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A planetary system with two transiting mini-Neptunes near the
radius valley transition around the bright M dwarf TOI-776?
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ABSTRACT

We report the discovery and characterization of two transiting planets around the bright M1 V star LP 961-53 (TOI-776, J = 8.5 mag,
M = 0.54± 0.03 M�) detected during Sector 10 observations of the Transiting Exoplanet Survey Satellite (TESS). Combining the
TESS photometry with HARPS radial velocities, as well as ground-based follow-up transit observations from the MEarth and LCOGT
telescopes, for the inner planet, TOI-776 b, we measured a period of Pb = 8.25 d, a radius of Rb = 1.85± 0.13 R⊕, and a mass of
Mb = 4.0± 0.9 M⊕; and for the outer planet, TOI-776 c, a period of Pc = 15.66 d, a radius of Rc = 2.02± 0.14 R⊕, and a mass of
Mc = 5.3± 1.8 M⊕. The Doppler data shows one additional signal, with a period of ∼34 d, associated with the rotational period of
the star. The analysis of fifteen years of ground-based photometric monitoring data and the inspection of different spectral line indi-
cators confirm this assumption. The bulk densities of TOI-776 b and c allow for a wide range of possible interior and atmospheric
compositions. However, both planets have retained a significant atmosphere, with slightly different envelope mass fractions. Thanks to
their location near the radius gap for M dwarfs, we can start to explore the mechanism(s) responsible for the radius valley emergence
around low-mass stars as compared to solar-like stars. While a larger sample of well-characterized planets in this parameter space
is still needed to draw firm conclusions, we tentatively estimate that the stellar mass below which thermally-driven mass loss is no
longer the main formation pathway for sculpting the radius valley is between 0.63 and 0.54 M�. Due to the brightness of the star, the
TOI-776 system is also an excellent target for the James Webb Space Telescope, providing a remarkable laboratory in which to break
the degeneracy in planetary interior models and to test formation and evolution theories of small planets around low-mass stars.

Key words. planetary systems – techniques: photometric – techniques: radial velocities – stars: individual: LP 961-53 –
stars: low-mass

1. Introduction

Exoplanets with masses between those of Earth and Uranus are
characterized by a broad range of measured bulk densities (e.g.,
Hatzes & Rauer 2015). A low density suggests the presence of an
extended H/He-envelope around a solid core. On the contrary, if
the density is high, the exoplanet is considered to be fully rocky
or enriched in light elements (e.g., water, methane, ammonia).
The absence of an envelope might be the result of two oppo-
site scenarios: the planet is born without it, or the planet loses
it over time. In the first case, the planet forms in a gas-poor
inner protoplanetary disk without a thick H/He-envelope (e.g.,
Lee et al. 2014; Lee & Chiang 2016). For the second case, dif-
ferent mechanisms have been proposed in the last years, such as
slow atmospheric escape powered by the planetary core’s pri-
mordial energy reservoir from formation (Ginzburg et al. 2018;
? Based on observations made with ESO Telescopes at the La Silla

Observatory under programs ID 1102.C-0923 and 60.A-9709.

Gupta & Schlichting 2019, 2020), impact erosion by planetesi-
mals (Shuvalov 2009; Schlichting et al. 2015; Wyatt et al. 2020),
or erosion processes driven by the stellar X-ray+EUV (XUV)
radiation (e.g., Murray-Clay et al. 2009; Lammer et al. 2012;
Owen & Jackson 2012; Owen & Wu 2013; Kislyakova et al. 2013,
2014; Lopez & Fortney 2014; Jin et al. 2014; Chen & Rogers
2016; Osborn et al. 2017; Jin & Mordasini 2018; Lopez & Rice
2018; Wu 2019; Mordasini 2020).

For the latter, the erosion rate increases if the planetary sur-
face gravity decreases and the amount of XUV radiation that
the planet receives increases. In addition, the intensity of XUV-
radiation depends on the orbital semi-major axis and on the
stellar activity level. The XUV-radiation is particularly high at
young ages, and then it declines as a result of age, mass, and
stellar rotation (Walter et al. 1988; Briceno et al. 1997; Tu et al.
2015). A star that begins its life rapidly rotating will suffer a
more rapid decline in rotation than a star that was initially a
slow rotator. Thus, for a star of several Gyr, understanding its
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original activity level is challenging. The presence, or absence,
of a hydrogen-rich envelope in a system containing just one
planet can thus equally be explained by assuming that the host
star was either a slow or rapid rotator when it was young. Sys-
tems containing more than one planet are necessary to test the
theory of atmospheric erosion, because the origin of all the plan-
ets of a system should be explained with a unique evolutionary
history of the host’s XUV radiation (Owen & Campos Estrada
2020).

On the other hand, the amount of XUV radiation also
depends on the stellar type. The XUV luminosities of young G
and M stars are similar to each other. The average X-ray lumi-
nosity of G stars is 1029 erg s−1, while in the case of M dwarfs,
the 50 Myr stars in α-Per, for example, have luminosities of
1028 erg s−1 (France et al. 2016). The main difference is that
M dwarfs remain in the high activity phase for up to 2 Gyr
(Johnstone et al. 2015), a much longer amount of time com-
pared to the 300 Myr of G-stars (Güdel et al. 2004). This makes
M dwarfs preferred targets to study planetary systems that have
experienced significant stellar XUV irradiation. Another advan-
tage of M dwarfs is their small size, which makes it easier to
detect smaller transiting planets. The paucity of close-in planets
around mid-K to mid-M dwarfs between approximately 1.4 and
1.7 R⊕ (Cloutier et al. 2020), known as the radius valley, marks
the transition between rocky planets and sub-Neptunes orbiting
low-mass stars. As such, M dwarfs’ multi-planetary systems,
which include sub-Neptunes and/or rocky planets, represent an
ideal benchmark for testing the theory of atmospheric erosion.

Gas-poor formation provides an alternative to explain the
absence of H/He envelopes in some low-mass planets, since the
erosion scenario presents some issues. For instance, if a close-in
10 M⊕ rocky planet forms while there is still a gaseous disk, its
mass is high enough to undergo runaway accretion and become a
Jupiter-type planet. The detection of close-in Jupiter-mass plan-
ets, at least in A stars, shows that it is hard to reconstruct a
mechanism that transforms a Jupiter into a rocky super-Earth,
since any working physical process should be able to com-
pletely strip off the H/He atmosphere. On the other hand, stars
hosting hot Jupiters have high metallicities, while rocky plan-
ets are equally distributed between metal-poor and metal-rich
stars (Winn et al. 2017). Thus, there are two alternative scenarios
within gas-poor formation models that could explain the exis-
tence of rocky super-Earths. Either the dust-to-gas ratio of the
inner disk is 20-times higher than solar, or the gas accretion is
delayed until just before the disk disperses (Lee et al. 2014; Lee
& Chiang 2016).

Lopez & Rice (2018) proposed a statistical test that could
allow us to understand the most likely formation history for
super-Earths. If a high percentage of rocky planets are the evap-
orated cores of sub-Neptunes, the transition radius from rocky
to sub-Neptune planets should decrease for longer orbital peri-
ods. On the contrary, if the gas-poor formation scenario is
correct, the transition radius should increase with orbital period.
Another methodology to test the formation theory of super-
Earths requires studying the position of the radius valley for
stars with different masses, thus of different stellar types. If
the photoevaporation scenario is correct, the radius valley shifts
toward planets of smaller radii for stars of lower masses. If, on
the contrary, the gas-poor formation scenario is at work, the
valley position is not affected by the stellar mass (Cloutier &
Menou 2020). However, since the radius valley represents the
range of radii in which the transition between rocky planets and
sub-Neptunes occurs, it is necessary to accurately determine the
mass and radius of the planets to calculate the mass-fraction of

their envelope and unveil their nature. Therefore, the ideal test
to understand which model is more realistic between the gas-
poor formation and the photoevaporation consists of measuring
the masses and radii of the planets close to, or inside, the radius
valley, preferably in a multi-planetary system around low-mass
stars. Therefore, we can also constrain these models in a much
better way than through the radius distribution alone.

As of today, there is a limited number of known multi-
planetary systems that orbit M dwarfs (3000 K < Teff < 4000 K;
as a proxy of M0 V–M5 V, Cifuentes et al. 2020) and respect the
condition (Mp < 10 M⊕) required to test the two mentioned for-
mation theories. There are only two systems with three transiting
planets with measured dynamical masses, Kepler-138 (Almenara
et al. 2018) and L 98-59 (Cloutier et al. 2019), and four systems
with two transiting planets: LHS 1140 (Lillo-Box et al. 2020),
LTT 3780 (Nowak et al. 2020; Cloutier et al. 2020), K2-146
(Lam et al. 2020; Hamann et al. 2019), and Kepler-26 (Jontof-
Hutter et al. 2016). This paucity of systems is inadequate for
understanding the formation and evolution of planetary systems
around M dwarfs. The discovery of each new system is thus
important, especially if the host star is bright and the planets are
close to the radius valley.

In this paper, we present the discovery of two transiting plan-
ets orbiting an M1 V star. The inner one has a period of 8.2 d and
a radius of ∼1.8 R⊕; thus, it is close to the radius valley. The outer
planet has a period of 15.7 d and a radius of 2.0 R⊕ in the sub-
Neptune regime. By measuring their masses, we explore whether
these new planets are characterized by extended H/He envelopes.
Since they orbit a relatively bright, nearby M dwarf, these new
objects represent ideal targets for follow-up atmospheric studies.

2. TESS photometry

The star LP 961-53 (TIC 306996324) was observed with TESS
in Sector 10 (Camera #2, CCD #4) from March 26, 2019 until
April 22, 2019, with 2-min cadence exposures, and it will be
observed again in Sector 37 from April 2 to 28, 2021. Data
collection was paused for 0.98 d during perigee passage, while
downloading data. The Science Processing Operations Center
(SPOC; Jenkins et al. 2016) at the NASA Ames Research Cen-
ter made the data available at the Mikulski Archive for Space
Telescopes (MAST)1 on June 1, 2019. SPOC provided simple
aperture photometry (SAP) for this target as well as systematics-
corrected photometry, a procedure consisting of an adaptation of
the Kepler Presearch Data Conditioning algorithm (PDC; Smith
et al. 2012; Stumpe et al. 2012, 2014) to TESS. Figure 1 shows the
TESS pixels included in the computation of the SAP and PDC-
corrected SAP data. For the remainder of this work, we make use
of the latter photometric data, shown in Fig. 2.

On June 11, 2019, two transiting candidates orbiting LP 961-
53 were announced in the TESS data public website2 under
the TESS Object of Interest (TOI) number 776. TOI-776.01 is
a planet candidate with a period of 15.65 d, a transit depth of
1484± 127 ppm, and an estimated planet radius of 2.2± 0.6 R⊕;
while TOI-776.02 is a planet candidate with a period of 8.24 d, a
transit depth of 1063± 104 ppm, and an estimated planet radius
of 1.8± 1.4 R⊕. Both candidates passed all the tests from the
threshold crossing event (TCE) Data Validation Report (DVR;
Twicken et al. 2018; Li et al. 2019): even-odd transits compari-
son, eclipsing binary (EB) discrimination tests, ghost diagnostic
tests to help rule out scattered light, or background EB, among

1 https://mast.stsci.edu
2 https://tev.mit.edu/data/

A41, page 2 of 24

https://mast.stsci.edu
https://tev.mit.edu/data/


R. Luque et al.: A multi-planetary system around TOI-776

Table 1. TESS follow-up program transit observations.

Observatory Date Filter Exposure Total Aperture Pixel scale FOV
(UTC) (s) (h) (m) (arcsec) (arcmin)

TOI-776.01 = TOI-776 c

MEarth-South, CTIO, Chile Jul. 1, 2019 RG715 10 4.2 7× 0.4 0.84 29× 29
LCOGT, CTIO, Chile Jul. 1, 2019 i′ 20 3.4 1.0 0.39 26.5× 26.5

TOI-776.02 = TOI-776 b

LCOGT, SAAO, South Africa Feb. 29, 2020 zs 45 4.7 1.0 0.39 26.5× 26.5
LCOGT, SSO, Australia Mar. 17, 2020 zs 45 4.1 1.0 0.39 26.5× 26.5
PEST, Australia May 22, 2020 RC 60 3.6 0.3 1.23 31× 21
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Fig. 1. TESS target pixel file image of LP 961-53 in Sector 10 (cre-
ated with tpfplotter, Aller et al. 2020). The electron counts are
color-coded. The red bordered pixels are used in the simple aperture
photometry. The size of the red circles indicates the TESS magnitudes
of all nearby stars and LP 961-53 (label #1 with the “×”). Positions
are corrected for proper motions between the Gaia DR2 epoch (2015.5)
and the TESS Sector 10 epoch (2019.2). The TESS pixel scale is
approximately 21′′.

others. However, the vetting team at the TESS Science Office
proposed the possibility that TOI-776.01 could be an EB, where
the secondary transit is the primary transit of TOI-776.02 can-
didate. The ground-based follow-up observations discussed in
the next section refuted this scenario and confirmed the two
announced candidates as bona-fide planets.

3. Ground-based observations

3.1. Transit follow-up

We observed the TOI-776 candidates as part of the TESS Follow-
up Observing Program (TFOP)3. The goals of these ground-
based photometric follow-up observations were to verify that
the transits observed by TESS are on target, and to refine the
transit ephemeris and depth measurements. We used the TESS
Transit Finder, a customized version of the Tapir soft-
ware package (Jensen 2013), to schedule photometric time-series
follow-up observations. We observed two transits of TOI-776.01
3 https://tess.mit.edu/followup

and three transits of TOI-776.02, as summarized in Table 1 and
discussed further below.

3.1.1. MEarth-South

A single transit of TOI-776.01 was observed with the 40 cm
MEarth-South telescope array (Irwin et al. 2015) at Cerro Tololo
Inter-American Observatory (CTIO), Chile on June 1, 2019.
Seven telescopes observed continuously from evening twilight
until the target star set below airmass 2, using an exposure time
of 10 s, with all telescopes in focus. The target star was west of
the meridian throughout the observation to avoid meridian flips.

Data were reduced following the standard procedures in
Irwin et al. (2007) and Berta et al. (2012) with a photomet-
ric extraction aperture radius of r = 6 pix (5′′ on sky given the
pixel scale of 0.′′84 pix−1). The light curve is shown in the lower
right of Fig. 3. Due to the large variation in airmass and rela-
tively red target star compared to the available field comparison
stars, we found the light curve exhibited a small amount of resid-
ual second-order (color-dependent) atmospheric extinction, so
the transit model was fit including an extinction term (linear
decorrelation against airmass).

3.1.2. LCOGT

One transit of TOI-776.01 and two transits of TOI-776.02
were observed with the 1.0 m telescopes in the Las Cum-
bres Observatory (LCOGT) telescope network (Brown et al.
2013). The 4096× 4096 pix LCOGT SINISTRO cameras have
an image scale of 0.′′389 pix−1, resulting in a 26′ × 26′ field of
view. The images were calibrated using the standard LCOGT
BANZAI pipeline, and photometric data were extracted with
AstroImageJ (Collins et al. 2017).

An ingress of TOI-776.01 was observed from the LCOGT
node at CTIO on July 1, 2019 in the i′ filter, simultaneous with
the MEarth-South observations mentioned above (Fig. 3, middle
right). Transits of TOI-776.02 were observed from the LCOGT
nodes at the South African Astronomical Observatory (SAAO)
on February 29, 2020 (Fig. 3, middle left) and from the Sid-
ing Spring Observatory (SSO) on March 17, 2020, (Fig. 3, lower
left). Both observations were made in the zs filter, with the
telescopes defocused.

3.1.3. PEST

A full transit of TOI-776.02 was observed with the 30 cm Perth
Exoplanet Survey Telescope4 (PEST) on May 22, 2020. These

4 http://pestobservatory.com/
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Fig. 2. TESS PDC-corrected SAP transit photometry from SPOC pipeline with the best-fit juliet model (black line; see Sect. 5.2.1 for details on
the modeling). Purple and orange ticks above the light curve mark the transits of the candidates TOI-776.01 (purple) and TOI-732.02 (orange).

data have a scatter that is too large to reliably detect the transit.
For this reason, we did not include them in the global fit.

3.2. Long-term photometric monitoring

We compiled ground-based, long baseline photometric series
from automated surveys. The following public surveys observed
TOI-776: the All-Sky Automated Survey for Supernovae
(ASAS-SN; Kochanek et al. 2017), All-Sky Automated Sur-
vey (ASAS; Pojmanski 2002), Northern Sky Variability Survey
(NSVS; Woźniak et al. 2004), and the Catalina surveys (Drake
et al. 2014). The telescope location, instrument configurations,
and photometric bands of each public survey were summa-
rized in Table 1 of Díez Alonso et al. (2019). All together, the
measurements span a period of 15 yr.

Additionally, TOI-776 is a candidate of the Super-Wide
Angle Search for Planets (SuperWASP; Pollacco et al. 2006).
SuperWASP acquired more than 11 000 photometric observa-
tions, using a broad-band optical filter spanning three consec-
utive seasons from May to July 2006, January to June 2007, and
January to June 2008. In order to detect long-term photometric
modulations associated with the stellar rotation, we binned the
data into one day intervals, resulting in 201 epochs.

3.3. High spatial resolution imaging

The large pixel size of TESS increase the possibility of contam-
ination by nearby sources that are not detected in the seeing-
limited photometry or in Gaia DR2. Close companions can
dilute the transit depth and thus alter the measured planet radius,
or lead to false positives if the companion is itself an EB (e.g.,
Ciardi et al. 2015). We thus searched for companions by collect-
ing adaptive optics (AO) and speckle images of TOI-776 using
4 m and 8 m class telescopes, providing robust limits on the
presence of companions and the level of photometric dilution.

3.3.1. Adaptive optics imaging with Gemini/NIRI and
VLT/NaCo

On June 15, 2019, TOI-776 was observed using the adaptive
optics near-infrared imager (NIRI) mounted on the 8.1 m Gemini
North telescope at Mauna Kea, Hawai’i. We collected a total

of 9× 1.4 s images in the Brγ filter centered on 2.166 µm. We
dithered the telescope between exposures, so that the sky back-
ground could be constructed from the science frames themselves.
After removing bad pixels, flat-fielding, and subtracting the sky
background, we aligned the stellar position between frames and
co-added the images. The sensitivity of our observations was cal-
culated as a function of radius by injecting fake companions, and
scaling their brightness, such that they could be detected at 5σ.
The contrast curve and image are shown in Fig. 4. Only the cen-
tral 4′′ × 4′′ are shown, but no companions are seen anywhere in
the field, which has a field of view of ∼13′′ × 13′′.

On July 4, 2019, TOI-776 was observed in Brγ using the
NAOS-CONICA AO instrument (NaCo), mounted at the Nas-
myth A port of the 8 m UT1 Very Large Telescope (VLT) in
Paranal, Chile. We collected a total of 9× 10 s Brγ images.
Data were reduced and analyzed using the same procedures as
described above for the NIRI data, and no companions were
found in the reduced image. The NaCo contrast curve is shown
in Fig. 4.

3.3.2. Speckle imaging with SOAR/HRCam and
Gemini/Zorro

On December 12, 2019, TOI-776 was observed in the I band
with a pixel scale of 0.01575′′ pix−1 using the HRCam imager,
mounted on the 4.1 m Southern Astrophysical Research (SOAR)
telescope at Cerro Tololo Inter-American Observatory, Chile.
The data were acquired and reduced following the procedures
described in Tokovinin (2018) and Ziegler et al. (2020). The
resulting reconstructed image achieved a contrast of ∆mag = 7.1
at a separation of 3′′ (see top panel of Fig. 5).

On March 15, 2020, TOI-776 was observed using the Zorro
speckle imager (Scott 2019), mounted on the 8.1 m Gem-
ini South telescope in Cerro Pachón, Chile. Zorro uses high
speed electron-multiplying CCDs (EMCCDs) to simultaneously
acquire data in two bands centered at 562 and 832 nm. The data
were collected and reduced following the procedures described
in Howell et al. (2011). The resulting reconstructed image
achieved a contrast of ∆mag = 7.8 at a separation of 1′′ in the
832 nm band (see bottom panel of Fig. 5). We note that at the
distance of TOI-776, our Zorro speckle images cover a spatial
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Fig. 3. Phase-folded light curves of TOI-776 b and c. First column: transits of TOI-776 b observed with TESS (top) in Sector 10, LCO-SAAO
(middle) on Feb 29, 2020, and LCO-SSO (bottom) on May 22, 2020. Second column: transits of TOI-776 c observed with TESS (top) in Sector 10,
and LCO-CTIO (middle) and MEarth-South (bottom) on July 2, 2020. TESS and MEarth-South photometry binned every 10 min are marked with
blue diamonds to improve visualization. In all panels, the black lines and shaded areas indicate the detrended best fit model from Sect. 5.2.3 and
its 1σ confidence interval. Below each panel, the residuals after the subtraction of the median best fit model are represented.

range of 0.46–32 au around the star with contrasts between 5 and
8 mag.

3.4. Radial velocity observations

We obtained 29 high-resolution (R≈ 115 000) spectra of TOI-
776 using the High Accuracy Radial velocity Planet Searcher

(HARPS) spectrograph mounted at the ESO 3.6 m telescope of
La Silla Observatory, Chile (Mayor et al. 2003). The observa-
tions were carried out as part of our large observing program
1102.C-0923 (PI: Gandolfi) starting on February 5 and end-
ing on March 23, 2020, when ESO observatories stopped the
operations due to the COVID-19 pandemic. One spectrum was
acquired under the program 60.A-9709. We used the second
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Fig. 4. Contrast curves from NIRI (orange) and NaCo (blue), and the
central 4′′ × 4′′ of the NIRI image (inset). We rule out companions
6 mag fainter than TOI-776 beyond 250 mas, and 7.5 mag fainter beyond
900 mas. The NaCo observations have a slightly tighter inner working
angle, while the NIRI observations reach a deeper sensitivity beyond
0.5′′.
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Fig. 5. Top: SOAR contrast curve and 6′′ × 6′′ reconstructed image
(inset). Bottom: Gemini/Zorro contrast curves and 1.2′′ × 1.2′′ recon-
structed images (inset).

fiber of the instrument to monitor the sky background and we
reduced the data with the HARPS data reduction software (DRS;
Lovis & Pepe 2007). To compute precise radial velocities and
spectral diagnostics, we applied the codes serval (Zechmeister
et al. 2018) and TERRA (Anglada-Escudé & Butler 2012) to
the reduced data. Both programs employ a template-matching
algorithm that is better suited to derive precise radial veloci-
ties for M dwarfs if compared to the cross-correlation function
(CCF) technique implemented in the DRS. In the CCF tech-
nique, the line lists of M dwarfs used to define the binary mask
are incomplete and they thus produce a CCF that is often a poor
match for cool stars. The RVs have a median internal uncer-
tainty of 1.5 m s−1 (1.5 m s−1) and a root mean square of 5.2 m s−1

(3.5 m s−1) around the mean value for the serval (TERRA)
extractions, respectively. We report in Tables B.1 and B.2 the
HARPS measurements; the extracted RVs and the associated
uncertainties; Na I D, Na II D and Hα line indices from both pro-
grams together with the chromatic index (CRX) and differential
line width (dLW) computed by serval; and the Mount Wilson
S-index computed by TERRA.

4. Stellar properties

4.1. Stellar parameters

The star TOI-776 belongs to the Catalog Of Nearby Cool Host-
Stars for Habitable ExopLanets and Life (CONCH-SHELL)
compiled by Gaidos et al. (2014). For an all-sky sample of
approximately 3000 M- or late K-type stars, the authors pro-
vide spectroscopically determined values of the spectral type,
effective temperature, and metallicity; which, combined with
empirical relations for cool stars, make it possible to estimate
stellar radius, luminosity, and mass. In particular, they measure
that TOI-776 is a relatively inactive M1 V dwarf star with the
stellar properties shown in Table 2.

We carried out an independent analysis to improve the pho-
tospheric and fundamental parameters of TOI-776. We used
SpecMatch-Emp (Yee et al. 2017) to empirically estimate the
effective temperature, metallicity, and stellar radius by com-
paring the co-added HARPS high-resolution spectrum with a
spectroscopic library of well-characterized stars. The results of
this analysis are in agreement with the values of Gaidos et al.
(2014) within the errors. Then, we derived the stellar radius
and luminosity combining Gaia G, GBP, GRP photometry and
2MASS J, H, Ks magnitudes with the spectroscopic parameters
from the SpecMatch-Emp analysis and the Gaia parallax. We
corrected the Gaia G photometry for the magnitude-dependent
offset using Eq. (3) from Casagrande & VandenBerg (2018) and
adopted a minimum uncertainty of 0.01 mag for the Gaia mag-
nitudes to account for additional systematic uncertainties. We
added 0.06 mas to the nominal Gaia parallax to account for the
systematic offset found by Stassun & Torres (2018); Riess et al.
(2018), and Zinn et al. (2019). Our best estimate of the stellar
radius is consistent with the value from Gaidos et al. (2014) and
in agreement with each of the radius estimates obtained indepen-
dently using only one of the magnitudes. Finally, we computed
the mass using the mass-radius relations for M dwarfs from
Schweitzer et al. (2019).

We also applied the methods of Reddy et al. (2006) to
Gaia DR2 astrometry for TOI-776 to compute galactic U, V , W
velocities in the local standard of rest and the probabilities of
kinematic membership in galactic stellar populations. We found
that TOI-776 has a 96.3% probability of belonging to the thin
disk population, which is in excellent agreement with the galactic
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Table 2. Stellar parameters of TOI-776.

Parameter Value Reference

Name and identifiers
Name LP 961-53 Luyten (1974)
TOI 776 TESS Science Office
TIC 306 996 324 Stassun et al. (2018)

Coordinates and spectral type
α 11:54:18.39 Gaia DR2
δ −37:33:09.8 Gaia DR2
SpT M1 V Gaidos et al. (2014)

Magnitudes
V (mag) 11.54± 0.04 UCAC4
g (mag) 12.35± 0.12 UCAC4
G (mag) 10.7409± 0.0005 Gaia DR2
r (mag) 10.92± 0.03 UCAC4
i (mag) 10.05± 0.09 UCAC4
J (mag) 8.483± 0.018 2MASS
H (mag) 7.877± 0.040 2MASS
Ks (mag) 7.615± 0.020 2MASS

Parallax and kinematics
π (mas) 36.78± 0.04 Gaia DR2
d (pc) 27.19± 0.03 Gaia DR2
µα cos δ (mas yr−1) +251.112± 0.051 Gaia DR2
µδ (mas yr−1) −145.059± 0.083 Gaia DR2
Vr (km s−1) 49.34± 0.22 Gaia DR2
U (km s−1) 60.71± 0.08 This work (a)

V (km s−1) −28.27± 0.17 This work (a)

W (km s−1) 18.73± 0.09 This work (a)

Photospheric parameters
Teff (K) 3709± 70 This work

3766± 100 Gaidos et al. (2014)
log g 4.727± 0.025 This work
(Fe/H) −0.20± 0.12 This work

Physical parameters
R (R�) 0.538+0.024

−0.024 This work
0.53± 0.05 Gaidos et al. (2014)

L (L�) 0.049± 0.002 This work
0.050± 0.013 Gaidos et al. (2014)

M (M�) 0.544+0.028
−0.028 This work

0.56± 0.07 Gaidos et al. (2014)
Age (Gyr) 7.8+3.9

−6.3 This work

Notes. (a) Computed in the local standard of rest.
References. Gaia DR2: Gaia Collaboration (2018); UCAC4: Zacharias
et al. (2013); 2MASS: Skrutskie et al. (2006).

population probabilities for this star in the recent catalog of
Carrillo et al. (2020). Additionally, using the code isochrones
(Morton 2015), we estimated the age of TOI-776 to be loosely
constrained between 2 and 10 Gyr. From the metallicity, age, and
kinematics given in Table 2, we can conclude that TOI-776 is a
relatively old member of the galactic thin disk population.

4.2. Stellar rotation period

To determine the rotational period of the star, we used the pub-
licly available photometric data for TOI-776. Using juliet
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Fig. 6. Probability density of the samples of the Prot parameter from the
GP fit of the ground-based, long-term photometric monitoring (gray)
from Sect. 4.2 and of the period of the additional sinusoidal signal
from the RV fit from Sect. 5.2.2 using serval (blue) or TERRA (red)
reductions.

(see more details about the algorithm in Sect. 5.2), we mod-
eled the ASAS-SN, ASAS, NSVS, Catalina, and daily binned
SuperWASP data with Gaussian processes (GPs). In partic-
ular, we adopted the quasi-periodic GP kernel introduced in
Foreman-Mackey et al. (2017) of the form

ki, j(τ) =
B

2 + C
e−τ/L

[
cos

(
2πτ
Prot

)
+ (1 + C)

]
,

where τ= |ti − t j| is the time-lag, B and C define the amplitude
of the GP, L is a timescale for the amplitude-modulation of the
GP, and Prot is the rotational period of the modulations. As in
Luque et al. (2019), we considered each of the five data sets to
have different values of B and C, in order to account for the
possibility that different bands could have different GP ampli-
tudes, while we imposed the timescale of the modulation and
the rotational period as common parameters for all the data sets.
In addition, we fit an extra jitter term for each photometric time
series. We considered wide uninformative priors for the jitter,
B, C, L, and a uniform rotation period prior between 10 and
100 d.

Figure 6 shows the posterior samples of the GP hyperparam-
eter Prot after fitting all the long-term monitoring ground-based
photometry. The distribution is bimodal with peaks at 33± 1 d
and 38± 1 d, where the samples from the first peak have the high-
est likelihood. From this we can estimate that the stellar rotation
of TOI-776 is between 30 and 40 d over the course of 15 yr. The
38 d peak may be an alias of the true 33 d rotation due to 1 yr
window function in the photometry. Alternatively, the bimodal
distribution of the Prot can be explained as a consequence of
the stellar differential rotation coupled with the activity cycle
(Rüdiger et al. 2014; Küker et al. 2019). For early M dwarfs with
rotational periods similar to TOI-776, the expected dynamo cycle
time is between 3 and 6 yr (Küker et al. 2019), thus detectable in
our data. Additionally, assuming that this star is a solar-like rota-
tor, the rotational velocity of the star decreases as the latitude
increases. The two peaks correspond to two different groups of
activity features, a bigger one, closer to the equator, which gen-
erates the first peak of the posterior distribution, and a smaller
one, at a higher latitude, which produces the second peak. The
opposite situation, with an antisolar-like rotator, is less likely,
considering that TOI-776 is an adult star, still belonging to the
main sequence.
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5. Analysis

5.1. Frequency analysis of the HARPS data

We performed a frequency analysis of the HARPS
serval/TERRA extracted measurements to search for the
Doppler reflex motion induced by the two transiting planets
discovered in the TESS light curve and to unveil the presence of
additional signals associated with the star and/or other orbiting
planets. Figure 7 shows the generalized Lomb Scargle (GLS;
Zechmeister et al. 2009) periodograms of the HARPS RVs
and activity indicators extracted with serval (blue lines) and
with TERRA (red lines). The horizontal dashed lines mark the
GLS powers corresponding to the 0.1, 1, and 5% false alarm
probability (FAP)5. The vertical dashed lines mark the orbital
frequencies of the two transiting planets detected in the TESS
light curve ( fb = 0.121 d−1 and fc = 0.064 d−1) and the stellar
signal at ∼0.03 d−1 (see below).

The upper panel of Fig. 7 displays the GLS periodogram of
the HARPS RVs in the 0 – 0.42 d−1 frequency range. The high-
est peak is found at 0.055 d−1 (FAP≈ 0.3%), which is close to
the orbital frequency of TOI-776 c ( fc = 0.064 d−1). Taking into
account our frequency resolution6 of 0.021 d−1, the two frequen-
cies are indistinguishable. This suggests that the highest peak
seen in the periodogram of the HARPS RVs is the stellar reflex
motion induced by the outer transiting planet TOI-776 c. The
second highest peak is found at 0.129 d−1 (Fig. 7, upper panel),
which is close to the orbital frequency of TOI-776 b. However,
this signal is an alias of the signal at 0.055 d−1. The periodogram
of the window function indeed shows a peak at 0.074 d−1 (high-
lighted with an arrow in the bottom panel of Fig. 7), which is
equal to the frequency spacing between the two highest peaks
seen in the periodogram of the HARPS RVs.

We used the code pyaneti (Barragán et al. 2019, see also
Sect. 5.2.3) to subtract the Doppler signal of TOI-776 c from the
HARPS RVs. We assumed a circular model (see also Sect. 5.2.2),
fixing period and time of first transit to the TESS ephemeris,
while allowing for the systemic velocity and RV semi-amplitude
to vary. The periodogram of the RV residuals shows a broad peak
centered around ∼0.04 d−1 with a FAP of about 10%. Although
the Doppler signal is not significant, the GLS periodograms of
the CRX, dLW, Hα, and S-index activity indicators show also
peaks at ∼0.04 d−1, suggesting that this signal is caused by the
presence of active regions appearing and disappearing from the
visible stellar disk as the star rotates around its axis. It is worth
noting that the peak at 0.130 d−1 is not observed in the GLS peri-
odogram of the RV residuals, corroborating the interpretation
that this peak is an alias of the dominant frequency detected in
the periodogram of the HARPS data.

We removed the Doppler reflex motion of TOI-776 c and
the activity-induced RV signal by jointly modeling the HARPS
measurements with a circular Keplerian orbit and a sine curve.
For TOI-776 c, we followed the same procedure described in
the previous paragraph. For the stellar signal, we fit for the
phase, amplitude, and frequency. The latter was allowed to vary
within a wide uniform prior centered around 0.04 d−1. The GLS

5 Following the bootstrap method described, for example, in Murdoch
et al. (1993) and Hatzes (2016), we estimated the FAP by computing the
GLS periodogram of 106 time series obtained by randomly shuffling the
measurements and their uncertainties, while keeping the time stamps
fixed.
6 The frequency resolution is defined as the inverse of the time
baseline. The baseline of our HARPS observations is about 47 days,
corresponding to a frequency resolution of about 1/47 = 0.021 d−1.

Fig. 7. Generalized Lomb-Scargle periodograms of the HARPS RVs
and spectral activity indicators from serval (blue) and TERRA (red).
The horizontal dashed lines mark, from bottom to top, the 5, 1, and 0.1%
FAP levels, respectively. The vertical dashed lines mark the orbital fre-
quencies of the two transiting planets ( fb = 0.121 d−1 and fc = 0.064 d−1)
and of the stellar signal at ∼0.03 d−1. Upper panel: HARPS RVs. Second
panel: RV residuals following the subtraction of the signal of TOI-776 c.
Third panel: RV residuals following the subtraction of the reflex motion
of TOI-776 c and of the activity-induced stellar signal. Fourth panel:
S-index. Fifth panel: Hα line. Sixth panel: Na D lines. Seventh panel:
differential line width (dLW). Eighth panel: chromatic index (CRX).
Bottom panel: window function. The arrow in the bottom panel indicates
the peak at 0.07 d−1 referred to in the discussion of Sect. 5.1.
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periodogram of the RV residuals displays a peak at 0.125 d−1

(FAP≈ 11%), which is very close to the frequency of the inner
transiting planet TOI-776 b ( fb = 0.121 d−1). We note that the
activity indicators also show peaks close to the orbital frequency
of TOI-776 b. Yet, those peaks are separated by 0.074 d−1 from
the stellar signal at ∼0.04 d−1. As such they are very likely aliases
of the latter.

5.2. Modeling results

In this section, we describe our use of juliet (Espinoza et al.
2019) to model the photometric and Doppler data, both sepa-
rately and jointly. The algorithm is built on several publicly avail-
able tools that model transits (batman, Kreidberg 2015), RVs
(radvel, Fulton et al. 2018), and GPs (george, Ambikasaran
et al. 2015; celerite, Foreman-Mackey et al. 2017).

5.2.1. Photometry

First, to constrain the properties of the transiting planets and
use them for further analyses, we modeled the TESS, LCO, and
MEarth photometry with juliet. We adopted a quadratic limb
darkening law for TESS, since Espinoza & Jordán (2015) showed
it was equally appropriate for space-based missions. The limb
darkening parameters were then parameterized with a uniform
sampling prior (q1, q2), introduced by Kipping (2013). For LCO
and MEarth transits, we used a more simple linear limb darken-
ing law, because the lower data precision with respect to TESS
prevents us from adopting a more complex law. Additionally, we
followed the parameterization introduced in Espinoza (2018). In
particular, for each transiting planet, rather than fitting for the
planet-to-star radius ratio p = Rp/R∗ and the impact parameter
of the orbit b, we sampled from the uniform priors assigned
to two parameters, r1 and r2, which are connected to p and b
with Eqs. (1)–(4) in Espinoza (2018). r1 and r2 were shown in
Espinoza (2018) to guarantee a full exploration of the physically
plausible values in the (p, b) plane. We also assumed circular
orbits and fixed the TESS dilution factor to 1, based on our analy-
sis from Sect. 3.3. Finally, we added a jitter term σ in quadrature
to the TESS, LCO, and MEarth photometric uncertainties. The
details of the priors and the description for each parameter are
presented in Table A.1.

To account for the time-correlated noise in the light curve
in Fig. 2, even using the PDC-corrected SAP, we modeled the
TESS photometry with the exponential GP kernel

ki, j =σ2
GP,TESS exp

(
−|ti − t j|/TGP,TESS

)
,

where TGP,TESS is a characteristic timescale, and σGP,TESS is the
amplitude of this GP modulation. For the LCO photometry, on
the other hand, we used a linear model to detrend the data from
airmass correlations.

Our photometry-only analysis significantly increases the pre-
cision of the planet parameters with respect to the TESS DVR.
The uncertainties in the period decreases by two orders of magni-
tudes, which eases up future ground- and space-based follow-up
efforts. The radii of the planets are determined to a precision bet-
ter than 5%. Finally, we searched for an additional planet in the
system by modeling a three-planet fit with the same priors as in
Table A.1 for the transiting planets, and by varying the period
and mid-transit time of the third hypothetical planet. Our result
notably excludes the presence of any additional transits in the
light curve (∆ ln Z = ln Z2pl − ln Z3pl > 7).

Table 3. Model comparison of RV-only fits with juliet.

Model Prior Pplanet GP ln Zserval ln ZTERRA

0pl . . . . . . −84.3 −85.4

2pl Nb(8.24, 0.052) . . . −81.3 −81.8
Nc(15.65, 0.052)

2pl+GP1 Nb(8.24, 0.052) EXP (a) −80.7 −81.7
Nc(15.65, 0.052)

2pl+GP2 Nb(8.24, 0.052) ESS (b) −80.6 −81.8
Nc(15.65, 0.052)

2pl+sinusoid Nb(8.24, 0.052) . . . −78.9 −79.4
Nc(15.65, 0.052)
Nd(35.0, 10.02)

Notes. The prior label N represents a normal distribution. The final
model used for the joint fit is marked in boldface (see Sect. 5.2.2 for
details about the selection of the final model). (a)Simple exponen-
tial kernel (EXP) of the form ki, j =σ2

GP,RV exp
(
−|ti − t j|/TGP,RV

)
.

(b)Exponential-sine-squared kernel (ESS) of the form ki, j =

σ2
GP,RV exp

(
−αGP,RV(ti − t j)2 − ΓGP,RV sin2

[
π|ti−t j |

Prot;GP,RV

])
with a uniform

prior in Prot;GP,RV ranging from 5 to 50 d.

5.2.2. RV

Even though the results of the RV’s extraction slightly change
depending on whether we used serval or TERRA, the GLS anal-
yses in both cases show evidence of a stellar signal together
with the RV trends associated with the transiting planets. To ade-
quately describe the data, we considered several RV-only models
and carried out a model comparison scheme as in Luque et al.
(2019). We used juliet, a code that efficiently computes the
Bayesian log-evidence of each tested model and explores the
parameter space using the importance nested sampling included
in MultiNest (Feroz et al. 2009) via the PyMultiNest package
(Buchner et al. 2014). As discussed in Nelson et al. (2020), this
method outperforms other samplers in robustly choosing the best
model for those with three or fewer planets. We considered a
model to be moderately favored over another if the difference
in its Bayesian log-evidence ∆ ln Z is greater than two, while
it is strongly favored if it is greater than five (Trotta 2008). If
∆ ln Z . 2, then the models are indistinguishable. In this case,
the model with fewer degrees of freedom would be chosen.

Due to the sampling and the scarce number of RV measure-
ments, if we model the eccentricity with a wide, uninformative
prior, we derive nonphysically high eccentricities for both plan-
ets that would make the system unstable in fewer than one
hundred orbits. The eccentricity of systems with multiple tran-
siting planets is low but not necessarily zero (Van Eylen &
Albrecht 2015; Xie et al. 2016; Hadden & Lithwick 2017). There-
fore, instead of assuming circular orbits, we placed a prior on
the orbital eccentricity of a beta distribution with α= 1.52 and
β= 29 following Van Eylen et al. (2019). Table 3 summarizes
the results of our analysis on both serval- or TERRA-extracted
RVs. As seen in Table 3, including the two transiting planets in
the model is favored over the fiducial model (0pl). On the other
hand, we tested different types of two-planet models. First, we
considered just the two transiting planets (2pl), without account-
ing for additional noise sources. Then, we accounted for the
stellar noise, modeling it in three different ways: with an expo-
nential GP kernel (2pl+GP1), with an exponential sine-squared
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GP kernel (2pl+GP2) and with a simple sinusoid (2pl+sinusoid).
All the tested two-planet models are statistically indistinguish-
able, with their Bayesian log-evidences within ∆ ln Z < 2.

However, for both serval and TERRA-extracted RVs, the
nominal best model accounts for two circular orbits and an
additional sinusoidal curve, whose period is equal to the stellar
period of rotation we estimated through the long-term ground-
based photometric data. For this test, we imposed a normal prior
on Prot, with a wide standard deviation (10). We additionally
tried wide, uninformative priors for the period of the sinusoidal
signal, and we retrieved the same posterior distributions and
log evidence (Fig. 6) as for the test with a Gaussian prior.
With the RV analysis, we estimated a stellar period of rotation
Prot = 34.4+1.4

−2.0 d, consistent with the rotational period estimated
from the ground-based long-term photometry in Sect. 4.2. Addi-
tionally, all models presented in Table 3 derive the same RV
semi-amplitude for TOI-776 b and TOI-776 c, well within their
1σ uncertainties. This proves the robustness of the mass deter-
mination for the transiting planets, independently of the stellar
noise distribution.

Leveraging the prior information on the stellar rotation from
photometry discussed in Sect. 4.2 with the presence of a sig-
nificant periodicity in the RV residuals of a two-planet model
(Fig. 7b), we decided to choose the 2pl+sinusoid as our final
model for the joint fit. With respect to the RV extraction, we pre-
ferred to use the serval extracted RVs in the final joint fit due
to their nominal highest log-evidence and lower jitter compared
to TERRA.

5.2.3. Joint fit

We performed a joint fit using juliet of the TESS, LCO, and
MEarth photometry and HARPS serval extracted RVs, using
the 2pl+sinusoid model we selected after the RV-only analysis in
Sect. 5.2.2. Tables A.1 and 4 show the priors and posteriors of
all the fit parameters, respectively. Figure C.1 shows a corner plot
of the orbital parameters of planets b and c. The data, residuals,
and joint fit of the preferred model are shown in Figs. 3 and 8 for
the photometry and the RVs, respectively. Table 5 lists the transit
and physical parameters derived using the stellar parameters in
Table 2.

As a sanity check, we performed an independent joint anal-
ysis of the transit photometry and Doppler measurements using
the pyaneti code (Barragán et al. 2019), which estimates the
parameters of planetary systems in a Bayesian framework, com-
bined with an MCMC sampling. We imposed uniform priors for
all the fit parameters. Following Winn (2010), we sampled for the
mean stellar density ρ? and recovered the scaled semi-major axis
(Rp/R?) for each planet using Kepler’s third law. We found that
the modeling of the transit light curves provides a mean stellar
density of ρ? = 5203+1782

−1228 kg m−3, which agrees with the density
of 4834+651

−559 kg m−3 derived from the stellar mass and radius pre-
sented in Sect. 4. As for the remaining parameters, the analysis
provides parameter estimates consistent with those derived with
juliet, thus corroborating our results.

6. Results and discussion

The TOI-776 system consists of two transiting planets. The
inner planet, TOI-776 b, has a period of 8.25 d, a radius of
1.85± 0.13 R⊕, a mass of 4.0± 0.9 M⊕, and a bulk density of
3.4+1.1
−0.9 g cm−3. The outer planet, TOI-776 c, has a period of

15.66 d, a radius of 2.02± 0.14 R⊕, a mass of 5.3± 1.8 M⊕, and a

Table 4. Median and 68% credibility intervals of the posterior distri-
butions for each fit parameter of the final joint model obtained for the
TOI-776 system using juliet.

Parameter TOI-776 b TOI-776 c

Stellar parameters

ρ? (kg m −3) 6024+650
−640

Planet parameters

P (d) 8.24661+0.00005
−0.00004 15.6653+0.0004

−0.0003

t0 (a) 8571.4167+0.0010
−0.0011 8572.5999+0.0018

−0.0016

r1 0.43+0.10
−0.07 0.51+0.08

−0.07

r2 0.0316+0.0008
−0.0011 0.03437+0.0009

−0.0008

e (b) 0.06+0.03
−0.02 (<0.18) 0.04+0.02

−0.01 (<0.18)
ω −67+117

−73 −11+55
−79

K (m s−1) 1.88+0.40
−0.44 2.05+0.67

−0.68

Photometry parameters

σTESS (ppm) 1.1+8.0
−1.0

q1,TESS 0.26+0.29
−0.17

q2,TESS 0.36+0.21
−0.20

σLCO-CTIO (ppm) 1000+36
−34

MLCO-CTIO (ppm) 890+395
−468

θLCO-CTIO 0.0011+0.0003
−0.0004

q1,LCO-CTIO 0.76+0.13
−0.14

σLCO-SAAO (ppm) 471+60
−60

MLCO-SAAO (ppm) −810+250
−260

θLCO-SAAO −0.0004± 0.0002
q1,LCO-SAAO 0.73+0.14

−0.15

σLCO-SSO (ppm) 885+45
−40

MLCO-SSO (ppm) −4057+386
−413

θLCO-SSO −0.0031± 0.0003
q1,LCO-SSO 0.46+0.16

−0.18

σMEarth (ppm) 1734+52
−47

MMEarth (ppm) −2+47
−44

q1,MEarth 0.73+0.13
−0.14

RV parameters

µHARPS (m s−1) 4.33+0.51
−0.58

σHARPS (m s−1) 1.66+0.35
−0.30

GP hyperparameters and additional sinusoid
σGP,TESS (ppm) 0.17+0.06

−0.04

TGP,TESS (d) 0.56+0.19
−0.15

K (m s−1) 2.71+0.53
−0.60

t0 (b) 8607.0+11.6
−12.1

P (d) 34.4+1.4
−2.0

Notes. Priors and descriptions for each parameter can be found in
Table A.1. (a)Units are BJD – 2 450 000. (b)3σ upper limit in parenthesis.
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Fig. 8. Top panel: time series of the HARPS serval RVs and the best model discussed in Sect. 5.2.2 and the residuals from the fit below. The blue
shaded area corresponds to the 1σ confidence interval of the model. Bottom panel: RVs phase-folded to the period (shown above each panel) of
the two confirmed planets (TOI-776 b, left; TOI-776 c, center) and the additional sinusoid associated with the stellar variability. In both panels, the
error bars of the RV data have the extra jitter term added in quadrature and plotted in a lighter orange for visualization.

bulk density of 3.5+1.4
−1.3 g cm−3. The RV data show only one addi-

tional signal, with a semi-amplitude of ∼2.7 m s−1 and a period
of 34 d, associated with the stellar rotation, as suggested by our
analyses of the photometry and spectral line indicators.

6.1. System architecture

While the occurrence rate of planets around early M dwarfs
(3500 K < Teff < 4000 K) has been investigated in detail with
Kepler and K2 samples (see e.g., Dressing & Charbonneau 2013,
2015; Montet et al. 2015; Hirano et al. 2018), the number of
currently known planets transiting low-mass stars is still much
smaller with respect to those discovered around solar-type stars.
While none of these surveys were optimized for M dwarfs, we
expect more statistically significant results from the TESS mis-
sion for these stars. Figure 9 shows the confirmed transiting
planets around M dwarfs as a function of the orbital period and
the effective temperature of the host star. However, very few
of these systems have precise determinations of the planetary
masses (i.e., densities), eccentricities, and orbital architectures
that would be required to link the statistical properties of this
population with planet formation and evolution models in the
low stellar mass regime.

There are several validated transiting multi-planetary sys-
tems orbiting early M dwarfs similar to TOI-776 in terms
of planetary architecture. Kepler-225, Kepler-236, and Kepler-
231 are two-planet transiting systems composed of super-Earth-
and/or mini-Neptune-sized companions with similar periods and
semi-major axes, all validated by Rowe et al. (2014). However,
these systems are on average 5 mag fainter than TOI-776 and
the planets do not have a mass determination nor precise stellar
parameters. Similarly, K2-240 (Díez Alonso et al. 2018) has two
transiting super-Earths with periods of 6 and 20.5 d, although
they do not have mass determination, and they orbit an active star
that is 2 mag fainter with a clear photometric rotational period
of 10.8 d. The two outermost planets of the four-planet system,
K2-133, have periods and sizes similar to TOI-776 b and c, but
the star is at the faint end for RV follow-up and does not exhibit
transit timing variations (TTVs).

If compared to systems with mass determination, TOI-776
shows some similarities with Kepler-26 (Steffen et al. 2012),
Kepler-138 (Rowe et al. 2014), TOI-1266 (Demory et al. 2020),
and K2-3 (Montet et al. 2015; Crossfield et al. 2015). Kepler-26 b
and c have periods of 12.3 and 17.2 d, respectively, and bulk den-
sities compatible with those of sub-Neptunes determined from
TTVs. However, the system has two more planets without mass
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Fig. 9. Left: confirmed transiting planets from the TEPCat database (Southworth 2011) around M dwarfs as a function of period. Black circled
points indicate planets with a mass determination better than 30%. Circles are color-coded by the host effective temperature, and their sizes are
proportional to the planet radius. The red stars mark the two planets in the TOI-776 system. Right: transiting multi-planetary systems around early-
type M dwarfs (3500 K < Teff < 4000 K) with similar architectures to the TOI-776 system. Sizes are proportional to the planet radius, and colors
indicate their bulk densities. Planets with no mass determination are marked in white. The brightness of the host star in the J band is indicated next
to the system’s name.

Table 5. Derived planetary parameters obtained for the TOI-776 sys-
tem using the posterior values from Table 4 and stellar parameters from
Table 2.

Parameter (a) TOI-776 b TOI-776 c

Derived transit parameters

p = Rp/R? 0.0316+0.0008
−0.0011 0.0344+0.0009

−0.0008

b = (a/R?) cos ip 0.25+0.10
−0.14 0.27+0.12

−0.11

a/R? 27.87+0.97
−1.02 42.75+1.49

−1.57

ip (deg) 89.65+0.22
−0.37 89.51+0.25

−0.21

tT (h) 2.41+0.11
−0.10 2.99+0.16

−0.13

Derived physical parameters

Mp (M⊕) 4.0± 0.9 5.3± 1.8
Rp (R⊕) 1.85± 0.13 2.02± 0.14
ρp (g cm−3) 3.4+1.1

−0.9 3.5+1.4
−1.3

gp (m s−2) 11.2+3.1
−2.8 12.8+4.9

−4.4
ap (au) 0.0652± 0.0015 0.1000± 0.0024
Teq (K) (b) 514± 17 415± 14
S (S ⊕) 11.5± 0.6 4.9± 0.2

Notes. (a)Error bars denote the 68% posterior credibility intervals.
(b)Equilibrium temperatures were calculated assuming zero Bond albedo
and uniform surface temperatures across the entire planet.

determination: an inner Earth-sized planet and an outer mini-
Neptune-sized planet. Kepler-138 is a very interesting system of
three small planets, whose densities were estimated through pho-
todynamical modeling (Almenara et al. 2018). The most similar
to the TOI-776 planets in terms of orbital period, Kepler-138 b
(10.3 d) and c (13.8 d), are very different in composition, the

former being a Mars analog and the latter a prototypical rocky
super-Earth. The third, outermost planet seems to have retained
a substantial volatile-rich envelope. TOI-1266 is the system that
resembles TOI-776 the most. The two planets of the system have
tentative dynamical masses determined from TTVs, although
RVs are likely to become available in the future. The planets
straddle the radius valley and, interestingly, the innermost one is
larger and more massive than the outer one. K2-3, the bright-
est of all four systems, has three small transiting planets and
only the two inner ones (with periods of 10 and 24.6 d) have
a mass determination using HARPS-N, HARPS, HIRES and
PFS RVs (Almenara et al. 2015; Damasso et al. 2018; Kosiarek
et al. 2019), only an upper limit is measured for the third (with
a period of 44.5 d). The planets have similar compositions, com-
patible with those of water worlds or water-poor planets with
gaseous envelopes; however, the poor bulk density estimations
of planets c and d impede further conclusions. The right panel of
Fig. 9 shows all of the aforementioned systems, color-coded by
bulk density and with the J-band magnitude of their host stars
indicated.

Therefore, we conclude that, although multi-planetary sys-
tems of super-Earths and/or sub-Neptunes are common around
early-type M dwarfs, only TOI-776 has all of its planets well
characterized, bulk density uncertainties better than 30%, pre-
cise stellar parameters, and a host star bright enough for
atmospheric follow-up observations with current and planned
facilities.

6.2. Dynamics and TTV analysis

We investigated possible TTVs through a three-body simu-
lation using the Python Tool for Transit Variations (PyTTV;
Korth 2020). We simulated the estimated TTVs and RVs using
the stellar and planetary parameters reported in Tables 2, 4, and 5
and found an expected TTV signal with a period of ∼ 150 d and
a maximum amplitude of ∼2 min for the inner planet. Thus, the
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Fig. 10. Mass-radius diagrams in Earth units. In the left panel, open circles are transiting planets around F-, G-, and K-type stars with mass and
radius measurements better than 30% from the TEPCat database of well-characterized planets (Southworth 2011); red circles are planets around
M dwarfs with mass and radius measurements; orange filled circles are planets around M dwarfs with mass determinations worse than 30%; and
the red stars are TOI-776 b and c, which have masses determined with accuracies of 23 and 34%, respectively. In the left panel, the color lines
are the theoretical R-M models of Zeng et al. (2016, 2019). In the right panel, the solid pink and purple lines show the models from Sect. 6.3 that
are consistent with the mass and radius of TOI-776 b, and the orange and green lines show compositions consistent with the mass and radius of
TOI-776 c, assuming an Earth-like core (1/3 iron, 2/3 silicates).

time span of the photometric observations, their cadence, and
signal-to-noise would prevent the detection of TTVs with the
currently available data.

Additionally, we carried out a set of dynamical simulations to
study the long-term stability of the system. We used the param-
eters in Tables 4 and 5 and randomly drew 1000 samples from
the posterior distributions as initial parameters for the dynami-
cal simulations. We integrated each parameter set for 106 orbits
of the inner planet using the REBOUND (Rein & Liu 2012) tool
with the standard IAS15 integrator (Rein & Spiegel 2015). We
also explored the stability using the MEGNO criteria as imple-
mented in REBOUND. In the cases of close encounters between
the bodies or a one-body ejection, the system would be flagged
as unstable for the specific set of parameters. We found that the
system is dynamically stable over the entire integration time and
for the whole parameter posterior space.

6.3. Planetary composition and interior structure

Figure 10 shows the location of the TOI-776 system in a mass-
radius diagram. Both planets occupy a scarcely populated region,
characterized by a lack of planets around M dwarfs and with
precise bulk density measurements. A comparison with the the-
oretical models by Zeng et al. (2016), reported in the left panel
of Fig. 10, shows that TOI-776 b and c are consistent with mix-
tures of silicates and water in a 50–50 proportion. We adopted
the three-layer models from Zeng & Sasselov (2013) and Zeng
et al. (2016) to infer the interior structure of the planets. How-
ever, given the mass and radius input, the solution of the model
is degenerate. As a consequence, the same mass-radius pair can
lead to a broad range of combinations of iron, silicate, and water-
mass fractions. On the other hand, when we applied the latest
models by Zeng et al. (2019), assuming a 1 mbar surface pressure
level and an equilibrium temperature of 500 K (from Table 5),
we found that an Earth-like rocky core with a 0.1 and 0.3%

molecular hydrogen atmosphere is consistent with the bulk den-
sities of TOI-776 b and c, respectively. Nonetheless, it is clear
that both of the planets in the system have an internal com-
position ranging from water worlds to rocky planets that have
retained a significant atmosphere.

For a better understanding of the nature of the two exoplan-
ets, we performed a more detailed modeling of their interior
compositions, using their masses, radii, and surface temper-
atures. Our model considers a canonical four-layer structure
consisting of a two-component iron and silicate core, a layer
of H2O, and a H/He envelope. We assume that the core is
Earth-like in composition (1/3 iron, 2/3 silicates by mass), mean-
ing the core, water, and H/He envelope mass fractions (xcore,
xH2O, xH/He) are free parameters that sum to unity. The model
solves the planetary structure equations of mass continuity and
hydrostatic equilibrium assuming spherical symmetry. Further
detail regarding the internal structure model can be found in
Madhusudhan et al. (2020) and Nixon & Madhusudhan (2020).

The equation of state (EOS) prescriptions for the iron and
silicate layers are adopted from Seager et al. (2007), who used
a Vinet EOS of the ε phase of Fe (Vinet et al. 1989; Anderson
et al. 2001) and a Birch-Murnaghan EOS of MgSiO3 perovskite
(Birch 1952; Karki et al. 2000). Thermal effects in these lay-
ers are ignored, since they have a small effect on the planetary
radius (Howe et al. 2014). However, thermal effects in the
outer envelope can alter the mass-radius relation significantly
(Thomas & Madhusudhan 2016). For this reason, the model uses
a temperature-dependent EOS for the outer H2O and H/He lay-
ers. For H2O, we used a patchwork EOS in order to cover all
possible phases of H2O that might be present in the interior,
compiled from Salpeter & Zapolsky (1967); Fei et al. (1993);
Wagner & Pruß (2002); Feistel & Wagner (2006); Seager et al.
(2007); French et al. (2009); Klotz et al. (2017), and Journaux
et al. (2020). For H/He, we used the EOS in Chabrier et al.
(2019), which assumes a solar helium fraction (Y = 0.275). The
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temperature profile in the envelope is isothermal from the surface
down to some radiative-convective boundary, where it becomes
adiabatic. The pressure at the radiative-convective boundary Prc
is a free parameter in the model. For this study, we considered
values of Prc ranging from 1–100 bar.

We explored the parameter space of possible compositions
in (xcore, xH2O, xH/He) space. For each composition, we consid-
ered a range of masses that agree with the observed mass of the
planet to within 1σ. For a given mass M̂, the model radius R̂ is
computed, and the χ2 statistic is calculated:

χ2 =
(Mp − M̂)2

σ2
M

+
(Rp − R̂)2

σ2
R

, (1)

where (σM , σR) are the observed uncertainties on the mass and
radius of each planet.

The bulk densities of TOI-776 b and c (3.4+1.1
−0.9 g cm−3 and

3.5+1.5
−1.3 g cm−3, respectively) are too low for either planet to have

a purely terrestrial (iron plus rock) composition. Therefore, the
planets must possess an envelope with some amount of H2O
and/or H/He, in order to explain their masses and radii. The right
panel of Fig. 10 shows limiting cases for each planet in which the
envelope composition is either purely H2O or purely H/He. The
mass and radius of TOI-776 b can be explained to within 1σ
(χ2 ≤ 1) with a pure H2O envelope of 12–73% by mass or a pure
H/He envelope with a mass fraction of 1.1× 10−4–5.2× 10−3.
Best-fit solutions (those which minimize χ2) for pure envelopes
are found at xH2O = 0.3 and xH/He = 1.1× 10−3. TOI-776 c might
have larger envelopes; within 1σ, it is consistent with a pure H2O
layer of ≥18% or a pure H/He envelope with a mass fraction
of 5.4× 10−4–1.2× 10−2. The best-fit pure-envelope solutions
for TOI-776 c are xH2O = 0.58 and xH/He = 3.6× 10−3. Each of
the best-fit models, shown in the right panel of Fig. 10, have a
radiative-convective boundary at Prc = 10 bar.

It is also possible that the planets in this system have both
H2O and H/He components, as well as an iron/rock core. For the
three components, we explored the full range of plausible values
(xcore, xH2O, and xH/He) that could explain the interior compo-
sitions of each planet. We considered two different temperature
profiles for each planet, with Prc = 1 and 100 bar. Figure 11 shows
the mass fractions of water and H/He compatible to within 1σ
(χ2 ≤ 1) with the masses and radii of TOI-776 b and c. We
obtained upper limits on the total H2O and H/He mass fractions
for TOI-776 b: xH2O ≤ 73% and xH/He ≤ 0.52%. These corre-
spond to cases with pure H2O or H/He envelopes, as previously
discussed. For TOI-776 c, we find that xH/He ≤ 1.2%. A 100%
H2O planet would theoretically be consistent with the mass and
radius of TOI-776 c, but this would be unrealistic from a planet
formation perspective, as some rocky material is needed for fur-
ther accretion of ice and gas (Lee & Chiang 2016). Figure 11 also
shows a significant overlap between the best-fit shaded regions
for the two planets, meaning that the planets could also share the
same composition.

The masses and radii of TOI-776 b and c allow for a wide
range of possible solutions, from water worlds with steam atmo-
spheres to mostly rocky planets with hydrogen-rich envelopes;
however, they are inconsistent with bare rocks without atmo-
spheres. Our models assume a surface pressure of 0.1 bar,
meaning a water-world solution for either planet yields a steam
atmosphere. On the other hand, a higher surface pressure could
result in liquid H2O at the surface. A rocky planet with an out-
gassed secondary atmosphere which includes carbon compounds
is unlikely: Elkins-Tanton & Seager (2008) placed an upper limit
on the mass fraction for this type of atmosphere at 5%. The lower
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Fig. 11. H/He vs. H2O mass fractions for the best-fit interior com-
positions (≤1σ) permitted by the masses and radii of TOI-776 b and
c, assuming an Earth-like core, for two different pressure-temperature
profiles with radiative-convective boundaries at 1 and 100 bar. The
blue shaded region indicates possible compositions for TOI-776 b, and
the red shaded region shows compositions for TOI-776 c. The darker
red shaded area between the two corresponds to the range of possible
compositions that could explain both planets. For TOI-776 b, the H2O
mass fraction is constrained to be ≤73% and the H/He mass fraction is
≤0.52%. For TOI-776 c the upper limit for H/He is 1.2%. A purely H2O
planet would be consistent with this mass and radius, but we only show
H2O mass fractions up to 90%.

mass limits in the case of pure H2O envelopes are 8 and 18% for
TOI-776 b and c, respectively. On the other hand, in a carbon-
rich atmosphere, the dominant species, CO2, has a higher mean
molecular weight than H2O, leading to a lower atmospheric scale
height. All things considered, we can infer that a 5% carbon-
rich atmosphere is less than what would be needed to explain the
planet radii. However, determining whether the two planets have
H2O- or H/He-rich atmospheres is impossible with the present
data. Atmospheric observations of the planets would be required
in order to break this degeneracy.

6.4. Radius gap in M dwarfs

The occurrence rate distribution of close-in planets exhibits a
paucity of planets from 1.7−2.0 R⊕ (Fulton et al. 2017; Fulton
& Petigura 2018; Hardegree-Ullman et al. 2020) around FGK
stars (Teff > 4700 K), and from 1.4−1.7 R⊕ (Hirano et al. 2018;
Cloutier & Menou 2020) around mid-K to mid-M dwarfs (Teff <
4700 K). This feature is pointed out as the result of the transi-
tion from small rocky planets to larger non-rocky planets with
envelopes rich in volatiles (Weiss & Marcy 2014; Dressing &
Charbonneau 2015). Recent studies showed that the location of
the radius gap depends on the orbital period, or, alternatively,
on the planet’s insolation (Van Eylen et al. 2018; Martinez et al.
2019; Cloutier & Menou 2020). Additionally, the width and cen-
ter of the radius gap also depends on whether the host star is
single or part of a multiple star system (Teske et al. 2018).

According to the above discussion, if we consider the radius
axis in Fig. 10, TOI-776 b and c belong, within the uncertainties,
to the radius gap in the case of FGK stars. On the other hand, they
are well above the radius gap if we account for mid-K to mid-M
dwarfs. Similarly, when looking at the distribution of transiting
planets in a radius-insulation diagram (Fig. 12, left panel), the
TOI-776 planets lie above the radius valley – the 2D view of
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2020).

the radius gap – that separates rocky super-Earths from gaseous
sub-Neptunes around FGK stars.

The right panel of Fig. 12 shows the period-radius diagram
of all known exoplanets with precise bulk density measurements
that orbit M dwarfs. The dashed line marks the empirical loca-
tion of the radius valley for FGK stars, following Van Eylen et al.
(2018), while the solid line indicates the location of mid-K to
mid-M dwarfs as in Cloutier & Menou (2020). The change in
slope as a function of stellar type is the result of a change in the
dominant mechanism responsible for sculpting the radius valley.
For instance, the thermally driven mass loss, caused by photoe-
vaporation or core-powered mechanisms, becomes less efficient
toward low-mass stars. The measured slope for mid-K to mid-M
dwarfs suggests that gas-poor formation (Lee et al. 2014; Lee &
Chiang 2016; Lopez & Rice 2018) might be the main process by
which small planets form. However, thousands of small planets
around low-mass stars with precise radii are needed in order to
robustly state if the radius valley is the result of the erosion or the
gas-poor formation scenarios (Cloutier et al. 2020). Although
enriching the sample of exoplanet systems orbiting M dwarfs
is nowadays possible thanks to TESS and future space-based
missions such as PLATO, an alternative is to obtain precise
bulk density measurements of exoplanets lying in the region of
discrepancy between models.

Planet TOI-776 b joins TOI-1235 b (Bluhm et al. 2020;
Cloutier et al. 2020) and K2-146 b (Lam et al. 2020; Hamann
et al. 2019) inside the period-radius region, where thermally
driven mass-loss models disagree with the predictions from gas-
poor formation. However, K2-146 b belongs to this region if we
refer to the parameters reported in Hamann et al. (2019), because
the radius estimated by Lam et al. (2020) (see translucent points
in Fig. 12) is more than 2σ higher, causing the planet to be
placed outside the radius valley. Our previous analyses show that

both TOI-776 b and c are likely to have retained a significant
atmosphere, with slightly different envelope mass fractions. This
result, given their periods and radii, would be consistent with the
predictions from gas-poor formation models.

On the other hand, the system’s composition may be recon-
ciled with thermally driven mass loss because the inner, most
irradiated planet has a smaller envelope mass fraction compared
to its outer companion. Unlike other known systems whose plan-
ets straddle both sides of the radius gap (e.g., Dumusque et al.
2014; Niraula et al. 2017; Nowak et al. 2020), TOI-776 is an
interesting case where photo-evaporation could have stopped
or become inefficient early in the planet’s history. However, it
is possible that the planets are currently undergoing mass loss
under the core-powered mechanism, which erodes sub-Neptune
planets into rocky super-Earths on Gyr timescales (Ginzburg
et al. 2018), contrary to the few Myr timescale during which pho-
toevaporation is effective (Sanz-Forcada et al. 2011). As reported
in Table 2, the age of TOI-776 is between 2 and 10 Gyr. However,
the current data precision and limited number of known planets
in this specific regime hamper any further investigation in favor
of one or the other mechanism of formation. New studies on the
dependence of the radius valley with other stellar parameters
such as the age or metallicity, together with a larger sample of
well-characterized planets in or near the radius valley, will help
to discern between them in a demographic sense (Hardegree-
Ullman et al. 2020; Berger et al. 2020; Gupta & Schlichting
2020).

However, for the first time, we can compare planets that
belong to this region of the parameter space where formation
models make opposing predictions. TOI-1235 b has a rocky
composition with a 90% confidence upper limit in the envelope
mass fraction of 0.5%, thus incompatible with a gas-poor forma-
tion scenario. We reach the opposite conclusion for TOI-776 b
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Fig. 13. Transmission spectroscopy metric (TSM) for exoplanets from the Exoplanet Encyclopedia with a radius below 3 R⊕ and a mass
determination by RVs or TTVs. TOI-776 b and c are labeled and marked with thicker black borderlines.

and c, whose bulk densities imply the presence of a volatile
envelope making them compatible with the predictions from
gas-poor formation mechanisms, given their periods and radii.
Therefore, although other stellar parameters might need to be
taken into account, we can tentatively predict that the stellar mass
below which thermally driven mass loss is no longer the main
formation pathway for sculpting the radius valley is probably
between 0.63 and 0.54 M�, which corresponds to the host stel-
lar masses of TOI-1235 and TOI-776, respectively. More planets
in this interesting region of the parameter space with precise
bulk density measurements are key to revealing the mechanisms
responsible for the radius valley emergence around low-mass
stars with respect to solar-like stars.

6.5. Atmospheric characterization

6.5.1. Transmission spectroscopy metric

We used the proposed metric by Kempton et al. (2018) to evalu-
ate the suitability of the TOI-776 planets for atmospheric charac-
terization studies. Figure 13 shows the transmission spectroscopy
metric (TSM) for all exoplanets in the Exoplanet Encyclopedia7

with a radius below 3 R⊕. We used the scale factors listed in
Table 1 from Kempton et al. (2018) as opposed to the suggested
value for temperate planets, 0.167, to compute the TSM values in
Fig. 13. The estimated TSM of TOI-776 b and c are 77.9 and 61.8,
respectively, which places them among the top priority targets

7 www.exoplanet.eu

for atmospheric follow-ups of small planets around nearby stars.
This is not surprising, because TOI-776 is one of the brightest
M dwarfs with known transiting planets. However, most of the
planets shown in Fig. 13 are well below the radius gap, which
makes the TOI-776 system a valuable target for atmospheric
characterization in order to trace the formation and evolution of
multi-planetary systems orbiting low-mass stars and break the
degeneracy of internal composition models.

6.5.2. Synthetic spectra

In order to quantitatively assess the possibility of TOI-776 b and
c’s atmospheric characterization with the James Webb Space
Telescope (JWST), we investigated a suite of atmospheric sce-
narios and calculated their JWST synthetic spectra using the
photochemical model ChemKM (Molaverdikhani et al. 2019a)
and petitRADTRANS (Mollière et al. 2019). We based the
temperature structure of these planets on modern Earth’s tem-
perature structure, and we increased the surface temperature for
it to be consistent with the equilibrium temperature of TOI-
776 b and c (Kawashima & Rugheimer 2019). We followed
a similar approach as in Luque et al. (2019): we estimated
TOI-776’s (Teff = 3709 K) flux in the range between X-rays and
optical wavelengths, using GJ 832’s geometric mean spectra
(Teff = 3816 K) as a reference. The stellar data were obtained
from the MUSCLES database (France et al. 2016). To set up
the models, we used the chemical network of Hébrard et al.
(2012) with 135 species and 788 reactions, and UV absorption
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cross-sections and branching yields from an updated version of
Hébrard et al. (2012).

Figure 14 shows the synthetic transmission spectra of
TOI-776 b and c assuming different metallicities, carbon-to-
oxygen ratios, and haze opacities. For our fiducial model (top-left
panel of Fig. 14), we assume solar abundances. Such spectra pre-
dominantly consist of water and methane features, as expected
for this type of planet (Molaverdikhani et al. 2019b). The signif-
icance of these features are of the order of 100 ppm, well above
the conservative JWST expected noise floor (20 ppm for NIRISS
and 50 ppm for MIRI, Greene et al. 2016). We calculated the
NIRISS-SOSS, NIRSpec-G395M, and MIRI-LRS uncertainties
with PandExo (Batalha et al. 2017), assuming two transits and
binned for R = 50, supporting the previous statement. In this
scenario, the contribution from haze opacity partially obscures
molecular features below 2 µm, but it is almost ineffective at
longer wavelengths (see left and right upper panels of Fig. 14).
We note, however, that the radiative feedback of haze particles
might significantly affect the temperature structure and the com-
position of atmosphere (Molaverdikhani et al. 2020). We did not
take this effect into account in this work in order to keep the
temperature profiles consistent with the Earth’s profile.

Smaller planets are expected to have enhanced metallicities
(e.g. Wakeford et al. 2017). Therefore, we investigated two devi-
ations from our solar abundance fiducial model: (1) an enhanced
carbon-to-oxygen ratio (C/O) two-times the solar value; and (2)
an enhanced metallicity one-hundred-times higher than solar.
C/O enhancement alone does not affect the composition and
spectral features substantially, as seen in the middle panels of
Fig. 14. On the other hand, one might expect a higher metallic-
ity to result in more pronounced spectral features, due to higher
species abundances. However, the bottom panels of Fig. 14 dis-
card this possibility. On the contrary, an enhanced metallicity
causes a higher mean molecular weight, which in turn shrinks

the spectral significance (bottom-left panel of Fig. 14), and,
simultaneously, it results in a higher haze production, which
also obscures the spectra significantly (bottom-right panel of
Fig. 14). Therefore, a flat transmission spectrum may indicate
a hazy atmosphere with a high metallicity (Kreidberg et al.
2014) as opposed to a nonexistent atmosphere (Kreidberg et al.
2019). Complementary observations, such as ground-based high-
resolution spectroscopy or spectroscopy of the reflected light, are
required to reveal the true nature of these flat spectra.

7. Summary

We present the discovery and characterization of the two-planet
system transiting the bright (V = 11.54 mag, J = 8.48 mag) M1 V
star TOI-776. Both planets were detected by the TESS mission,
confirmed from ground-based transit follow-up observations
and have had their dynamical masses determined with pre-
cise RV measurements using HARPS. In addition, fifteen years
of ground-based photometric monitoring by ASAS-SN, ASAS,
NSVS, Catalina, and SuperWASP helped us to measure a rota-
tional period between 30 and 40 d, typical of inactive early-type
M dwarfs. Our findings are summarized below:

– A joint fit of all the available transit photometry from TESS,
MEarth, and LCOGT, and the precise RVs from HARPS
reveal that the TOI-776 system consists of two transiting
planets, namely TOI-776 b, which has a period of 8.25 d, a
radius of 1.85± 0.13 R⊕, a mass of 4.0± 0.9 M⊕, bulk den-
sity of 3.4+1.1

−0.9 g cm−3, and an equilibrium temperature of
514± 17 K; and TOI-776 c, which has a period of 15.66 d,
a radius of 2.02± 0.14 R⊕, a mass of 5.3± 1.8 M⊕, a bulk
density of 3.5+1.4

−1.3 g cm−3, and an equilibrium temperature
of 415± 14 K. The RV data show one additional signal,
with a period of 34 d, associated with the star’s rotation, in
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agreement with our analyses of the photometry and spectral
line indicators.

– The bulk densities of TOI-776 b and c allow for a wide
range of possible interior compositions, from water worlds
to rocky planets with H/He-rich atmospheres, but they are
too low for either planet to have a purely terrestrial (iron plus
rock) composition. Thus, an atmosphere is expected for both
planets.

– From its location in a period-radius diagram, TOI-776 b lies
in the transition region where formation and evolution mod-
els make different predictions for planetary systems orbiting
M dwarfs. For the TOI-776 system, the planets lie above the
radius valley carved by gas-poor formation mechanisms, in
agreement with their bulk densities being incompatible with
the absence of an atmosphere. Still, it is possible that the
planets are still undergoing slow thermally driven mass loss
under the core-powered scenario.

The TOI-776 system is an excellent target for the JWST. It is the
only known multi-planetary system with planets inside and near
the radius valley for which all planets: (1) have a bulk density
determination with at least 30% relative uncertainties; and (2)
are perfect candidates for atmospheric characterization. Thanks
to the brightness of its host star, it is a remarkable laboratory in
which to break the degeneracy in planetary interior models and
to test formation and evolution theories of small planets around
low-mass stars.
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Appendix A: Joint fit priors

Table A.1. Priors used for the models presented in Sect. 5 using juliet.

Parameter name Prior Units Description

Stellar parameters
ρ? N(5300, 15002) kg m −3 Stellar density

Planet parameters
Pb N(8.24, 0.052) d Period of planet b
Pc N(15.65, 0.052) d Period of planet c
t0,b − 2 450 000 N(8571.41, 0.012) d Transit-center time of planet b
t0,c − 2 450 000 N(8572.60, 0.012) d Transit-center time of planet c
r1,b U(0, 1) . . . Parameterization for p and b of planet b
r2,b U(0, 1) . . . Parameterization for p and b of planet b
r1,c U(0, 1) . . . Parameterization for p and b of planet c
r2,c U(0, 1) . . . Parameterization for p and b of planet c
Kb U(0, 20) m s−1 RV semi-amplitude of planet b
Kc U(0, 20) m s−1 RV semi-amplitude of planet c
eb B(1.52, 29) . . . Eccentricity of planet b
ec B(1.52, 29) . . . Eccentricity of planet c
ωb U(−180, 180) deg Argument of periastron of planet b
ωc U(−180, 180) deg Argument of periastron of planet c

Photometry parameters
σTESS J(1, 1000) ppm Extra jitter term for TESS
DTESS 1.0 (fixed) . . . Dilution factor for TESS
MTESS 0.0 (fixed) ppm Relative flux offset for TESS
q1,TESS U(0, 1) . . . Quadratic limb darkening parameterization for TESS
q2,TESS U(0, 1) . . . Quadratic limb darkening parameterization for TESS
σLCO-CTIO J(10, 105) ppm Extra jitter term for LCO-CTIO
MLCO-CTIO N(0, 0.012) ppm Relative flux offset for LCO-CTIO
θLCO-CTIO U(−1.0, 1.0) . . . Airmass regression coefficients for LCO-CTIO
q1,LCO-CTIO U(0, 1) . . . Linear limb darkening parameterization for LCO-CTIO
σLCO-SAAO J(10, 105) ppm Extra jitter term for LCO-SAAO
MLCO-SAAO N(0, 0.012) ppm Relative flux offset for LCO-SAAO
θLCO-SAAO U(−1.0, 1.0) . . . Airmass regression coefficients for LCO-SAAO
q1,LCO-SAAO U(0, 1) . . . Linear limb darkening parameterization for LCO-SAAO
σLCO-SSO J(10, 105) ppm Extra jitter term for LCO-SSO
MLCO-SSO N(0, 0.012) ppm Relative flux offset for LCO-SSO
θLCO-SSO U(−1.0, 1.0) . . . Airmass regression coefficients for LCO-SSO
q1,LCO-SSO U(0, 1) . . . Linear limb darkening parameterization for LCO-SSO
σMEarth J(10, 105) ppm Extra jitter term for MEarth
MMEarth N(0, 0.012) ppm Relative flux offset for MEarth
q1,MEarth U(0, 1) . . . Linear limb darkening parameterization for MEarth

RV parameters
µHARPS U(−100, 100) m s−1 Systemic velocity for HARPS
σHARPS J(0.1, 100) m s−1 Extra jitter term for HARPS

GP hyperparameters and additional sinusoid
σGP,TESS J(10−2, 106) ppm Amplitude of GP component for TESS
TGP,TESS J(10−6, 104) d Length scale of GP component for TESS
K U(0, 20) m s−1 RV semi-amplitude of the additional sinusoid
t0 − 2 450 000 U(8575.0, 8655.0) d Transit-center time of the additional sinusoid
P N(35.0, 10.02) d Period of the additional sinusoid

Notes. The prior labels of N , U, B, and J represent normal, uniform, Beta, and Jeffrey’s distributions. The parameterization for (p, b) using
(r1, r2) (Espinoza 2018) and the linear (q1) and quadratic (q1, q2) limb darkening parameterization (Kipping 2013) are both described in Sect. 5.2.1.
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Appendix B: HARPS RV measurements and spectral line indicators

Table B.1. Serval extraction.

BJDTBD − 2 457 000 RV (m s−1) σRV (m s−1) CRX (m s−1 Np−1) σCRX (m s−1 Np−1) dLW (m2 s−2) σdLW (m2 s−2)

1884.75667 4.3 3.1 −4.0 26.4 −3.4 4.0
1886.88043 −0.2 1.6 −4.7 13.3 −15.1 2.0
1887.79526 2.2 1.9 10.9 15.8 −14.7 2.1
1888.83087 1.2 1.3 −12.3 10.7 −13.6 1.9
1889.79811 1.2 1.6 5.1 12.9 −12.1 2.5
1890.80821 7.3 2.4 −2.6 19.2 −15.0 3.0
1894.81627 −0.2 2.1 25.4 16.8 −23.2 2.9
1898.85272 4.5 1.4 −3.7 11.2 −26.8 1.5
1899.86392 9.3 1.5 14.7 12.0 −25.8 1.5
1900.84340 6.0 1.4 −12.9 11.0 −24.8 2.0
1902.80747 0.5 1.5 14.9 12.2 −24.4 1.9
1903.81551 0.2 2.0 −4.2 16.2 −27.4 1.7
1910.81439 5.0 1.3 −1.8 10.4 −15.2 1.8
1911.72654 8.3 1.5 8.6 12.4 −19.5 1.8
1912.77545 10.0 1.5 −7.8 11.8 −23.4 2.3
1914.81139 10.9 1.5 13.4 12.2 −20.5 2.0
1915.74379 7.6 1.2 0.3 9.7 −23.1 1.8
1916.69654 6.0 1.3 8.3 10.8 −25.2 1.4
1918.78064 −0.2 1.3 13.0 10.4 −19.5 1.6
1919.64336 3.2 1.4 −0.8 11.0 −7.3 1.8
1924.80573 0.4 1.4 5.0 11.2 −16.8 1.8
1925.68888 2.7 1.3 −13.1 10.6 −16.3 1.8
1925.83889 −0.5 1.5 −19.7 12.0 −20.7 1.8
1926.79127 0.4 1.3 3.8 10.7 −20.7 1.5
1927.83074 1.8 1.6 −14.7 12.8 −18.8 2.2
1928.78734 2.9 1.3 −2.8 10.3 −16.6 1.9
1929.76211 5.2 1.7 −18.0 13.5 −7.4 2.4
1930.83118 6.0 1.6 −10.0 13.2 −7.2 2.2
1931.76389 7.3 1.4 −17.5 11.4 −7.1 2.4
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Table B.2. TERRA extraction.

BJDTBD − 2 457 000 RV (m s−1) σRV (m s−1) Hα S-index σS−index NaD1 NaD2

1884.75667 0.7 3.2 0.353 1.501 0.025 1.050 0.783
1886.88043 −3.1 1.8 0.345 1.555 0.018 1.056 0.800
1887.79526 −2.4 1.6 0.358 1.380 0.012 1.046 0.792
1888.83087 −3.5 1.4 0.357 1.391 0.012 1.044 0.795
1889.79811 −2.0 1.4 0.315 1.496 0.013 1.041 0.789
1890.80821 1.5 2.1 0.336 1.508 0.015 1.047 0.797
1894.81627 −5.6 1.8 0.346 1.407 0.016 1.057 0.787
1898.85272 1.3 1.4 0.361 1.356 0.014 1.055 0.797
1899.86392 5.7 1.5 0.350 1.399 0.016 1.060 0.798
1900.84340 2.6 1.6 0.364 1.336 0.015 1.057 0.799
1902.80747 −3.2 1.4 0.357 1.340 0.013 1.063 0.796
1903.81551 −4.0 1.2 0.366 1.342 0.018 1.060 0.799
1910.81439 3.6 1.2 0.339 1.445 0.014 1.053 0.799
1911.72654 5.3 1.5 0.349 1.394 0.013 1.049 0.800
1912.77545 5.6 1.4 0.315 1.559 0.015 1.054 0.790
1914.81139 6.5 1.6 0.341 1.460 0.018 1.056 0.796
1915.74379 4.6 1.0 0.324 1.462 0.013 1.056 0.792
1916.69654 2.8 1.1 0.348 1.368 0.011 1.059 0.801
1918.78064 −2.5 1.3 0.359 1.298 0.013 1.066 0.804
1919.64336 −0.3 1.2 0.356 1.338 0.012 1.061 0.794
1924.80573 −3.3 1.3 0.361 1.246 0.015 1.054 0.798
1925.68888 −2.1 1.2 0.375 1.286 0.012 1.059 0.805
1925.83889 −4.3 1.5 0.369 1.267 0.014 1.054 0.789
1926.79127 −2.5 1.2 0.365 1.231 0.014 1.054 0.797
1927.83074 0.0 1.8 0.347 1.275 0.018 1.046 0.798
1928.78734 −1.6 1.3 0.331 1.391 0.017 1.047 0.797
1929.76211 2.2 1.7 0.349 1.324 0.018 1.044 0.802
1930.83118 3.3 1.5 0.356 1.386 0.020 1.045 0.782
1931.76389 4.0 1.4 0.353 1.415 0.020 1.039 0.777
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Appendix C: Corner plots
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Fig. C.1. Posterior distributions of the orbital parameters of the TOI-776 system. Each panel contains ∼220 000 samples. The top panels of the
corner plot show the probability density distributions of each orbital parameter. The vertical dashed lines indicate the 16th, 50th, and the 84th
percentiles of the samples. Contours are drawn to improve the visualization of the 2D histograms and indicate the 68.3, 95.5, and 99.7% confidence
interval levels (i.e., 1σ, 2σ, and 3σ).
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