
person classes: holding large 100+ student classes in person does not
resolve the problem that those classes spend weeks of the semester with
at least 10 students in quarantine and in need of remote instruction.
Planning for this by offering large classes online has the added benefit
of decreasing absenteeism in smaller classes as well.

Finally, while we have chosen our parameter values (number of
daily contacts, 𝑅0, external infection rates, FPR and FNR) to be as
realistic as possible, it is important to examine how our results vary
with these inputs. These results are discussed in more detail in the
Appendix, but broadly indicate that the standard intervention is rel-
atively effective across a range of parameter values. Infections and
quarantine remain manageable (less than 200 infections and 300 in
quarantine) under the standard intervention as long as daily contacts
are less than 31.5 (baseline of 19) and the expected number of external
infections is less than 1.0 or 2.0 per day (baseline of 0.25) (Tables 2–
5). These external infection rates reflect a scenario where the spread
of coronavirus regionally is well under control: a local outbreak of
the virus will be reflected in highly elevated infection and quarantine
numbers on campus. The standard intervention bundle is extremely
robust to all reasonable values of 𝑅0: predicted infections and number
quarantined reach a peak of 73 and 193 respectively when 𝑅0 is raised
from 3.8 to 5.8. Outcomes under less rigorous intervention bundles are
much more sensitive to increases in these parameters. The total number
of infected is largely insensitive to changes in both testing sensitivity
and specificity, while quarantine grows very quickly as specificity
decreases (but remains relatively stable with changes in sensitivity).

4. Conclusion

The control of the spread of the novel coronavirus on campus is
a critical challenge for colleges and universities planning to open for
in-person instruction in the fall. Our agent-based model of the spread
and containment of this disease on campus is an effort to be as realistic
as possible: engaging the current state of the epidemiological under-
standing of this illness as well as capturing some of the idiosyncrasies
of the residential university setting. We are able to model behavior that
is highly structured and fully individualized using a relatively man-
ageable number of agents. This allows our model to more accurately
capture disease dynamics than a traditional compartmental model. We
find important implications for the impact of different control measures
on both the spread of the disease and on the disruption of academic
life. Our results suggest that it is important to have a robust portfolio
of interventions, and that universities should be keenly focused on the
specificity of their testing regime. Moving the largest classes online
is an effective tool in the arsenal to stop the spread of the disease
and to minimize the disruption caused by quarantining potentially
exposed students. We also find significant differences between the risks
involved with academic and other types of regular contact, with spread
through broad social contact representing being more dangerous than
residential contact in the extreme of many additional contacts.

There are several important limitations of our analysis. First, we
have not included seasonal effects in transmission patterns or the
arrival of infections from off-campus. These effects may require ad-
ditional control measures and have motivated several universities to
shorten their semester to avoid extending into December. To gain some
very basic understanding of the potential magnitude of the challenge
this may present, we have included results in Tables 4 and 5 in the
Appendix which suggest that the total number of those infected and
the peak quarantine size depend linearly on the rate of infections from
outside the university. There may also be additional unmodeled hetero-
geneity in the intensity of contact between students in different types
of class settings: interactions in large lectures, small seminars, and labs
may yield different transmission rates between students. Some students
may also opt to continue their instruction remotely (e.g., due to travel
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Fig. 4. Total infections and peak quarantine population as a function of the online class size threshold. The black curve is the median value for 500 independent runs of the
simulation and the dark and light regions indicate the 50% and 90% quantiles, respectively.

Fig. 5. Number of days that an average class experiences ≥ 10% of students in
quarantine as a function of the online class size threshold. The black curve is the
median value for 500 independent runs of the simulation and the dark and light regions
indicate the 50% and 90% quantiles, respectively.

restrictions), which will further decrease on-campus transmission for
a given enrollment. Finally, we have not accounted for the fact that
compliance with mask-wearing policies will likely be diminished in
residential settings and social settings; our modeling leads us to believe
that this will lead to modest increases in infection and quarantine rates.

Although we include instructors in this model, their off-campus
behavior and infection risk is largely unmodeled. In the standard inter-
vention, we find that a median of only 5 instructors are infected during
the semester, so the effect of additional within-university interactions
(between faculty and staff or administration, for example) may ulti-
mately be a more significant risk to faculty than direct faculty–student
interactions. Faculty and staff may also be exposed to the disease
through their social and residential contacts: in an urban setting, for
example, public transit may be a particularly significant risk to faculty
and staff and may indirectly lead to more student infections as well.

Finally, this model has limited applicability to other types of univer-
sity settings, such as partial-residential and non-residential campuses.
Small colleges may be importantly different than the university mod-
eled here in that large classes are less common (and smaller) and that
social networks may differ in ways that affect disease spread. Liberal
arts colleges seem to present an especially difficult challenge since daily
academic contacts would be much fewer (in a way that should be
relatively easy to model) but of a sort more likely to transmit infection

(which would be a more difficult feature to reasonably quantify or
calibrate without additional data). Nonetheless, many of the main
observations are likely to generalize well: increasing testing specificity,
limiting large classes, minimizing non-residential social contacts and
preparing to accommodate unpredictable absences are likely to be
useful across many contexts.
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Appendix

A.1. Additional model details

A.1.1. University structural modeling
As described in Section 2.3, our goal is to generate simulated course

rosters which yield a realistic distribution of class sizes as summarized
in Fig. 1. The process used to accomplish this task is as follows:

• From fixed histogram data, we generate a static probability den-
sity function for class size. Classes are assumed to be arranged
from largest to smallest, and this ordering is also regarded as an
ordering from less advanced to more advanced. To accelerate the
process of generating simulated schedules, we cluster classes into
groups of 5 (by order) to give a total of 750 different groups.

• Students randomly and independently choose 4–5 different course
clusters. Once the clusters are selected, courses are assigned by
choosing specific classes within each cluster uniformly at random.
This gives a computationally efficient way to produce the desired
marginal distribution of class sizes. Because the distribution is not
uniform, we found that other methods (e.g., drawing from a full
list of 3750 and repeating until all 4–5 selections were distinct)
resulted in changes to the marginal distribution which tended
to somewhat overrepresent large courses. The advantage of our
approach is that the final marginal distribution of class sizes will
simply be proportional to the selection probabilities.

• To account for the differing enrollment behaviors of students in
different courses, we construct different probability densities for
each cohort. To keep the marginal distribution fixed, we construct
custom distributions as follows. Let 𝑋0,… , 𝑋7 be i.i.d. random
variables with a fixed distribution on the set {1,… , 750}. From
these variables, we let 𝑌0,… , 𝑌7 be the values of 𝑋0,… , 𝑋7 sorted
from smallest to largest, i.e., 𝑌0 ≤ 𝑌1 ≤ ⋯ ≤ 𝑌7 and 𝑌0 =
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𝑋𝑖0 ,… , 𝑌7 = 𝑋𝑖7 for 𝑖0,… , 𝑖7 distinct. When selecting course
groups, students in cohort 𝑘 choose using the same distribution as
𝑌𝑘. This yields, for example, a very small but nonzero probability
that a course will be simultaneously taken by a student in cohort 0
(freshmen) and another in cohort 7 (advanced graduate students).

• To group students into close contacts/friends, we simply order
students in each class of at least 5 by the order in which they en-
rolled and form groups of minimal size meeting or exceeding the
desired target size (the square root of the overall size). This yields
at most one group in each class which is significantly smaller than
the target and no groups which are significantly larger. Because
each student’s cohort is chosen uniformly at random at the time of
enrollment and students choose their courses independently, the
order of students within a single course is effectively uniformly
random. With this method, there is the possibility for correlation
of grouping across classes when students have more than one class
in common, which desirable in a model of close social contacts.

A.1.2. Contact processes
As mentioned earlier, our model has two basic categories of contact

which may occur; the first, Poisson contact, is generated via a Poisson
point process. For two individuals, 𝑎 and 𝑏, the process may generate
a contact which allows 𝑎 to transmit to 𝑏 (which we denote 𝑎 → 𝑏)
or vice versa (𝑏 → 𝑎). Poisson point processes also sometimes generate
contacts with multiplicity greater than 1, which we interpret to mean
that multiple instances of the same sort of contact occur on the same
day; each instance is regarded independently of any others from the
perspective of determining whether a susceptible individual becomes
infected. To be clear, any two contacts are generated independently of
one another, so that 𝑎 → 𝑏 can occur whether or not 𝑏 → 𝑎 occurs.
In most cases, each of these two options is as likely as the other, but
we do allow for one exception: within the classroom, we assume that
instructors are more likely to transmit to a student than the student is
likely to transmit to them. This is meant to reflect the situation that
a professor actively lecturing for an hour is likely to shed more virus
particles than a student is while listening to the lecture.

The rate for a particular contact 𝑎 → 𝑏 on any given day is a sum
of a number of individual terms which depend on the activities that 𝑎
and 𝑏 have in common. Below we list all the possible contributions. In
each case, the rates described below are all summed to determine the
overall rate. If a category does not apply to a particular pair 𝑎, 𝑏, the
corresponding contribution to the rate for that day is simply zero. Note
that residential contacts are an exception and do not contribute to the
Poisson rate; instead, residential contacts are guaranteed to occur every
day and are counted with multiplicity 1 in addition to all the contacts
generated by the point process.

• Poisson Contacts: Academic contacts
There are five subcategories of interactions which are included
under the broad heading of Poisson contacts which are collec-
tively referred to as ‘‘academic contacts’’.

1. Close Academic Contacts (average 4/day by default with
no interventions applied)

– Modeled Behaviors: students regularly sitting near
one another in class, occasionally meeting outside of
class to work on class activities, making friends in
class; instructors having departmental neighbors or
friends

– Mechanics: Classes and recitations of size 𝑁 ≥ 5 are
subdivided into groups of size

√

𝑁 ± 1 (all but one
group must lie in this range). Students in the same
group receive a fixed contribution to the Poisson rate
for their contacts (both 𝑎 → 𝑏 and 𝑏 → 𝑎 occur at the
same rate) on ‘‘active’’ days when the corresponding
class or recitation is in session. On inactive days, the

contribution to the rate is 1∕4 the active rate. The
rate is never adjusted for social distancing.
Likewise, departments of size 𝑁 are subdivided into
groups of size

√

𝑁 . Instructors in the same group
experience the active rate on Monday through Friday
and experience 0 contact rate for this contact on
weekends.
By default, it is normalized to produce an average of
4 contacts per day for an average individual under
normal circumstances (i.e., 𝑎 experiences approxi-
mately 4 contacts of the form 𝑎 → 𝑏 or 𝑏 → 𝑎 for other
individuals 𝑏). In expectation, half of those contacts
involving persons 𝑎 and 𝑏 will be opportunities for
𝑎 to transmit to 𝑏 and vice-versa. Contacts from a
Poisson point process occur with multiplicity, so it is
also possible for several instances of 𝑎 → 𝑏 to occur
in a particular day, and each is treated independently
(so that multiple contacts increase the probability
of transmission). For similar reasons, it is also pos-
sible for potential transmissions to occur in either
direction 𝑎 → 𝑏 or 𝑏 → 𝑎 on the same day.

2. Classroom Contacts (average 4/day when combined with
Department Professional Contacts below)

– Modeled Behaviors: Classroom interactions
– Mechanics: Each class meets on a recurring schedule

which is either MWF (40% of classes), TTh (40%), or
MW (20%). Recitations meet one weekday per week
on a day in which the corresponding section does
not meet. On days when the class or recitation is in
session, students receive a fixed contribution to their
contact rate for each class that they have in common.
For individuals 𝑎, 𝑏 in the classroom, the rate of 𝑎 →

𝑏 contacts is proportional to a product 𝐼𝑎𝑆𝑏, where
𝐼𝑎 = 𝑆𝑎 = 1 when 𝑎 is a student, 𝐼𝑎 = 4, 𝑆𝑎 = 2 if 𝑎 is
an assistant attending the section they are assigned
to, and 𝐼𝑎 = 10, 𝑆𝑎 = 5 if 𝑎 is the instructor of the
class or is the assistant in a recitation.
The rate of contact is also affected by social distanc-
ing when available. It is assumed that all classes,
recitations, etc., which are over the online transition
threshold vacate a physical room which can then be
claimed for use by a smaller class or recitation. New
rooms are assigned beginning with the largest active
classes first and moving to smaller ones. If the class
whose space was vacated (the ‘‘vacated class’’) had
at least 20 students and was strictly more than 50%
larger than the active class moving up, the rate of
contact in the active class is multiplied by the factor

𝐶𝑆𝐷 = min
{

1,
max{class size, 10}
vacated class size

}

.

When social distancing is active, an average value
of this constant is computed by weighting classes
according to the square of their size. This is called
the ‘‘crowd reduction factor’’ and is used in other
instances of social distancing listed below.
When social distancing is enabled, the contact rate
in every classroom is also multiplied by the pro-
portion of nonquarantined students each day con-
tacts are constructed. This feature models a small
amount of additional distancing which is possible
when attendance rates are lower than 100%.

10
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3. Department Professional Contacts

– Modeled Behaviors: Instructors interacting in com-
mon departmental areas like mailrooms, department
meetings

– Mechanics: On Mondays through Fridays, all instruc-
tors in the same department experience a fixed rate of
contact (equal for 𝑎 → 𝑏 and 𝑏 → 𝑎). The rate is fixed
to be 8 times the rate of student-to-student contact in
a classroom without social distancing.

4. Department Environmental Contacts (average 4/day by
default with no interventions applied)

– Modeled Behaviors: sharing elevators, walking
through common hallways, touching surfaces or
doorhandles, eating food at nearby food trucks, etc.

– Mechanics: Every day that an individual (instructor,
student, or assistant) travels to any given department,
that individual belongs to a pool associated to that
department. If an individual has multiple appoint-
ments in the department, they occur in the pool
with a corresponding multiplicity. Poisson contacts
are drawn between pairs of individuals in the pool at
a rate which is proportional to the product of their
multiplicities. When social distancing is active, the
rate is also multiplied by the crowd reduction factor
from above.
These contacts are assumed to be nontraceable,
which means that they are not included in any con-
tact tracing activities. They do not occur on week-
ends.

5. Broad Environmental Contacts (average 4/day by default
with no interventions applied)

– Modeled Behaviors: interactions on the street go-
ing to or from class, contact in local businesses or
restaurants, infrequent professional interactions of
individuals across departments, etc.

– Mechanics: Every day that an individual has any
physical class, they belong to a pool of individuals
active that day. As with department environmental
contacts, individuals occur with multiplicity if they
have multiple physical destinations that day. The rate
of contact is proportional to the product of mul-
tiplicities, and also to the crowd reduction factor
when social distancing is available. These contacts
are nontraceable and do not occur on weekends.

• Poisson Contacts: Broad Social Contacts (average 2/day by default
with no interventions applied)

– Modeled Behaviors: Dining halls or restaurants, social
events, extracurricular activities

– Mechanics: Any two individuals experience broad social
contact on a given day with a rate which is independent
of the individual. The rate of broad social contact is twice
as high on the weekends as it is on weekdays.

• Residential Contacts (by default: each student linked to an aver-
age of one other)

– Modeled Behaviors: Students living in residential colleges
– Mechanics: In each cohort of students, individuals are ran-

domly ordered. Each individual is linked with a random
number of predecessors in the cohort, drawn from an expo-
nential distribution whose mean is 1∕2 the desired number
of neighbors. Links are considered symmetric, so that each
student is also linked to another 1∕2 the desired number

of neighbors by symmetry. Note that links are specifically
not transitive, so that it is possible to find long chains for
potential transmission when the number of neighbors is
moderately large.
When students 𝑎 and 𝑏 are linked residentially, the contacts
𝑎 → 𝑏 and 𝑏 → 𝑎 are both guaranteed to occur at least once
every day (they can occur more than once if these contacts
also arise from other means). In this sense, a residential
contact is a stronger form of contact than either academic
or broad social contacts, more akin to a roommate or a very
close neighbor than to casual friendships (which are closer
to broad social contacts).

A.1.3. Discretized gamma distribution
We use a discretized Gamma distribution to generate both the

incubation period and daily infectiousness for each infected individual.
The Gamma distribution is widely used in connection with COVID
modeling [18] for these parameters; we formulate a discretized version
to ensure accuracy in our discrete-time simulation.

We let 𝛤𝑑 (𝑘, 𝜃) denote our discretized Gamma distribution of shape
𝑘 (a positive integer) and scale 𝜃 > 1. The variable takes values in the
nonnegative integers and has PDF

P(𝛤𝑑 (𝑘, 𝜃) = 𝑛) ∶=
𝑛⋯ (𝑛 + 𝑘 − 2)

(𝑘 − 1)!𝜃𝑘
(1 − 𝜃−1)𝑛−1.

To see that the probabilities sum to 1, one can simply differentiate the
power series expansion for (1 − 𝑥)−1 a total of 𝑘 − 1 times and perform
a reindexing. Specifically,

(𝑘 − 1)!𝜃𝑘 = (𝑘 − 1)!(1 − (1 − 𝜃−1))−𝑘 = 𝑑𝑘−1

𝑑𝑥𝑘−1
|

|

|

|𝑥=1−𝜃−1
(1 − 𝑥)−1

= 𝑑𝑘−1

𝑑𝑥𝑘−1
|

|

|

|𝑥=1−𝜃−1

∞
∑

𝑛=0
𝑥𝑛 =

∞
∑

𝑛=0
𝑛⋯ (𝑛 − 𝑘 + 2)(1 − 𝜃−1)𝑛−𝑘+1

=
∞
∑

𝑛=0
(𝑛 + 𝑘 − 2)⋯ 𝑛(1 − 𝜃−1)𝑛−1,

where the last line follows by reindexing the sum by sending 𝑛 to
𝑛 + 𝑘 − 2. The lower limit of summation does not change because the
corresponding terms are zero. The mean 𝜇 and variance 𝜎2 of this
distribution satisfy

𝜇 = 1 + 𝑘(𝜃 − 1), 𝜎2 = 𝑘𝜃(𝜃 − 1).

In the former case, one can quickly establish by writing 𝑛 = 𝑘𝜃 𝑛+𝑘−1
𝑘𝜃 +1−

𝑘 and then rewriting the sum for 𝜇 in terms of the sums just computed
for shapes 𝑘+1 and 𝑘. Likewise, in the latter case, one uses the identity

𝑛2 = (𝑛 + 𝑘)(𝑛 + 𝑘 − 1) − (2𝑘 − 1)(𝑛 + 𝑘 − 1) + (𝑘 − 1)2

and relates the resulting series to the distributions of 𝛤𝑑 (𝑘, 𝜃),… , 𝛤𝑑 (𝑘+
2, 𝜃).

A.2. Robustness testing

To map the dependence of our result on various parameter choices,
we ran a wide array of 50-simulation batches under various alternate
calibrations. In each case, we report the median value (rounded to
the nearest whole number) for that calibration under various combi-
nations of interventions. To simplify matters, we adopt the following
abbreviations for certain basic combinations:

• TTQ = mass testing, contact tracing, and quarantine
• OLSD = transitioning courses of 30 or more students to online-

only together with social distancing via moving classes into larger
vacated classrooms.

• SI = TTQ, OLSD, and universal mask-wearing.
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Table 2
Cumulative total infected for various alternate calibrations of contact rates.

Daily contacts

6.3 12.5 19.0 25.3 31.5 50.0 75.0

SI 29 37 44 65 73 453 1577
No mass testing 29 37 46 68 125 1333 2985
No distancing 30 37 48 65 113 1135 2671
No TTQ 31 47 83 310 2066 14643
No masks 36 61 138 519 1876 4056
No OLSD 42 98 510 1335 2043
Only TTQ 114 2883 5398
Only OLSD 45 257 7791
Only masks 60 3707
No intervention 3291

Each cell is the median value (rounded to the nearest whole number) of 50 independent
runs of the specified scenario. The bold column represents the default parameter values
of 19 daily contacts. Empty cells are those scenarios for which some strictly less severe
scenario has already reached either 3000 infected or 5000 peak quarantined.

Table 3
Peak quarantine size for various alternate calibrations of contact rates.

Daily contacts

6.3 12.5 19.0 25.3 31.5 50.0 75.0

SI 56 99 156 227 281 1448 5187
No mass testing 11 29 48 88 167 2785 6870
No distancing 57 106 162 244 408 3426 7973
No TTQ ∗ ∗ ∗ ∗ ∗ ∗
No masks 61 118 275 1052 3458 7661
No OLSD 96 369 1760 4220 5884
Only TTQ 190 4691 8673
Only OLSD ∗ ∗ ∗
Only masks ∗ ∗
No intervention ∗

Each cell is the median value (rounded to the nearest whole number) of 50 independent
runs of the specified scenario. The bold column represents the default parameter values
of 19 daily contacts. Empty cells are those scenarios for which some strictly less
severe scenario has already reached either 3000 infected or 5000 peak quarantined. A
star indicates that the intervention does not include quarantine so peak quarantine is
trivially zero.

Tables 2 and 3 show the first collection of such results where the overall
rate of daily contact has been varied. For simplicity, each of the various
types of contact (academic, residential, and broad social) has been
varied proportionally relative to the default configuration (so that 38
contacts per day would consist of a total of 32 contacts from the close
social, classroom, department professional, department environmental,
and broad environmental categories, 4 broad social contacts per day,
and 2 residential contacts). We opted to end the simulation of very
large numbers of contacts in each scenario after a threshold of 3,000
total infected or 5,000 peak quarantine had been reached, as any more
extreme scenario than this is clearly to be avoided in reality. Bolded
columns represent the default parameter values of 19 daily contacts,
and these scenarios correspond to the ones plotted in Fig. 3 (but we
note that the figure summarizes the results of 500 total simulations).

As can be seen from the table, we note that dropping the OLSD
combination of interventions from the standard intervention results
in greater numbers of additional infections and peak quarantine size
than does dropping the use of masks at any of the simulated contact
rates. It is likewise true that dropping OLSD results in more additional
infections than does dropping TTQ until the level of 31.5 daily contacts,
at which point the effects are comparably severe.

The next series of results demonstrates dependence of our main
outcome variables on the chosen values of 𝑅0 and the rate of infection
from external sources. We find that there is only modest change in the
standard intervention as 𝑅0 varies over the full interval of reasonable
values from 2.8 to 5.8. Similarly, the number of total infections depends
in a roughly linear way on the rate of external infections (i.e., there is
no indication of strong nonlinear dependence). Results are summarized
in Tables 4 and 5.

The final parameters we vary are the false positive rate and the false
negative rate. Results are summarized in Tables 6 and 7. The tables
show a very strong dependence of the peak quarantine size on the FPR
but much more muted relationships between FPR and total infections
as well as FNR and both total infections and peak quarantine size.

A.3. Analytical model

In this section, we present a simple theoretical model which gives
further support for the observed results of our more general ABM.
The theoretical model is essentially a discrete-time compartmental
model regarding susceptible, infected, and removed individuals in each
classroom as their own compartment. Because the compartments are
not disjoint (i.e., because each student belongs to multiple classes), we
include ‘‘bookkeeping transmission’’ between classes to properly reflect
the effects of simultaneous membership in multiple classes. We find
that the whole system can be conveniently understood in terms of an
effective reproduction number �̃� given by

�̃� ∶= 𝛾 + 𝑐

∑

𝓁
𝛼𝓁 (𝑆0

𝓁
)2

1−𝛼𝓁𝑆0
𝓁

∑

𝓁
𝑆0
𝓁

1−𝛼𝓁𝑆0
𝓁

, (1)

where 𝑆0
𝓁 is the initial susceptible population in class 𝓁, 𝛼𝓁 is the

per-person rate of transmission in class 𝓁 (so that an initial infected
individual in class 𝓁 would be expected to infect 𝛼𝓁𝑆0

𝓁 total susceptible
individuals), 𝑐 is the average number of classes per student,14 and 𝛾 is a
dimensionless transmission rate for all non-classroom transmission. To
avoid uncontrolled transmission within each classroom, it is necessary
that 𝛼𝓁𝑆0

𝓁 < 1 for each 𝓁. Likewise, even if each individual class-
room is below this threshold, uncontrolled transmission throughout the
university is possible when �̃� > 1.

Before we explain the derivation of (1), we briefly explain why
this formula further supports the idea that the largest classes have the
biggest impact on disease dynamics. In classroom 𝓁, the product 𝛼𝓁𝑆𝓁
corresponds to the ‘‘local’’ reproduction number within that classroom.
The ratio
∑

𝓁
𝛼𝓁 (𝑆0

𝓁
)2

1−𝛼𝓁𝑆0
𝓁

∑

𝓁
𝑆0
𝓁

1−𝛼𝓁𝑆0
𝓁

is a weighted average of these local reproduction number, with the
weight in classroom 𝓁 being 𝑆0

𝓁∕(1 − 𝛼𝓁𝑆0
𝓁). The weights favor larger

classes because of the factor of 𝑆0
𝓁 in the numerator, and they also

favor classes with higher local reproduction numbers because of the
denominator (1−𝛼𝓁𝑆0

𝓁). Since in our case 𝛼𝓁𝑆0
𝓁 is an increasing function

of class size, we expect (1) overall to be far more significantly impacted
by larger classes than smaller ones. Using the contact rates and trans-
mission dynamics from our ABM, it is possible to compute �̃� explicitly
under the assumption that only classes below a given threshold are
meeting in person. Based on the parameters of our ABM, the parameters
which most naturally correspond to it are 𝛾 = 0.2 and

𝛼𝓁 =

⎧

⎪

⎨

⎪

⎩

0.001392 𝑆0
𝓁 ≤ 4,

0.001392 + 0.01728
√

𝑆0
𝓁

𝑆0
𝓁 ≥ 5.

These values roughly mirror the standard intervention in the presence
of no residential contacts and with environmental contacts replaced by
equal numbers of close academic and classroom contacts. If all classes
of 30 or more are moved entirely online, the value of �̃� given by (1)
is 0.52 for a typical simulated distribution of class sizes; in our ABM
we observe a median 𝑅0 of 0.44 in this situation. In particular, the

14 Formally, the parameter 𝑐 is a dimensionless parameter equal to the sum
of all class sizes divided by the total number of students.
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Table 4
Cumulative total infected for various alternate values of 𝑅0 and rates of infection from outside sources.

𝑅0 External infections per day

2.8 3.8 4.8 5.8 0.25 0.5 1.0 2.0 4.0

SI 36 44 49 73 44 91 181 352 689
No mass testing 40 46 62 87 46 101 194 386 764
No distancing 42 48 66 92 48 99 197 400 769
No TTQ 50 83 180 936 83 181 354 686 1344
No masks 60 138 367 1875 138 264 506 884 1542
No OLSD 119 510 1457 2650 510 729 1060 1415 1975
Only TTQ 2880 5398 5398
Only OLSD 734 7791 7791
Only masks 8182
No intervention 18590

Table 5
Peak quarantine size for various alternate values of 𝑅0 and rates of infection from outside sources.

𝑅0 External infections per day

2.8 3.8 4.8 5.8 0.25 0.5 1.0 2.0 4.0

SI 139 156 152 193 156 191 261 416 643
No mass testing 41 48 65 100 48 83 129 230 404
No distancing 149 162 189 242 162 209 294 460 752
No TTQ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
No masks 171 275 649 2472 275 403 617 881 1356
No OLSD 530 1760 3673 5082 1760 2124 2553 2798 3488
Only TTQ 6079 8673 8673
Only OLSD ∗ ∗ ∗
Only masks ∗
No intervention ∗

Table 6
Cumulative total infected for various alternate values of FPR and FNR.

False positive rate False negative rate

10−4 0.001 0.005 0.01 0.02 0.015 0.03 0.06 0.12 0.24

SI 45 44 41 43 40 44 44 42 43 45
No mass testing 54 46 50 46 50 49 46 49 52 45
No distancing 49 48 49 43 44 49 48 52 51 49
No TTQ 87 83 81 74 89 82 83 78 89 78
No masks 136 138 105 110 89 119 138 128 131 159
No OLSD 544 510 408 297 165 538 510 559 617 634

Table 7
Cumulative total infected for various alternate values of FPR and FNR.

False positive rate False negative rate

10−4 0.001 0.005 0.01 0.02 0.015 0.03 0.06 0.12 0.24

SI 77 156 444 791 1443 157 156 146 148 151
No mass testing 55 48 53 54 61 41 48 52 57 49
No distancing 91 162 454 801 1462 166 162 164 159 163
No TTQ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
No masks 172 275 509 881 1487 267 275 268 278 295
No OLSD 1754 1760 1780 1982 2499 1746 1760 2009 1977 2008

Table 8
Computed �̃� versus simulation for various class size caps.

Class size cap Computed �̃� Simulated 𝑅0

10 0.29 0.27
20 0.43 0.33
30 0.52 0.44
60 0.66 0.54
90 0.92 0.76

theoretical model agrees with the ABM that this scenario is well below
the threshold for uncontrolled exponential growth of infections.

A number of other values for different class size cutoffs are sum-
marized in Table 8. The agreement is somewhat reduced as class size
increases, but this is to be expected since our theoretical model is
based on the assumption that the total number of cases is small, which
becomes less appropriate as �̃� increases.

The model equations are as follows. We will treat time as a discrete
variable and let 𝑆𝑛

𝑘 represent the number of susceptible students in class
𝑘 on day 𝑛; the difference 𝐼𝑛𝑘 ∶= 𝑆𝑛−1

𝑘 −𝑆𝑛
𝑘 represents the number of new

cases in class 𝑘 on day 𝑛. We assume that the number of new cases
in class 𝑘 which are due to individuals infected in class 𝓁 is roughly
equal to 𝑆𝑛

𝑘
∑14

𝑑=1 𝑅
𝑑
𝑘𝓁𝐼

𝑛−𝑑+1
𝓁 in the limit of very small transmission

proportions 𝑅𝑑
𝑘𝓁 . We also assume that there is an external source which

generates infections on campus. Our equations are

𝑆𝑛+1
𝑘 ∶= 𝑆𝑛

𝑘 exp

(

−𝐹 𝑛+1
𝑘 −

14
∑

𝑑=1

∑

𝓁

𝑅𝑑
𝑘𝓁𝐼

𝑛−𝑑+1
𝓁

)

. (2)

Here 𝐹 𝑛+1
𝑘 models the off-campus source of infections, which, as in

the ABM, can be expected to occur from limited interactions between
university-affiliated individuals with members of their broader commu-
nities; in the limit of small values of 𝐹 𝑛+1

𝑘 (which should be understood
as saying that outside infections play only a minor role by seeding the
campus with a few positive cases), a simple Taylor expansion shows
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that the number of additional infections on day 𝑛 + 1 is approximately
𝐹 𝑛+1
𝑘 𝑆𝑛

𝑘 . Thus 𝐹 𝑛+1
𝑘 represents an infection rate rather than an absolute

number. In our ABM, we assumed that the arrival rate of infections from
off campus was constant over the 100-day period. In this analytical
model, the time-dependence of 𝐹 𝑛+1

𝑘 will ultimately not affect the
computation (1); all that will matter is the sum of 𝐹 𝑛+1

𝑘 over all days; to
save computational effort, we will work with 𝐹 𝑛+1

𝑘 as if it is an arbitrary
sequence of nonnegative real numbers for each fixed 𝑘. Similarly, the
derivation of (1) will only depend on the sum over 𝑑 of 𝑅𝑑

𝑘𝓁 ; one
would presumably assume that the daily rate for fixed 𝑘 and 𝓁 was
proportional to a discretized Gamma distribution as we did for the
ABM, so that infectivity decreases as the infection progresses, but as
with the external source term, this choice will not affect (1).

Note that when 𝐹 𝑛
𝑘 is identically zero, (2) admits solutions which

are constant for all time. To cleanly identify physically-realistic initial
conditions, we define 𝑆𝑛

𝑘 ∶= 𝑆0
𝑘 for all 𝑛 < 0, which effectively

means that we are identifying those solutions which existed in constant
equilibrium before the introduction of external infections on days 𝑛 ≥ 0.
We note that in the regime of small outbreaks, each 𝐼𝑛−𝑑+1𝓁 will be order
1, so in the limit as 𝐹 𝑛+1

𝑘 , 𝑅𝑑
𝑘𝓁 → 0, we have a valid expansion of the

exponential (2)

𝑆𝑛+1
𝑘 = 𝑆𝑛

𝑘

(

1 − 𝐹 𝑛+1
𝑘 −

14
∑

𝑑=1

∑

𝓁

𝑅𝑑
𝑘𝓁𝐼

𝑛−𝑑+1
𝓁

)

+ (higher order terms). (3)

Even though we are in a perturbative regime, it is helpful to work
directly with (2) rather than the expansion (3) because (2) admits
useful conserved quantities which allow for an easier understanding of
the limiting behavior as 𝑛 → ∞. (We note that, while the assumption
that 𝑛 tends to infinity and the assumption that small transmission
rates are low are limitations of this analytical model, they are valid
approximations in the regime in which there are high expectations of
overall safety in the university community; in higher-risk scenarios, the
exponent of the exponential on the right-hand side of (2) will not be
small and consequently the first-order Taylor expansion (3) will not be
a valid approximation. In this case, the full ABM would be expected to
yield more reliable results.) Specifically, fixing

𝛷𝑛
𝑘 ∶= 𝑆𝑛

𝑘 exp

(

−
14
∑

𝑑=1

∑

𝓁

𝑅𝑑
𝑘𝓁𝑆

𝑛−𝑑
𝓁

)

and using the identity 𝐼𝑛−𝑑+1𝓁 = 𝑆𝑛−𝑑
𝓁 − 𝑆𝑛−𝑑+1

𝓁 gives the identity

𝛷𝑛+1
𝑘 = 𝛷𝑛

𝑘𝑒
−𝐹 𝑛+1

𝑘 (4)

because

𝑆𝑛+1
𝑘 = 𝑆𝑛

𝑘 exp

(

−𝐹 𝑛+1
𝑘 −

14
∑

𝑑=1

∑

𝓁

𝑅𝑑
𝑘𝓁𝐼

𝑛−𝑑+1
𝓁

)

= 𝑆𝑛
𝑘 exp

(

−𝐹 𝑛+1
𝑘 −

14
∑

𝑑=1

∑

𝓁

𝑅𝑑
𝑘𝓁(𝑆

𝑛−𝑑
𝓁 − 𝑆𝑛−𝑑+1

𝓁 )

)

= 𝑆𝑛
𝑘𝑒

−𝐹 𝑛+1
𝑘 exp

(

−
14
∑

𝑑=1

∑

𝓁

𝑅𝑑
𝑘𝓁𝑆

𝑛−𝑑
𝓁

)

exp

( 14
∑

𝑑=1

∑

𝓁

𝑅𝑑
𝑘𝓁𝑆

𝑛−𝑑+1
𝓁

)

= 𝛷𝑛
𝑘𝑒

−𝐹 𝑛+1
𝑘 exp

( 14
∑

𝑑=1

∑

𝓁

𝑅𝑑
𝑘𝓁𝑆

𝑛−𝑑+1
𝓁

)

which yields (4) when both sides of the final equation are multiplied
by exp

(

−
∑14

𝑑=1
∑

𝓁 𝑅
𝑑
𝑘𝓁𝑆

𝑛−𝑑+1
𝓁

)

.
By iterating the identity (4), we can relate 𝛷𝑛+1

𝑘 to 𝛷0
𝑘, i.e.,

𝛷𝑛+1
𝑘 = 𝛷0

𝑘𝑒
−
∑𝑛+1

𝑑=1 𝐹
𝑑
𝑘 ,

because

𝛷𝑛+1
𝑘 = 𝛷𝑛

𝑘𝑒
−𝐹 𝑛+1

𝑘 = 𝛷𝑛−1
𝑘 𝑒−𝐹

𝑛
𝑘−𝐹

𝑛+1
𝑘 = ⋯ = 𝛷0

𝑘𝑒
−𝐹 1

𝑘−⋯−𝐹 𝑛+1
𝑘 .

When the 𝐹 𝑛
𝑘 are nonnegative, it is easy to see by induction that the

quantities 𝑆𝑛
𝑘 and 𝛷𝑛

𝑘 are strictly positive and nonincreasing in 𝑛; thus

the limits 𝑆𝑘 ∶= lim𝑛→∞ 𝑆𝑛
𝑘 and 𝛷𝑘 ∶= lim𝑛→∞ 𝛷𝑛

𝑘 exist and

𝑆𝑘 exp

(

−
14
∑

𝑑=1

∑

𝓁

𝑅𝑑
𝑘𝓁𝑆𝓁

)

= 𝑆0
𝑘 exp

(

−
∞
∑

𝑛=1
𝐹 𝑛
𝑘 −

14
∑

𝑑=1

∑

𝓁

𝑅𝑑
𝑘𝓁𝑆

0
𝓁

)

.

Among other features, we see that the temporal structure of the trans-
mission parameters 𝑅𝑑

𝑘𝓁 will affect the temporal dynamics but only
their sum is needed to understand the limiting behavior; for conve-
nience, we simply let 𝑅𝑘𝓁 ∶=

∑14
𝑑=1 𝑅

𝑑
𝑘𝓁 and 𝐹𝑘 ∶=

∑∞
𝑛=1 𝐹

𝑛
𝑘 and work

directly with these quantities. This means that the limiting values 𝑆𝑘
satisfy

𝛷𝑘 = 𝑆𝑘 exp

(

−
∑

𝓁

𝑅𝑘𝓁𝑆𝓁

)

= 𝑆0
𝑘 exp

(

−𝐹𝑘 −
∑

𝓁

𝑅𝑘𝓁𝑆
0
𝓁

)

= 𝑒−𝐹𝑘𝛷0
𝑘.

(5)

provided that 𝐹𝑘 < ∞ for each 𝑘, the right-hand side of (5) is always
strictly positive, which means that the limit values 𝑆𝑘 are also strictly
positive.

We will model the transmission proportions 𝑅𝑘𝓁 as a sum of two
terms: 𝑅𝑘𝓁 = 𝛼𝑘𝛿𝑘𝓁 + 𝛽𝑇 −1, where 𝛿𝑘𝓁 is the Kronecker delta. Here
each 𝛼𝑘 models transmission within classroom 𝑘, and 𝛽𝑇 −1 is a pa-
rameter which will account for broad transmission as well as necessary
‘‘bookkeeping’’ reflect the fact that individual students are enrolled in
multiple courses (here 𝑇 is simply the total number of students times
the average number of courses per student). Eq. (5) becomes

𝑆𝑘𝑒
−𝛼𝑘𝑆𝑘𝑒−

𝛽
𝑇
∑

𝓁 𝑆𝓁 = 𝑒−𝐹𝑘𝑆0
𝑘𝑒

−𝛼𝑘𝑆0
𝑘 𝑒−

𝛽
𝑇
∑

𝓁 𝑆0
𝓁 . (6)

This identity can be rewritten as

𝑆𝑘𝑒
−𝛼𝑘𝑆𝑘 = 𝑒−𝐹𝑘𝑆0

𝑘𝑒
−𝛼𝑘𝑆0

𝑘 𝑒−
𝛽
𝑇
∑

𝓁 (𝑆
0
𝓁
−𝑆𝓁 );

and treating the right-hand side as an arbitrary fixed, small pertur-
bation of 𝑆0

𝑘𝑒
−𝛼𝑘𝑆0

𝑘 , the equation will admit a solution 𝑆𝑘 near to 𝑆0
𝑘

varying smoothly with the perturbation if and only if 𝛼𝑘𝑆0
𝑘 < 1, simply

because the function 𝑥𝑒−𝛼𝑥 has a critical point at 𝑥 = 1∕𝛼. Thus, to
prevent a localized, uncontrolled outbreak in class 𝑘, it is necessary
that 𝛼𝑘𝑆0

𝑘 < 1. Returning to (6), we must also compute the Jacobian
matrix 𝜕𝛷∕𝜕𝑆. To that end, we compute:

𝜕
𝜕𝑆𝓁

𝑆𝑘𝑒
−𝛼𝑘𝑆𝑘𝑒−

𝛽
𝑇
∑

𝓁 𝑆𝓁 =
((

1
𝑆𝑘

− 𝛼𝑘

)

𝛿𝑘𝓁 −
𝛽
𝑇

)

𝑆𝑘𝑒
−𝛼𝑘𝑆𝑘𝑒−

𝛽
𝑇
∑

𝓁 𝑆𝓁 .

Treating the right-hand side of (6) as a small perturbation of 𝛷0
𝑘 for

each 𝑘, we also know that the solutions 𝑆𝑘 will vary smoothly in this
perturbation only when 𝛽 is sufficiently small that the Jacobian matrix
is invertible. For convenience, we give the matrix entries just computed
names: if 𝑀𝑘𝓁 ∶= 𝜕𝛷𝑘∕𝜕𝑆𝓁 , then

𝑀𝑘𝓁 ∶= 𝛷0
𝑘
[(

𝑆−1
𝑘 − 𝛼𝑘

)

𝛿𝑘𝓁 − 𝛽𝑇 −1] .

One can see by an explicit calculation that 𝑀 is invertible as long as
𝛽
𝑇

∑

𝓁

𝑆𝓁

1 − 𝛼𝓁𝑆𝓁
< 1 (7)

and that 𝑀 has inverse

𝑀−1
𝓁𝑗 =

⎡

⎢

⎢

⎣

𝑆𝓁𝛿𝓁𝑗
1 − 𝛼𝓁𝑆𝓁

+
𝛽

𝑇 − 𝛽
∑

𝑚
𝑆𝑚

1−𝛼𝑚𝑆𝑚

𝑆𝓁𝑆𝑗

(1 − 𝛼𝓁𝑆𝓁)(1 − 𝛼𝑗𝑆𝑗 )

⎤

⎥

⎥

⎦

1
𝛷0

𝑗

.

(We note that the solution map must be discontinuous when the left-
hand side of (7) is strictly positive since in this case 𝑀−1 has negative
entries, which, if the map were continuous, would mean that increas-
ing 𝐹𝑘 for certain 𝑘 would decrease the number of infected in some
classroom 𝑘′, which can be easily ruled out by an elementary analysis
of Eqs. (2).) In particular, in the limit of small 𝐹𝑘’s, one has the linear
approximation

𝑆𝑘 ∼ 𝑆0
𝑘 −

𝑆0
𝑘𝐹𝑘

1 − 𝛼𝑘𝑆0
𝑘

−
𝛽

𝑇 − 𝛽
∑

𝑚
𝑆0
𝑚

1−𝛼𝑚𝑆0
𝑚

𝑆0
𝑘

1 − 𝛼𝑘𝑆0
𝑘

∑

𝑗

𝐹𝑗𝑆0
𝑗

1 − 𝛼𝑗𝑆0
𝑗

.
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To correctly choose 𝛽, we momentarily fix each 𝛼𝑘 = 0 and we let
𝐹𝑘0 = 𝜖(𝑆0

𝑘0
)−1 for a single index 𝑘 = 𝑘0 and set 𝐹𝑘 = 0 otherwise.

This represents the introduction of an external infection into class 𝑘 of
size 𝜖. We get

𝑆𝑘 ∼ 𝑆0
𝑘 − 𝜖𝛿𝑘𝑘0 −

𝛽
(1 − 𝛽)𝑇

𝑆0
𝑘𝜖, (8)

and summing over 𝑘 gives

𝑇 −
∑

𝑘
𝑆𝑘 ∼ 𝜖

[

1 +
𝛽

1 − 𝛽

]

= 𝜖
1 − 𝛽

.

If the model were capturing only broad contact across the entire
university, we would expect the right-hand side to equal 𝑐𝜖(1 − 𝛾)−1,
where 𝑐 counts the average number of courses a student takes. Thus
we should fix 1 − 𝛽 = 𝑐−1(1 − 𝛾). We also see from (8) that the term

𝛽
(1 − 𝛽)𝑇

𝑆0
𝑘𝜖

does not depend on the initial classroom 𝑘0 and is proportional to 𝑆0
𝑘 ,

which means that we are effectively assuming that students choose
their courses independently with probability proportional to class size.

Making the choice of 𝛽 identified above and rewriting (7) at the
initial data 𝑆0

𝑘 gives the stability criterion

1 − 𝑐−1(1 − 𝛾)
𝑇

∑

𝓁

𝑆0
𝓁

1 − 𝛼𝓁𝑆0
𝓁

< 1,

and using the fact that 𝑇 =
∑

𝓁 𝑆
0
𝓁 to rewrite this condition gives the

equivalent condition

�̃� = 𝛾 + 𝑐

∑

𝓁
𝛼𝓁 (𝑆0

𝓁
)2

1−𝛼𝓁𝑆0
𝓁

∑

𝓁
𝑆0
𝓁

1−𝛼𝓁𝑆0
𝓁

< 1.

As above, if we let 𝐹𝑘 = 𝜖 for each 𝑘 and let 𝜖 → 0, we have
∑

𝑘
(𝑆0

𝑘 − 𝑆𝑘) ∼
𝑇 𝑐𝜖
1 − �̃�

.

This formula is what motivates our description of �̃� as an effective
reproduction number. Setting 𝐹𝑘 = 𝜖 for each 𝑘 corresponds to a total of
𝑇 𝜖 infections from outside sources, the factor of 𝑐 merely reflects the
bookkeeping requirement that one infection from an external source
contributes an amount of 𝑐 when counted with multiplicity across all
classes. Therefore one sees that �̃� is an effective reproduction number
for the system when individuals are subjected to a small external source
of infections.
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