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ABSTRACT

Small planets on close-in orbits tend to exhibit envelope mass fractions of either effectively zero or up

to a few percent depending on their size and orbital period. Models of thermally-driven atmospheric

mass loss and of terrestrial planet formation in a gas-poor environment make distinct predictions re-

garding the location of this rocky/non-rocky transition in period-radius space. Here we present the

confirmation of TOI-1235 b (P = 3.44 days, rp = 1.738+0.087
−0.076 R⊕), a planet whose size and period are

intermediate between the competing model predictions thus making the system an important test case

for emergence models of the rocky/non-rocky transition around early M dwarfs (Rs = 0.630 ± 0.015

R�, Ms = 0.640 ± 0.016 M�). We confirm the TESS planet discovery using reconnaissance spec-

troscopy, ground-based photometry, high-resolution imaging, and a set of 38 precise radial-velocities

from HARPS-N and HIRES. We measure a planet mass of 6.91+0.75
−0.85 M⊕, which implies an iron core

mass fraction of 20+15
−12% in the absence of a gaseous envelope. The bulk composition of TOI-1235 b

is therefore consistent with being Earth-like and we constrain a H/He envelope mass fraction to be

< 0.5% at 90% confidence. Our results are consistent with model predictions from thermally-driven

atmospheric mass loss but not with gas-poor formation, suggesting that the former class of processes

remain efficient at sculpting close-in planets around early M dwarfs. Our RV analysis also reveals a

strong periodicity close to the first harmonic of the photometrically-determined stellar rotation period

that we treat as stellar activity, despite other lines of evidence favoring a planetary origin (P = 21.8+0.9
−0.8

days, mp sin i = 13.0+3.8
−5.3 M⊕) that cannot be firmly ruled out by our data.

1. INTRODUCTION

The occurrence rate distribution of close-in planets

features a dearth of planets between 1.7-2.0 R⊕ around

Sun-like stars (Teff > 4700 K; Fulton et al. 2017; Ful-

Corresponding author: Ryan Cloutier

ryan.cloutier@cfa.harvard.edu

∗ NSF Astronomy and Astrophysics Postdoctoral Fellow
† NSF Graduate Research Fellow

ton & Petigura 2018; Mayo et al. 2018) and between

1.4-1.7 R⊕ around mid-K to mid-M dwarfs (Teff < 4700

K; Cloutier & Menou 2020). The so-called radius val-

ley likely emerges due to the existence of a transition

from primarily rocky planets to larger non-rocky plan-

ets that host extended H/He envelopes up to a few

percent by mass (Weiss & Marcy 2014; Rogers 2015;

Dressing et al. 2015). Furthermore, the exact location

of the rocky/non-rocky transition around both Sun-like

and lower mass stars is known to be period-dependent

(Van Eylen et al. 2018; Martinez et al. 2019; Wu 2019;
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Cloutier & Menou 2020), with the model-predicted slope

of the period dependence varying between competing

physical models that describe potential pathways for

the radius valley’s emergence. One class of models

rely on thermal heating to drive atmospheric escape.

For example, photoevaporation, wherein a planet’s pri-

mordial atmosphere is stripped by XUV photons from

the host star during the first 100 Myrs (Owen & Wu

2013; Jin et al. 2014; Lopez & Fortney 2014; Chen &

Rogers 2016; Owen & Wu 2017; Jin & Mordasini 2018;

Lopez & Rice 2018; Wu 2019), predicts that the slope

of the radius valley should vary with orbital period

as rp,valley ∝ P−0.15 (Lopez & Rice 2018). A sim-

ilar slope of rp,valley ∝ P−0.13 (Gupta & Schlichting

2020) is predicted by internally-driven thermal atmo-

spheric escape models via the core-powered mass loss

mechanism (Ginzburg et al. 2018; Gupta & Schlicht-

ing 2019, 2020). However, if instead the radius valley

emerges from the superposition of rocky and non-rocky

planet populations, wherein the former are formed at

late times in a gas-poor environment (Lee et al. 2014;

Lee & Chiang 2016; Lopez & Rice 2018), then the

period-dependence of the radius valley should have the

opposite sign: rp,valley ∝ P 0.11 (Lopez & Rice 2018).

These distinct slope predictions naturally carve out a

subspace in period-radius space wherein knowledge of

planetary bulk compositions can directly constrain the

applicability of each class of model (Fig. 15, Cloutier &

Menou 2020, hereafter CM19). This is because within

that subspace, and at . 23.5 days (CM19), thermally-

driven mass loss models predict that planets will be

rocky whereas the gas-poor formation model predicts

non-rocky planets. Therefore, populating this subspace

with planets with known bulk compositions will inform

the prevalence of each model as a function of host stellar

mass.

Since the commencement of its prime mission in

July 2018, NASA’s Transiting Exoplanet Survey Satel-

lite (TESS ; Ricker et al. 2015) has uncovered a num-

ber of transiting planet candidates whose orbital peri-

ods and radii lie within the aforementioned subspace.

These planets are valuable targets to conduct tests

of competing radius valley emergence models across

a range of stellar masses through the characteriza-

tion of their bulk compositions using precise radial-

velocity measurements. Here we present the confirma-

tion of one such planet from TESS : TOI-1235 b (TIC

103633434.01). Our analysis includes the mass measure-

ment of TOI-1235 b from 38 radial-velocity observations

from HARPS-N and HIRES. Our RV observations also

reveal a second signal at 22 days that is suggestive of

arising from stellar rotation, although some counter-

evidence favors a planetary interpretation that cannot

be firmly ruled out by our data.

In Sect. 2 we present the properties of the host star

TOI-1235. In Sect. 3 we present the TESS light curve

and our suite of follow-up observations including a mea-

surement of the stellar rotation period from archival

photometric monitoring. In Sect. 4 we present our data

analysis and results. We conclude with a discussion and

a summary of our results in Sects. 5 and 6.

2. STELLAR CHARACTERIZATION

TOI-1235 (TIC 103633434, TYC 4384-1735-1, Gaia

DR2 1070387905514406400) is an early M dwarf located

in the northern sky at a distance of 39.635 ± 0.047 pc1

(Gaia Collaboration et al. 2018; Lindegren et al. 2018).

The star has no known binary companions and is rel-

atively isolated on the sky having just 21 faint sources

within 2.5′ resolved in Gaia Data Release 2 (DR2; Gaia

Collaboration et al. 2018), all of which have ∆G > 6.5.

The astrometric, photometric, and physical stellar pa-

rameters are reported in Table 1.

We conducted an analysis of the star’s broadband

spectral energy distribution (SED) from the near ul-

traviolet (NUV) to the mid-infrared (0.23-22 µm, Fig-

ure 1). We constructed the SED following the pro-

cedures outlined in Stassun & Torres (2016); Stassun

et al. (2017, 2018a) using retrieved broadband NUV pho-

tometry from GALEX, the u-band magnitude from the

Sloan Digital Sky Survey, Tycho-2 B and V -band mag-

nitudes, Gaia DR2 magnitudes, 2MASS JHKs near-IR

magnitudes, and WISE W1-W4 IR magnitudes. As-

suming zero extinction (AV = 0), we fit the SED with

a NextGen stellar atmosphere model (Hauschildt et al.

1999), treating the metallicity [Fe/H] and effective tem-

perature Teff as free parameters. We derive a weak con-

straint on [Fe/H] = −0.5± 0.5 (although we report the

spectroscopically-derived value in Table 1) and measure

Teff = 3950± 75 K, which is consistent with Teff derived

from the HIRES spectra presented in Sect. 3.6.2 (Teff

= 3872±70 K). Integrating the SED at a distance of 39.6

pc gives a bolometric flux of Fbol = 1.780±0.041×10−9

erg s−1 cm−2, which corresponds to a stellar radius

of 0.631 ± 0.024 R�. As a consistency check, we also

fit the SED with a Kurucz stellar atmosphere model

(Kurucz 2013). Doing so, we recovered a bolometric

flux and stellar radius that are consistent within 0.5σ

of the values obtained when using the NextGen stellar

models. The inferred stellar radius is also consistent

with the value obtained from the empirically-derived

1 The Gaia DR2 parallax is corrected by +0.08 mas to account for
the systematic offset reported by Stassun & Torres (2018).
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Table 1. TOI-1235 stellar parameters.

Parameter Value Refs

TOI-1235, TIC 103633434, TYC 4384-1735-1,

Gaia DR2 1070387905514406400

Astrometry

Right ascension (J2015.5), α 10:08:52.38 1,2

Declination (J2015.5), δ +69:16:35.83 1,2

RA proper motion, µα [mas yr−1] 196.63± 0.04 1,2

Dec proper motion, µδ [mas yr−1] 17.37± 0.05 1,2

Parallax, $ [mas] 25.231± 0.030 1,2

Distance, d [pc] 39.635± 0.047 1,2

Photometry

NUVGALEX 20.58± 0.10 3

u 15.55± 0.30 4

BTycho-2 13.291± 0.318 5

VTycho-2 11.703± 0.103 5

V 11.495± 0.056 6

GBP 11.778± 0.002 1,7

G 10.8492± 0.0005 1,7

GRP 9.927± 0.001 1,7

T 9.919± 0.007 8

J 8.711± 0.020 9

H 8.074± 0.026 9

Ks 7.893± 0.023 9

W1 7.81± 0.03 10

W2 7.85± 0.03 10

W3 7.77± 0.30 10

W4 7.83± 0.22 10

Stellar parameters

MV 8.51± 0.06 11

MKs 4.90± 0.02 11

Effective temperature, Teff [K] 3872± 70 11

Surface gravity, log g [dex] 4.646± 0.024 11

Metallicity, [Fe/H] 0.05± 0.09 11

Stellar radius, Rs [R�] 0.630± 0.015 11

Stellar mass, Ms [M�] 0.640± 0.016 11

Stellar density, ρs [g cm−3] 3.61± 0.28 11

Stellar luminosity, Ls [L�] 0.080± 0.007 11

Projected rotation velocity,
< 2.6 11

v sin i [km s−1]

Rotation period, Prot [days] 44.7± 4.5 11

Note—References: 1) Gaia Collaboration et al. 2018 2) Lin-
degren et al. 2018 3) Bianchi et al. 2017 4) York et al. 2000
5) Høg et al. 2000 6) Reid et al. 2002 7) Evans et al. 2018 8)
Stassun et al. 2019 9) Cutri et al. 2003 10) Cutri 2014 11) this
work.

Ks-band radius-luminosity relation from Mann et al.

(2015): 0.629 ± 0.019 R�. In our study, we adopt the

average of these two values: Rs = 0.630 ± 0.015 R�.

Similarly, we derive the stellar mass using the Ks-band

mass-luminosity relation from Benedict et al. (2016):

Ms = 0.640± 0.016 M�.

In Sect. 3.2 we report our recovery Prot= 44.7 days

from archival MEarth photometry. This relatively long

rotation period is consistent with the lack of rotational

broadening observed in our high-resolution spectra pre-

sented in Sect. 3.6 (v sin i ≤ 2.6 km s−1) and the fact

that Hα is seen in absorption (Sect. 3.3). However, at

face value, the GALEX NUV flux in Figure 1 appears to

suggest a significant amount of chromospheric emission.

This is at odds with the measured rotation period be-

cause, if real, the apparent excess NUV emission would

imply a Rossby number of 0.2-0.3, or equivalently, Prot

= 10− 15 days (Stelzer et al. 2016; Wright et al. 2011).

We note however that the NextGen atmosphere mod-

els do not self-consistently predict M dwarf UV emis-

sion from the chromosphere and transition region such

that the apparent NUV excess from TOI-1235 is un-

likely to be a true excess. The absence of chromospheric

UV emission in the atmosphere models is noteworthy as

FUV-NUV observations of M dwarfs have indicated that

UV emission is widespread. In other words, even opti-

cally quiescent M dwarfs such as TOI-1235 are known

to exhibit NUV spectra that are qualitatively similar

to those of more active M dwarfs that show chromo-

spheric Hα in emission (Walkowicz et al. 2008; France

et al. 2013). Furthermore, the empirical GALEX NUV-Ks

color relation with NUV flux from Ansdell et al. (2015),

derived the early M dwarf observations, reveals that

logFNUV/Fbol = −4.7± 0.1 for TOI-1235. This value is

significantly less than logFNUV/Fbol = −3.8±0.1 based

on the stellar atmosphere models used here. This dis-

crepancy between observations of early M dwarfs and

models supports the notion that the apparent NUV ex-

cess exhibited in Figure 1 is not a true NUV excess.

3. OBSERVATIONS

3.1. TESS photometry

TOI-1235 was observed in three non-consecutive

TESS sectors between UT July 18, 2019 and February

18, 2020. TOI-1235 is a member of the Cool Dwarf tar-

get list (Muirhead et al. 2018) and was included in the

TESS Input Catalog (TIC; Stassun et al. 2018b), the

TESS Candidate Target List (CTL), and in the Guest

Investigator program 221982, such that its light curve

2 PI: Courtney Dressing.
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Figure 1. The spectral energy distribution of TOI-1235.
Red markers depict the photometric measurements with hor-
izontal errorbars depicting the effective width of each pass-
band. Black curve depicts the most likely stellar atmosphere
model with Teff = 3950 K. Blue circles depict the model
fluxes over each passband.

was sampled at 2-minute cadence. TESS observations

occurred in CCD 3 on Camera 4 in Sector 14 (UT July

18-August 14 2019), in CCD 1 on Camera 2 in Sector 20

(UT December 24 2019-January 20 2020), and in CCD 2

on Camera 2 in Sector 21 (UT January 21-February 18

2020). Sector 14 was the first pointing of the spacecraft

in the northern ecliptic hemisphere. As indicated in the

data release notes3, to avoid significant contamination in

cameras 1 and 2 due to scattered light by the Earth and

Moon, the Sector 14 field was pointed to +85◦ in eclip-

tic latitude, 31◦ north of its intended pointing from the

nominal mission strategy. Despite this, all cameras in

Sector 14 continued to be affected by scattered light for

longer periods of time compared to most other sectors

due to the Earth’s position above the sunshade through-

out the orbit. Camera 2 during sectors 20 and 21 was

largely unaffected by scattered light except during data

downloads and at the beginning of the second orbit in

Sector 21 due to excess Moon glint.

The TESS images were processed by the NASA Ames

Science Processing Operations Center (SPOC; Jenkins

et al. 2016), which produce two light curves per sec-

tor called Simple Aperture Photometry (SAP) and Pre-

search Data Conditioning Simple Aperture Photome-

try (PDCSAP; Smith et al. 2012; Stumpe et al. 2012,

2014). The light curves are corrected for dilution dur-

ing the SPOC processing with TOI-1235 suffering only

marginal contamination with a dilution correction fac-

3 https://archive.stsci.edu/tess/tess drn.html

tor of 0.9991. Throughout, we only consider reliable

TESS measurements for which the measurement’s qual-

ity flag QUALITY is equal to zero. The PDCSAP light curve

is constructed by detrending the SAP light curve using a

linear combination of Cotrending Basis Vectors (CBVs),

which are derived from a principal component decompo-

sition of the light curves on a per sector per camera per

CCD basis. TOI-1235’s PDCSAP light curve is depicted

in Figure 2 and shows no compelling signs of coherent

photometric variability from rotation. However, the set

of CBVs (not shown) exhibit sufficient temporal struc-

ture such that a linear combination of CBVs can effec-

tively mask stellar rotation signatures greater than a

few days. Thus, inferring Prot for TOI-1235 from TESS

would be challenging and is addressed more effectively

with ground-based photometric monitoring in Sect. 3.2.

Following light curve construction, the SPOC con-

ducts a subsequent transit search on each sector’s

PDCSAP light curve using the Transiting Planet Search

Module (TPS; Jenkins 2002; Jenkins et al. 2010). The

TOI-1235.01 transit-like signal was detected in all three

sectors independently and passed a set of internal data

validation tests (Twicken et al. 2018; Li et al. 2019).

The reported period of the planet candidate was 3.44

days in Sectors 14 and 20 and three times that value

(i.e. 10.33 days) in Sector 21 due to the low signal-noise

ratio of the individual transits. At 3.44 days, there are

eight, six, and eight transits observed in each of the

three sectors. The transit events are highlighted in Fig-

ure 2. The SPOC reported a preliminary transit depth

of 841± 72 ppm, which corresponded to a planetary ra-

dius of 2.0± 0.1 R⊕ using our stellar radius (Table 1).

3.2. Photometric monitoring with MEarth

Inactive early M dwarfs have typical rotation periods

of 10-50 days (Newton et al. 2017). In Sect. 3.1 we de-

scribed how measuring Prot for TOI-1235 with TESS

is intractable due to the flexibility in the systematics

model. Fortunately, MEarth-North has archival images

of the field surrounding TOI-1235 that span 7.1 years

(UT October 2, 2008 to November 10, 2015) from which

Prot may be measured. MEarth-North is a telescope ar-

ray located at the Fred Lawrence Whipple Observatory

(FLWO) on Mount Hopkins, AZ. The facility consists of

eight 40cm telescopes, each equipped with a 25.6′×25.6′

field-of-view Apogee U42 camera, with a custom pass-

band centered in the red optical (i.e. RG715). MEarth-

North has been photometrically monitoring nearby mid-

to-late M dwarfs (< 0.33R�) since 2008, in search of

transiting planets (Berta et al. 2012; Irwin et al. 2015)

and to conduct detailed studies of stellar variability

(Newton et al. 2016). Although TOI-1235 was too large

https://archive.stsci.edu/tess/tess_drn.html
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Figure 2. TESS light curve of TOI-1235 from sectors 14, 20, and 21. Upper row : the PDCSAP light curve following the removal
of systematics via a linear combination of Cotrending Basis Vectors. The green curve depicts the mean GP model of residual
temporally correlated noise (Sect. 4.1). The 3σ uncertainties on the mean GP model are smaller than the curve width. In-transit
measurements are highlighted in blue throughout. The vertical dashed line highlights the epoch of the ground-based transit
observation from LCOGT, which confirms the transit event on-target (Sect. 3.4). Lower row : the detrended PDCSAP light curve.
Bottom panel : the phase-folded transit light curve of TOI-1235 b from 22 individual transit events. The maximum a-posteriori
transit model is depicted by the blue curve while the white markers depict the binned photometry.

to be included in the initial target list (Nutzman &

Charbonneau 2008), its position happens to be within

14′ of an intentional target (GJ 1131) such that we are

able to construct and analyze its light curve here for the

first time.

To search for photometric signatures of rotation, we

first retrieved the archival image sequence and com-

puted the differential light curve of TOI-1235 as shown

in Figure 3. We then investigated the Lomb-Scargle

periodogram (LSP) of the light curve, which reveals a

significant peak around 45 days that is not visible in

the LSP of the window function (Figure 3). Using this

value as an initial guess, we proceeded with fitting the

light curve following the methods outlined in Irwin et al.

(2006, 2011). The model includes systematics terms,

predominantly from variations in the precipitable water

vapor (PWV) column above the telescope, plus a sinu-

soidal term to model rotational modulation. As outlined

in (Newton et al. 2016), a “common mode” vector is con-

structed as a low cadence comparison light curve that

tracks variations in the PWV and is included in our sys-

tematics model as a linear term along with the full width

at half maximum of the MEarth point spread function.

With this full model, we measure Prot = 44.7± 4.5 days

and a variability semi-amplitude of 1.33 ppt. The de-

trended light curve, phase-folded to Prot, is included in

Figure 3. Figure 3 also reveals that the subtraction

of our systematics plus rotation model from the light

curve, mitigates the 45-day signal in the LSP with no

significant residual periodicities. The shallow variabil-

ity amplitude is unsurprising for relatively warm early

M dwarfs like TOI-1235 whose spot-to-photosphere tem-

perature contrasts are small (Newton et al. 2016). We

note that knowledge of Prot can be critical for the in-

terpretation of RV signals as even active regions with

small temperature contrasts can induce large RV varia-

tions due to the suppression of convective blueshift (Du-

musque et al. 2014).

3.3. Reconnaissance spectroscopy with TRES

We began to pursue the confirmation of the planet

candidate TOI-1235.01 by obtaining reconnaissance

spectra with the Tillinghast Reflector Échelle Spectro-

graph (TRES) through coordination with the TESS

Follow-up Observing Program (TFOP). TRES is a fiber-
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Figure 3. Measurement of the TOI-1235 photometric rotation period with MEarth-North. Upper left panel : the TOI-1235
differential light curve from archival MEarth-North photometry (October 2008-November 2015). Right panels: Lomb-Scargle
periodograms of i) the detrended light curve, ii) the window function, and iii) the photometric residuals after removal of the
optimized sinusoidal fit with Prot= 44.7 days. Lower left panel : the light curve phase-folded to Prot. Circular black markers
represent the binned light curve while the solid black curve depicts the sinusoidal fit.

fed R = 44, 000 optical échelle spectrograph (310-910

nm), mounted on the 1.5m Tillinghast Reflector tele-

scope at FLWO. Multiple spectra were obtained to

search for radial velocity (RV) variations indicative of

a spectroscopic binary, and to assess the level of surface

rotation and chromospheric activity. We obtained two

spectra at opposite quadrature phases of TOI-1235.01

on UT December 1 and 13, 2019 with exposure times

of 2100 and 1200 seconds, which resulted in a S/N per

resolution element of 31.4 and 26.0 respectively at 519
nm in the order containing the information-rich Mg b

lines.

The TRES RVs phase-folded to the TOI-1235.01

ephemeris are depicted in Figure 4 and show no sig-

nificant variation thus ruling out a spectroscopic binary.

The cross-correlation function of the median spectrum

with a rotating template of Barnard’s star is also shown

in Figure 4 and reveals a single-lined spectrum with

no significant rotational broadening (v sin i < 3.4 km

s−1). Lastly, the Hα feature shown is seen in absorp-

tion, which is indicative of a chromospherically inac-

tive star and is consistent with Prot& 10 days (Newton

et al. 2017). Taken together, our reconnaissance spec-

tra maintain that TOI-1235.01 is a planetary candidate

around a relatively inactive star.

3.4. Ground-based transit photometry with LCOGT

TESS ’s large pixels (21′′) can result in significant

blending of target light curves with nearby sources. To

confirm that the transit event occurs on-target, and to

rule out nearby eclipsing binaries (EBs), we targeted a

transit of TOI-1235.01 with seeing-limited photometric

follow-up on UT December 31, 2019. This observation

was scheduled after the planet candidate was detected

in TESS Sector 14 only and occurred during Sector 20.

The transit observation was scheduled using the TESS

Transit Finder, a customized version of the Tapir soft-

ware package (Jensen 2013). We obtained a zs-band

light curve from the McDonald Observatory with the 1-

meter telescope as part of the Las Cumbres Observatory

Global Telescope network (LCOGT; Brown et al. 2013).

The telescope is equipped with a 4096 × 4096 Sinistro

camera whose pixel scale is 54 times finer than that of

TESS : 0.389 ′′ pixel−1. We calibrated the full image

sequence using the standard LCOGT BANZAI pipeline

(McCully et al. 2018). The differential photometric light

curve of TOI-1235, along with seven sources within 2.5′,

were derived from 7′′ uncontaminated apertures using

the AstroImageJ software package (AIJ; Collins et al.

2017). The field was cleared of nearby EBs down to

∆zs = 7.15 as we did not detect eclipses from neighbor-

ing sources close to the expected transit time.
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Figure 4. Summary of TFOP follow-up observations of TOI-1235 for planet validation purposes. Top row : results from
TRES reconnaissance spectroscopy that i) show no RV variations thus ruling out a spectroscopic binary, ii) reveal a single-lined
CCF with no rotational broadening, and iii) show Hα in absorption. Lower left panel : the ground-based transit light curve
obtained with LCOGT showing that the expected transit event occurred on-target and arrived 63 minutes late relative to the
SPOC-reported linear ephemeris represented by the black vertical line. Open circles depict the light curve in 5.5 minute bins.
The blue curve depicts the optimized transit fit to the LCOGT photometry. Lower right panel : the 5σ contrast curves from
Gemini/NIRI AO-imaging (black), ‘Alopeke 562 nm speckle imaging (blue), and ‘Alopeke 832 nm speckle imaging (red). The
inset depicts the coadded image from Gemini/NIRI AO-imaging centered on TOI-1235.

A full transit event was detected on-target and is in-

cluded in Figure 4. We fit the light curve with a Man-

del & Agol (2002) transit model calculated using the

batman software package (Kreidberg 2015). The shal-

low transit depth of TOI-1235.01 produces a low S/N

transit that does not provide strong constraints on most

model parameters relative to what can be recovered from

22 transits in TESS. Consequently, we fix the model to

a circular orbit with an orbital period, scaled semima-

jor axis, and impact parameter of P = 3.44471 days,

a/Rs = 13.2, and b = 0.45 respectively. Furthermore,

we set the quadratic limb-darkening parameters in the

zs-band to u1 = 0.25 and u2 = 0.33 as interpolated

from the Claret & Bloemen (2011) tables using the

EXOFAST tool (Eastman et al. 2013). We fit the base-

line flux, time of mid-transit, and planet-star radius ra-

tio via non-linear least squares optimization using the

scipy.curve fit function and find that f0 = 1.000,

T0 = 2, 458, 848.962 BJD, and rp/Rs = 0.0295. The

transit is seen to arrive 63 minutes late relative to the

linear ephemeris reported by the SPOC from Sector 14

only. The transit depth of 0.867 ppt is 4.5σ deeper

than the TESS transit measured in our fiducial anal-

ysis (0.645 ppt, Sect. 4.1). Due to the similar wave-

length coverage between the zs and TESS passbands,

and because of the large residual systematics often suf-

fered by ground-based light curves of shallow transits,

we attribute this discrepancy to unmodeled systemat-

ics rather than to a bona-fide chromatic transit depth

variation.

3.5. High resolution imaging

TESS ’s large pixels also make the TESS light curves

susceptible to contamination by very nearby sources

that are not detected in Gaia DR2, nor in the seeing-

limited image sequences. To clear the field of very

nearby sources and a possible false positive in the form

of a blended EB (Ciardi et al. 2015), we obtained two

independent sets of high-resolution follow-up imaging se-

quences as described in the following sections.

3.5.1. Adaptive optics imaging with Gemini/NIRI

We obtained adaptive-optics (AO) images with Gem-

ini/NIRI (Hodapp et al. 2003) on UT November 25,

2019 in the Brγ filter. We collected 9 dithered images

with integration times of 3.5 seconds. The data were

reduced following a standard reduction procedure that

includes bad pixel corrections, flat-fielding, sky subtrac-

tion, and image coaddition. The 5σ contrast curve and

the coadded image of TOI-1235 are included in the lower

right panel of Figure 4. These data provide sensitivity to

visual companions with ∆Brγ ≤ 5 for separations > 270
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mas and ∆Brγ ≤ 8.2 beyond 1′′. We do not detect any

visual companions within 5′′ of TOI-1235 within the 5σ

sensitivity of our observations.

3.5.2. Speckle imaging with Gemini/‘Alopeke

We also obtained speckle interferometric images on

UT February 16, 2020 using the ‘Alopeke instrument4

mounted on the 8-meter Gemini North telescope on the

summit of Mauna Kea in Hawai’i. ‘Alopeke simultane-

ously observes diffraction-limited images at 562 nm and

832 nm. Our data set consisted of 3 minutes of total in-

tegration time taken as sets of 1000×0.06 second images.

Following (Howell et al. 2011), we combined all images

subjected to Fourier analysis to produce the speckle re-

constructed imagery from which the 5σ contrast curves

are derived in each passband (lower right panel of Fig-

ure 4). Our data reveal TOI-1235 to be a single star to

contrast limits of 4.5 to 7 magnitudes, eliminating es-

sentially all main sequence stars fainter than TOI-1235

within the spatial limits of 0.8 to 48 AU.

Using our reconnaissance spectroscopy, ground-based

transit follow-up, and high resolution imaging obser-

vations as input (Figure 4), we used the vespa and

triceratops statistical validation tools to compute the

TOI-1235.01 false positive probability (FPP) (Morton

2012; Giacalone & Dressing 2020). In both analyses

we find that FPP < 1% and will refer to the validated

planet as TOI-1235 b for the remainder of this study.

3.6. Precise radial-velocities

3.6.1. HARPS-N

We obtained 27 spectra of TOI-1235 with the HARPS-

N optical échelle spectrograph at the 3.6m Telescopio

Nazionale Galileo on La Palma in the Canary Islands.

The HARPS-N optical spectrograph, with a resolving
power of R = 115, 000, is stabilized in pressure and tem-

perature, which enable it to achieve sub-m s−1 accuracy

under ideal observing conditions when sufficient S/N is

attainable (Cosentino et al. 2012). The spectra were

taken as part of the HARPS-N Collaboration Guaran-

teed Time Observations program between UT Decem-

ber 24, 2019 and March 12, 2020. The exposure time

was set to 1800 seconds. In orders redward of order 18

(440-687 nm), we achieved a median S/N of 45.2 and a

median measurement uncertainty of 1.22 m s−1. TOI-

1235 did not exhibit any rotational broadening in the

HARPS-N spectra leading to v sin i ≤ 2.6 km s−1, a re-

sult that is consistent with its measured rotation period

Prot = 44.7± 4.5 days.

4 https://www.gemini.edu/sciops/instruments/alopeke-zorro/

Table 2. Radial velocity time series of TOI-1235 from
HARPS-N & HIRES

Time RV σRV Instrument

[BJD - 2,457,000] [m s−1] [m s−1]

1890.653258 -0.119 0.975 HARPS-N

1905.851683 -7.358 1.281 HIRES

1906.724763 1.803 1.470 HARPS-N

Note—For conciseness, only a subset of three rows are
depicted here to illustrate the table’s contents. The
entirety of this table is provided in the arXiv source
code.

We extracted the HARPS-N RVs using the TERRA

pipeline (Anglada-Escudé & Butler 2012). TERRA em-

ploys a template-matching scheme that is known to

achieve improved RV measurement uncertainties on

M dwarfs relative to the cross-correlation function

(CCF) technique (Anglada-Escudé & Butler 2012). M

dwarfs are particularly well-suited to RV extraction via

template-matching because the line lists used to define

the binary mask for the CCF technique are incomplete

and often produce a CCF template that is a poor match

for cool M dwarfs. A master template spectrum is

constructed by first shifting the individual spectra to

the barycentric frame using the barycentric corrections

calculated by the HARPS-N Data Reduction Software

(DRS; Lovis & Pepe 2007), after masking portions of the

wavelength-calibrated spectra wherein telluric absorp-

tion is ≥ 1%. A high S/N template spectrum is then

built by coadding the individual spectra. TERRA then

computes the RV of each spectrum relative to the tem-

plate via least-squares matching the spectrum in veloc-

ity space. Throughout the extraction process, we only

consider orders redward of order 18 such that the bluest

orders at low S/N are ignored. The resulting RV time

series is provided in Table 2.

3.6.2. HIRES

We obtained 11 additional spectra of TOI-1235 with

the High Resolution Échelle Spectrometer on Keck-I

(HIRES; Vogt et al. 1994) as part of the TESS -Keck

Survey (TKS) between UT December 10, 2019 and

March 10, 2020. HIRES is an optical spectrograph at

R = 60, 000 that uses a heated iodine cell in front of the

spectrometer entrance slit to perform its precise wave-

length calibration between 500-620 nm. Against the for-

est of iodine cell features imprinted on the spectrum,

we measure the relative Doppler shift of each spectrum

while constraining the shape of the instrument profile at

each epoch (Howard et al. 2010). The median exposure

https://www.gemini.edu/sciops/instruments/alopeke-zorro/
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time was set to 900 seconds, which resulted in a median

S/N at 550 nm of 124 and a median measurement uncer-

tainty of 1.21 m s−1, nearly identical to the median RV

uncertainty in our HARPS-N time series. The HIRES

RV measurements are also provided in Table 2.

We processed a single epoch spectrum with a S/N of

96 per pixel using the SpecMatch-Emp algorithm (Yee

et al. 2017) to independently derive spectroscopic stel-

lar parameters. The resulting effective temperature and

metallicity are reported in Table 1. We also infer a stel-

lar radius of Rs = 0.61 ± 0.10 R�, which is consistent

with the values derived from our SED analysis and from

the empirical M dwarf radius-luminosity relation.

4. DATA ANALYSIS & RESULTS

Here we conduct a pair of independent analyses of our

data to test the robustness of the recovered planetary

parameters following the strategy adopted in Cloutier

et al. (2020). In our fiducial analysis (Sects. 4.1 and 4.2),

we model the TESS light curve independently and use

the resulting planet parameter posteriors as priors in

our subsequent RV analysis. In Sect. 4.3 we conduct an

alternative global analysis using the EXOFASTv2 software

(Eastman et al. 2019).

4.1. TESS transit analysis

We begin our fiducial analysis by modeling the TESS

PDCSAP light curve (Figure 2) in which the planet

candidate TOI-1235.01 was originally detected. The

PDCSAP light curve has already undergone systemat-

ics corrections via a linear combination of CBVs how-

ever, some low amplitude temporally-correlated signals

that are unrelated to planetary transits are seen to per-

sist. We elect to model these signals as an untrained

semi-parametric Gaussian process (GP) simultaneously

with the transit model of TOI-1235 b. We employ the

exoplanet software package (Foreman-Mackey et al.

2019) to construct the GP and transit model in each

step in our Markov Chain Monte-Carlo (MCMC) simu-

lation. Within exoplanet, analytical transit models are

computed using the STARRY package (Luger et al. 2019)

while celerite (Foreman-Mackey et al. 2017) is used to

evaluate the marginalized likelihood of the GP model.

We adopt a covariance kernel of the form of

a stochastically-driven simple harmonic oscillator in

Fourier space. The power spectral density of the ker-

nel is

S(ω) =

√
2

π

S0ω
4
0

(ω2 − ω2
0)2 + ω2

0ω
2/Q2

, (1)

which is parameterized by the frequency of the un-

damped oscillator ω0, the factor S0, which is propor-

tional to the spectral power at ω0, and the fixed quality

factor Q =
√

0.5. We also include the baseline flux f0

and an additive scalar jitter sTESS in our noise model

that we parameterize by {lnω0, lnS0ω
4
0 , f0, ln s

2
TESS}.

Our noise model is jointly fit with a transit model

for TOI-1235 b with the following free parameters:

the stellar mass Ms, stellar radius Rs, quadratic

limb-darkening coefficients {u1, u2}, orbital period

P , time of mid-transit T0, planet radius rp, im-

pact parameter b, eccentricity e, and argument of

periastron ω. Our full TESS model therefore con-

tains 13 free parameters that are parameterized by

{f0, lnω0, lnS0ω
4
0 , ln s

2
TESS,Ms, Rs, u1, u2, lnP, T0, ln rp,

b, e, ω}. Our adopted model parameter priors are listed

in Table 3.

We execute an MCMC to sample the joint posterior

probability density function (PDF) of our full set of

model parameters using the PyMC3 MCMC package (Sal-

vatier et al. 2016) within exoplanet. The MCMC is ini-

tialized with four simultaneous chains, each with 4000

tuning steps and 3000 draws in the final sample. Point

estimates of the maximum a-posteriori (MAP) values

from the marginalized posterior PDFs of the GP hyper-

parameters are selected to construct the GP predictive

distribution whose mean function is treated as our de-

trending model of the PDCSAP light curve. This mean

detrending function and the detrended light curve are

both shown in Figure 2. Similarly, we recover the MAP

point estimates of the transit model parameters to con-

struct the transit model shown in the bottom panel of

Figure 2. MAP values and uncertainty point estimates

from the 16th and 84th percentiles for all model param-

eters are reported in Table 5.

4.2. Precise radial-velocity analysis

We continue our fiducial analysis by jointly modeling
the HARPS-N and HIRES RV time series. Here we are

able to exploit the strong priors on P and T0 derived

from our analysis of the TESS light curve (Sect. 4.1).

The raw HARPS-N and HIRES RVs are shown in the

top row of Figure 5 along with their Bayesian gener-

alized Lomb-Scargle periodogram (BGLS; Mortier et al.

2015). The periodicity induced by TOI-1235 b is dis-

tinctly visible at 3.44 days. A preliminary RV analy-

sis indicated that following the removal of an optimized

Keplerian solution for TOI-1235 b, the BGLS revealed a

strong periodic signal at 22 days, which is seen at mod-

erately low significance in the BGLS of the raws RVs in

Figure 5. This periodicity is close to the first harmonic

of the stellar rotation period at Prot/2 ≈ 22.3 days. As

such, we interpret this signal as likely being produced by

active regions on the rotating stellar surface. We note

that this feature at Prot/2 is similar to the first har-
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Table 3. TESS light curve and RV model parameter priors

Parameter Fiducial Model Priors EXOFASTv2 Model Priors

Stellar parameters

Teff, [K] N (3872, 70) N (3872, 70)

Ms, [M�] N (0.640, 0.016) N (0.640, 0.016)

Rs, [R�] N (0.630, 0.015) N (0.630, 0.015)

Light curve hyperparameters

f0 N (0, 10) U(− inf, inf)

lnω0, [days−1] N (0, 10) -

lnS0ω
4
0 N (ln var(fTESS), 10) -

ln s2
TESS N (ln var(fTESS), 10) -

u1 U(0, 1) U(0, 1)

u2 U(0, 1) U(0, 1)

Dilution - N (0, 0.1 δ)a

RV parameters

lnλ, [days] U(ln 1, ln 1000) -

ln Γ U(−3, 3) -

Prot, [days] N (46.1, 4.6) -

ln aHARPS-N, [m s−1] U(−5, 5) -

ln aHIRES, [m s−1] U(−5, 5) -

ln sHARPS-N, [m s−1] U(−5, 5) U(− inf, inf)

ln sHIRES, [m s−1] U(−5, 5) U(− inf, inf)

γHARPS-N, [m s−1] U(−10, 10) U(− inf, inf)

γHIRES, [m s−1] U(−10, 10) U(− inf, inf)

TOI-1235 b parameters

P , [days] U(− inf, inf)b U(− inf, inf)

T0, [BJD-2,457,000] U(− inf, inf)b U(− inf, inf)

ln rp, [R⊕] N (0.5 · ln(Z) + lnRs, 1)c -

rp/Rs - U(− inf, inf)

b U(0, 1 + rp,b/Rs) -

lnK, [m s−1] U(−5, 5) -

K, [m s−1] - U(− inf, inf)

e B(0.867, 3.03)d

ω, [rad] U(−π, π)

e cosω - U(−1, 1)

e sinω - U(−1, 1)
√
e cosω U(−1, 1) -
√
e sinω U(−1, 1) -

Note—Gaussian distributions are denoted by N and are parameterized by
mean and standard deviation values. Uniform distributions are denoted by U
and bounded by the specified lower and upper limits. Beta distributions are
denoted by B and are parameterized by the shape parameters α and β.

aδ is the SPOC-derived dilution factor applied to the TESS light curve.

bThis prior in the fiducial model reflects that used in the TESS light anal-
ysis. However, its resulting posterior is used as an informative prior in the
subsequent RV analysis.

cThe transit depth of TOI-1235.01 reported by the SPOC: Z = 841 ppm.

dKipping 2013.
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monic of Prot observed on the Sun that has been shown

to have either a comparable amount, or at times more

power than at Prot (Mortier & Collier Cameron 2017;

Milbourne et al. 2019). However, we note that simulated

RV time series with injected quasi-periodic magnetic ac-

tivity signals have been shown to produce spurious, and

sometimes long-lived, periodogram signals that can mas-

querade as rotation signatures (Nava et al. 2020). But

given that the 22-day signal is nearly identical to the

first harmonic of the measured rotation period, we pro-

ceed with treating the 22-day signal as stellar activity

and opt to simultaneously fit the HARPS-N and HIRES

RVs with model components for TOI-1235 b, in the form

of a Keplerian orbit, plus a quasi-periodic GP regression

model of stellar activity whose covariance kernel as a

function of time t takes the form

kijs = a2
s

[
− (ti − tj)2

2λ2
− Γ2 sin2

(
2π|ti − tj |

Prot

)]
. (2)

The quasi-periodic kernel is parameterized by four hy-

perparameters: the covariance amplitude as, where s

is the index over the two spectrographs, the exponential

timescale λ, the coherence Γ, and the periodic timescale,

which we initialize to Prot/2 because of its apparent pe-

riodicity in the BGLS of the raw RVs. Because the

temporally-correlated signal that we are modeling with

a GP likely originates from active regions on the rotat-

ing stellar surface, and the fact that activity signals are

inherently chromatic, we consider separate GP activity

models for each spectrograph. We also maintain that

the covariance hyperparameters {λ,Γ, Prot} are identi-

cal within each spectrograph’s GP activity model. We

include an additive scalar jitter sRV,s for each spectro-

graph to account for any excess noise in the activity

model and fit for each spectrograph’s unique zero-point
offset γs.

Our full RV model therefore consists of 14 free

parameters: {ln aHARPS-N, ln aHIRES, lnλ, ln Γ, lnProt,

ln sRV,HARPS-N, ln sRV,HIRES, γHARPS-N, γHIRES, P, T0,

lnK,h =
√
e cosω, k =

√
e sinω} where K is the RV

semi-amplitude of TOI-1235 b. The adopted model pa-

rameter priors are included in Table 3. We fit the RV

data with our full model using the affine invariant en-

semble MCMC sampler emcee (Foreman-Mackey et al.

2013), throughout which we use the george package

(Ambikasaran et al. 2014) to evaluate the marginal-

ized likelihood of the GP activity models. MAP point

estimates of the model parameters are derived from

their respective marginalized posterior PDFs and are

reported in Table 5.

The second row in Figure 5 depicts the activity compo-

nent in our RV model after the MAP Keplerian solution

for TOI-1235 b is subtracted from the raw RVs. The

residual periodicity close to Prot/2 = 22 days becomes

clearly visible in the BGLS of the RV activity signal.

In our GP activity model, we measure an exponential

timescale of λ = 115 ± 20 days indicating that active

regions are relatively stable over a few rotation cycles.

According to detailed investigations of periodogram sig-

nals in simulated RV time series, the persistence of the

maximum RV activity peak at Prot/2 is consistent with

active region lifetimes on TOI-1235 exceeding Prot (Nava

et al. 2020).

In the third row of Figure 5, the BGLS of the TOI-

1235 b signal is clearly dominated by the 3.44-day peri-

odicity as expected. We measure an RV semi-amplitude

of K = 4.11+0.43
−0.50 m s−1, which is detected at 8.2σ and

is clearly visible in the phase-folded RVs in Figure 5.

The RV residuals, after removing each spectrograph’s

mean GP activity model and the MAP Keplerian so-

lution, show no signs of any probable periodicities and

have rms values of 1.90 and 1.65 m s−1 for the HARPS-

N and HIRES RVs respectively. We note that these rms

values exceed the typical RV measurement uncertainties

of 1.2 m s−1 and may be indicative of an incomplete RV

model. We reserve an exploration of this prospect until

Sect. 5.3.

4.3. A global transit & RV analysis

To assess the robustness of the parameters derived

from our fiducial modeling strategy (Sects. 4.1 and 4.2),

here we consider an alternative global model using the

EXOFASTv2 exoplanet transit plus RV fitting package

(Eastman et al. 2013, 2019).

Here we highlight a few notable differences be-

tween our fiducial analysis and the global model using

EXOFASTv2. In our fiducial model of the TESS PDCSAP

light curve, we simultaneously fit the data with a GP

detrending model plus a transit model such that the

uncertainties in the recovered planetary parameters are

marginalized over our uncertainties in the detrending

model. Conversely, EXOFASTv2 takes as input a pre-

detrended light curve to which the transit model is fit.

We construct the detrended light curve to supply to

EXOFASTv2 using the mean function of the predictive

GP distribution shown in Figure 2. With this method,

the uncertainties in the planetary parameters of interest

are not marginalized over uncertainties in the detrending

model and may consequently be underestimated. Sim-

ilarly, the RV model in our fiducial analysis considers

temporally-correlated RV activity signals and models

them as a quasi-periodic GP. Conversely, modeling of

the prominent 22-day signal in the RVs with EXOFAST

requires one to assume a deterministic functional form
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Figure 5. TOI-1235 RVs from HARPS-N (gray circles) and HIRES (green triangles). The data of each RV component and its
corresponding model are depicted in the left column of the first four rows. Each component’s corresponding Bayesian generalized
Lomb-Scargle periodogram is depicted in the adjacent right column with the vertical dashed lines highlighting the orbital period
of TOI-1235 b (P = 3.44 days), the stellar rotation period (Prot = 44.7 days), and its first harmonic (Prot/2 = 22.3 days). First
row : the raw RVs. Second row : RV activity at Prot/2 modeled as separate quasi-periodic GPs for each spectrograph. Third
row : the Keplerian orbital solution for TOI-1235 b. Fourth row : the RV residuals. Bottom panel : the phase-folded RV signal
from TOI-1235 b.

for the signal in order to construct a more complete RV

model. For this purpose, we model the 22-day signal

as an eccentric Keplerian within EXOFASTv2. We adopt

broad uniform priors on the signal’s P and T0 and adopt

identical priors on its semi-amplitude, e cosω, e sinω as

are used for TOI-1235 b (Table 3).

The EXOFASTv2 model has the important distinction

of evaluating a global model that jointly considers the

TESS photometry along with the HARPS-N and HIRES

RVs. By virtue of this, the common planet parameters

between these datasets (i.e. P , T0, e, ω) will be self-

consistent. In particular, the eccentricity of TOI-1235

b will be jointly constrained by the transit duration,

the RV solution, and the stellar density, which is con-

strained by our priors on the stellar mass and radius

(Table 3). The EXOFASTv2 software also explicitly fits

for any excess photometric dilution therefore providing

an improved accuracy on the transit depth and hence

on the recovered planetary radius. Within EXOFASTv2,

the dilution is defined as the fractional flux contribution

from neighboring stars (see Section 12 Eastman et al.

2019).

We report the results from our global model in Ta-

ble 5 and compare the planetary parameters to those
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derived from our fiducial analysis. All planetary param-

eters are consistent between our two analysis strategies

at < 1σ. In particular, in our fiducial and EXOFASTv2

analyses, we measure consistent values for the observ-

ables rp/Rs = 0.0254± 0.0009 and 0.0257± 0.0007 and

lnK = 1.41+0.10
−0.13 and 1.46+0.11

−0.13. Given the identical stel-

lar parameter priors in each analysis, this consistency

directly translates into consistent measures of TOI-1235

b’s fundamental planet parameters.

5. DISCUSSION

5.1. Fundamental planet parameters

5.1.1. Orbital separation, mass, and radius

Our analysis of the TESS PDCSAP light curve re-

veals that TOI-1235 b has an orbital period of P =

3.444729+0.000031
−0.000028 days and a planetary radius of rp =

1.738+0.087
−0.076 R⊕. The corresponding semimajor axis for

TOI-1235 b is a = 0.03845+0.00037
−0.00040 AU where it receives

53.6+5.3
−4.7 times Earth’s insolation. Assuming uniform

heat redistribution and a Bond albedo of zero, TOI-1235

b has an equilibrium temperature of Teq= 754± 18 K.

From our RV analysis, we obtain a 8.1σ planetary

mass measurement of mp = 6.91+0.75
−0.85 M⊕. Taken to-

gether, the mass and radius of TOI-1235 b give a bulk

density of ρp = 7.4+1.5
−1.3 g cm−3. In Figure 6 we add

TOI-1235 b to the mass-radius diagram of small M

dwarf planets with ≥ 3σ mass measurements. Compar-

ing TOI-1235 b’s mass and radius to internal structure

models of two-layer, fully-differentiated planet interiors

(Zeng & Sasselov 2013) reveals that the bulk compo-

sition of TOI-1235 b is consistent with an Earth-like

composition of 33% iron plus 67% silicate rock by mass.

Intriguingly, the mass and radius of TOI-1235 b are

nearly identical to those of LHS 1140 b despite LHS

1140 b having a wider 25-day orbit around a mid-M

dwarf, thus making it much more temperate than TOI-

1235 b (Teq= 230 K; Dittmann et al. 2017; Ment et al.

2019). Both planets are situated within the radius val-

ley around low mass stars (CM19) and have masses that

appear to represent the upper limit of terrestrial planet

masses in a planetary mass regime where rocky Earth-

like planets are inherently rare (i.e. 5-10 M⊕, Figure 6).

These planets offer unique opportunities to study na-

ture’s largest terrestrial planets whose tectonic and out-

gassing processes may differ significantly from those on

Earth-sized terrestrial planets (Valencia et al. 2007).

With the planetary mass measurement presented

herein, TOI-1235 adds to the growing list of small plan-

ets transiting M dwarfs with precise RV masses (GJ

3470; Bonfils et al. 2012, GJ 1214; Charbonneau et al.

2009, GJ 1132; Bonfils et al. 2018, K2-3; Damasso et al.

2018, K2-18; Cloutier et al. 2019b, LHS 1140; Ment

Figure 6. Mass-radius diagram for small planets orbiting M
dwarfs including TOI-1235 b (triangle marker). Errorbars
on the TOI-1235 b mass and radius are smaller than the
marker, which lies directly on top of LHS 1140 b in this space.
The solid curves depict internal structure models with mass
fractions of 100% water, 100% silicate rock, 33% iron plus
67% rock (i.e. Earth-like), and 100% iron (Zeng & Sasselov
2013). The dashed curves depict models of Earth-like cores
hosting H2 envelopes with 1% envelope mass fractions at
various equilibrium temperatures (Zeng et al. 2019). The
shaded region bounded by the dotted curve highlights the
forbidden region according to models of maximum collisional
mantle stripping by giant impacts (Marcus et al. 2010).

et al. 2019) that has been rapidly expanding since the

launch of TESS (GJ 357; Luque et al. 2019, GJ 1252;

Shporer et al. 2019, L 98-59; Cloutier et al. 2019a, L

168-9; Astudillo-Defru et al. 2020, LTT 3780; Cloutier

et al. 2020; Nowak et al. 2020). Notably, TOI-1235 b

also directly contributes to the completion of the TESS

level one science requirement of obtaining precise masses

for fifty planets smaller than four Earth radii.

5.1.2. Iron and envelope mass fractions

We wish to place self-consistent limits on the iron mass

fraction XFe and envelope mass fraction Xenv of TOI-

1235 b. Here the iron mass fraction is defined as the ratio

of the total mass of the core and mantle that is composed

of iron, with the remainder in magnesium silicate. The

envelope mass fraction is then defined as the fraction

of the planet’s total mass that is in its gaseous enve-

lope. However, it is important to note that these val-

ues are degenerate such that we cannot derive a unique

solution given only the planet’s mass and radius. For

example, the bulk composition of TOI-1235 b is con-
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Figure 7. Joint distribution of TOI-1235 b’s iron mass and
envelope mass fractions to be consistent with its measured
mass and radius. The colormap represents the number of
successful planet models given Xenv and XFe while the con-
tours highlight the 68, 95, and 99 percentiles. The top and
right 1D histograms depict the marginalized distributions of
XFe and log10 (Xenv) respectively for the full sample (red),
plus the subset of realizations with a radiative atmospheres
(green) and convective atmospheres (blue). The blue cross
highlights the Earth.

sistent with being Earth-like, thus suggesting a small

envelope mass fraction5, but one could also imagine a

more exotic scenario that is consistent with the planet’s

mass and radius of a planetary core with XFe = 1, sur-

rounded by an extended H/He envelope. In the simplest

case, we assume that magnesium silicate and iron are the

only major constituents of TOI-1235 b’s bulk composi-

tion such that Xenv = 0. Under this assumption, we

derive XFe by Monte-Carlo sampling the uncorrelated

marginalized posterior PDFs of mp and rp and use the

analytical rock/iron mass-radius relation from Fortney

et al. (2007) to recover XFe. We find that TOI-1235

b has an iron mass fraction of XFe = 20+15
−12% that is

< 46% at 90% confidence.

To infer the distribution of envelope mass fractions

that are consistent with the data, we first impose a

physically-motivated prior on XFe of N (0.33, 0.10). The

relatively narrow width of this Gaussian prior is qual-

itatively supported by observations of nearby Sun-like

stellar metallicities that show that the abundance ra-

tios of Mg/Fe, Si/Fe, and Mg/Si at similar ages and

5 The Earth has an envelope mass fraction of < 10−6.

metallicities vary by less than 10%. This indicates a low

level of compositional diversity in the refractory build-

ing blocks of planets (Bedell et al. 2018). The width of

our XFe Gaussian prior is chosen in an ad hoc way to ap-

proximately reflect this level of chemical diversity. The

homogeneity of refractory chemical abundances among

Sun-like stars, coupled with their similar condensation

temperatures (Lodders 2003), suggests a narrow range

in iron mass fractions among close-in terrestrial planets.

This assertion is supported by the locus of terrestrial

planets with rp . 1.8 R⊕ that are consistent with an

Earth-like bulk composition (Figure 6). This concept

of similar XFe values is particularly compelling for the

most massive terrestrial planets (e.g. TOI-1235 b) for

which a significant increase in XFe by collisional man-

tle stripping is energetically infeasible due to the large

binding energies of such planets (Marcus et al. 2010).

To proceed with deriving the distribution of TOI-1235

b envelope mass fractions assuming an Earth-like core,

we extend the solid two-layer interior structure model to

include a H/He envelope with a mean molecular weight

equal to that of a solar metallicity gas (µ = 2.35).

Our adopted planetary model is commonly used for sub-

Neptune-sized planets (e.g. Rafikov 2006; Lee & Chiang

2015; Ginzburg et al. 2016; Owen & Wu 2017; Gupta

& Schlichting 2019). This model features a solid core

surrounded by a H/He gaseous envelope that, depend-

ing on the planetary parameters, is either fully radiative

throughout or may be convective in the deep interior

up to the height of the radiative-convective boundary

(RCB), above which the atmosphere becomes radiative

and isothermal with temperature Teq. The latter sce-

nario represents the general case whereas the former is

only invoked when the planetary parameters result in

a height of the RCB that is less than the atmospheric

pressure scale height at Teq. To first order, the height of

the RCB above the planetary surface rRCB, and hence

Xenv, are determined by {Teq,mp, rp, XFe}. Each of Teq,

mp, and rp are directly constrained by our data if we

assume a Bond albedo to infer Teq. We derive rRCB

and Xenv by Monte-Carlo sampling XFe from its prior,

along with the zero-albedo Teq, mp, and rp from their re-

spective marginalized posterior PDFs. We then rescale

each Teq draw by (1 − AB)1/4 where AB is the Bond

albedo. Super-Earth bond albedos have poor empirical

constraints so we opt to condition a broad uniform prior

on AB of U(0.1, 0.8) based on the solar system planets.

Lastly, although we expect rRCB to shrink over time

as the H/He envelope cools and contracts, this effect on

Xenv is known to be a weak function of planet age (Owen

& Wu 2017) such that we fix the age of TOI-1235 to 5

Gyrs in our calculations.
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We use a customized version of the EvapMass

software (Owen & Campos Estrada 2020) to self-

consistently solve for rRCB and Xenv given samples of

{Teq,mp, rp, XFe}. We attempt to sample these pa-

rameters in 105 realizations although not all parame-

ter combinations are physically capable of producing a

self-consistent solution. In practice, our Monte-Carlo

sampling results in 94,131 successful planetary model

realizations (i.e. 94.1% success rate). The resulting dis-

tributions of XFe and Xenv that are consistent with our

measurements of TOI-1235 b are shown in Figure 7. We

find that 41.1% of successful planet model realizations

have fully radiative atmospheres with the remaining

58.9% being convective in the lower atmosphere. These

models produce largely disparate results with radiative

atmospheres being favored for increasingly smaller XFe

and always having Xenv . 10−3. Conversely, atmo-

spheres with a deep convective region are more extended

thus requiring a more compressed core (i.e. large XFe)

and larger Xenv. Overall we see the positive correlation

between XFe and Xenv because at a fixed mp, the core

radius must shrink with increasing XFe, which requires

the envelope to become extended to match the observed

radius. Extending the envelope increases the limits of

integration over the atmospheric density profile from the

planetary surface to the top of the atmosphere, conse-

quently increasing the envelope mass. With our models,

we find that TOI-1235 b has a maximum envelope mass

fraction of 2.3%. Marginalizing over all other model pa-

rameters, and both atmospheric equations of state, we

find that Xenv must be < 0.5% at 90% confidence.

5.2. Implications for the origin of the radius valley

around mid-M dwarfs

Observational studies of the occurrence rate of close-in

planets around Sun-like stars have revealed a bimodality

in the distribution of planetary radii known as the radius

valley (e.g. Fulton et al. 2017; Fulton & Petigura 2018;

Mayo et al. 2018). This dearth of planets between 1.7-

2.0 R⊕ around Sun-like stars likely marks the transition

between rocky planets and larger planets that host ex-

tended gaseous envelopes. Physical models of the emer-

gence of the radius valley from thermally-driven atmo-

spheric mass loss (i.e. photoevaporation or core-powered

mass loss), and from terrestrial planet formation in a gas

poor environment, make distinct predictions regarding

the slope of the radius valley in period-radius space. The

slope of the radius valley around Sun-like stars with Teff

> 4700 K was measured by Martinez et al. (2019) us-

ing the stellar sample from Fulton et al. (2017). The

recovered slope was shown to be consistent with model

predictions from thermally-driven atmospheric mass loss

(rp,valley ∝ P−0.15; Lopez & Rice 2018). On the other

hand, the slope around lower mass dwarfs with Teff

< 4700 K (i.e. mid-K to mid-M dwarfs) was measured

by CM19 and was shown to have a flipped sign that

instead was consistent with predictions from gas-poor

formation (rp,valley ∝ P 0.11; Lopez & Rice 2018). One

interpretation of this is that the dominant mechanism

for sculpting the radius valley is stellar mass dependent

and that thermally-driven mass loss becomes less effi-

cient towards mid-to-late M dwarfs where a new forma-

tion pathway of terrestrial planets in a gas-poor environ-

ment emerges (CM19). The stellar mass at which this

proposed transition occurs is not well resolved by occur-

rence rate measurements, but it may be addressed by

the detailed characterization of individual planets that

span the model predictions in period-radius space (e.g.

TOI-1235 b).

Differences in the slopes of the radius valley around

Sun-like and lower mass stars naturally carve out a sub-

set of the period-radius space in which the models make

opposing predictions for the bulk compositions of plan-

ets. This subspace around low mass stars cooler than

4700 K was quantified by CM19 and is highlighted in

Figure 8. At periods less than 23.5 days, planets within

the highlighted subspace are expected to be rocky ac-

cording to models of thermally-driven hydrodynamic es-

cape. Conversely, gas-poor formation models predict

that those planets should instead be non-rocky with en-

velope mass fractions of at least a few percent depending

on their composition. TOI-1235 b falls within this re-

gion of interest and therefore provides direct constraints

on the efficiency of the competing physical processes on

close-in planets around early M dwarfs.

Our transit and RV analyses revealed that TOI-1235 b

is a predominantly rocky planet with an iron mass frac-

tion of 20+15
−12% and an envelope mass fraction that is

< 0.5% at 90% confidence. Given its period and radius,

this finding is consistent with models of thermally-driven

mass loss but is inconsistent with the gas-poor forma-

tion scenario. Indeed, based on the photoevaporation-

driven hydrodynamic escape simulations by Lopez &

Fortney (2013), the mass of TOI-1235 b place its in-

solation flux (F = 53.6+5.3
−4.7 F⊕) right at the threshold

insolation required for the planet to lose its gaseous en-

velope: Fthreshold = 52 ± 14 F⊕.6 These results sug-

gest that thermally-driven mass loss continues to be an

efficient process for sculpting the radius valley around

early M dwarfs like TOI-1235. CM19 suggested that al-

though thermally-driven mass loss seems to be prevalent

6 Assuming a fixed mass loss efficiency of 10% (Lopez et al. 2012).
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Figure 8. Period-radius diagram for small planets orbit-
ing M dwarfs with precise RV masses including TOI-1235
b (bold circle). The dashed and solid lines depict the loca-
tions of the radius valley around low mass stars from model
predictions of thermally-driven atmospheric mass loss and
from gas-poor terrestrial planet formation respectively. The
shaded regions highlight where the predictions of planetary
bulk compositions are discrepant between the two models.
Contours represent the planetary occurrence rates around
low mass stars (CM19). Planet marker shapes depict the
planet’s compositional disposition as either rocky (circles),
gaseous (triangles), or intermediate (squares). Marker colors
indicate the planet’s bulk density.

around Sun-like stars, evolution in the structure of the

radius valley with stellar mass suggests that this pre-

velance weakens with decreasing stellar mass and that
gas-poor formation may emerge as the dominant mecha-

nism for sculpting the radius valley around early-to-mid

M dwarfs. Although the stellar mass at which this pro-

posed transition occurs has yet to be resolved, the rocky

nature of TOI-1235 b further suggests that the stellar

mass at which this transition occurs is likely less than

that of TOI-1235 (0.640± 0.016 M�).

As an aside, we note that distinguishing between pho-

toevaporation and core-powered mass loss cannot be

achieved with the data presented herein. Fortunately,

the distinction can be addressed at the planet popula-

tion level by investigating the radius valley’s dependence

with time and with stellar mass (Gupta & Schlichting

2020).

5.3. Testing the prospect of a second planet around

TOI-1235

Recall that after removing the TOI-1235 b signal from

our RV time series, a strong residual periodicity emerges

at about 22 days (second row in Figure 5). We ini-

tially interpreted this signal as being likely related to

rotationally-induced stellar activity because of its prox-

imity to the first harmonic of the probable stellar ro-

tation period inferred from ground-based photometric

monitoring (Prot= 44.7± 4.5 days, Figure 3). Although

the measurement of Prot makes the 22-day RV signal

suggestive of being related to stellar activity, here we

conduct a suite of tests that instead favor a planetary

origin.

The treatment of the 22-day RV signal as either a

quasi-periodic GP in our fiducial model or as an ec-

centric Keplerian in our EXOFASTv2 global model (see

Sects. 4.2 and 4.3), gives an activity semi-amplitude of

≈ 5 m s−1. This value appears to be at odds with

reasonable predictions of the RV signal based on the

star’s long-term photometric variability from ground-

based monitoring (Sect. 3.2). Using the FF ′ model to

predict the activity-induced RV variations from photo-

metric variability (Aigrain et al. 2012), we would expect

the semi-amplitude of the TOI-1235 RV activity signal

to be at the level of 1-2 m s−1 instead of the observed

value of 5 m s−1 under the single-planet model. How-

ever, it is important to note that photometry is not a

perfect predictor of RV variations because i) stellar ac-

tivity undergoes cycles and there is no guarantee that

the level of activity is constant between the epochs of

photometric monitoring and the RV observations, ii)

photometry is not sensitive to all spot distributions

(Aigrain et al. 2012) and iii) bright chromospheric plages

can produce RV variations with amplitudes similar to

those induced by spots of the same size, but with po-

tentially ten times less flux variations (Dumusque et al.

2014). Therefore, the discrepancy between the observed
RV activity variations and the FF ′ model predictions

is merely suggestive that our RV activity models are

over-predicting the amplitude of the RV activity signal,

which would then require an additional RV component

to model the excess signal in the RV residuals.

Rotationally-induced RV signals from active regions

arise from the temperature difference between the active

regions and the surrounding stellar surface. As such,

the active region contrast has an inherent wavelength

dependence that increases towards shorter wavelengths

such that RV activity signals should be larger at bluer

wavelengths (Reiners et al. 2010). We elected to in-

vestigate the chromatic dependence of the 22-day RV

signal by considering sets of ‘blue’ and ‘red’ RVs from

HARPS-N. We re-derived the HARPS-N RVs using the

same methodology as in our fiducial analysis but focused
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separately on the spectral orders 0-45 (388-550 nm) and

46-68 (550-689 nm) to derive sets of blue and red RVs re-

spectively. Each range of orders was selected to achieve

a comparable median RV measurement uncertainty in

each time series of 1.98 m s−1 and 2.04 m s−1. We then

investigated the chromatic dependence of the probabil-

ity of the 3.44-day and 22-day periodicities in the BGLS.

While the 22-day signal was marginally more probable

in the red RVs, we found that the planetary signal varied

by many more orders-of-magnitude than the 22-day sig-

nal. This behavior is unexpected for a planetary signal

that is known to be achromatic. We therefore concluded

that this chromatic analysis of our dataset is unreliable

and we make no claims regarding the physical origin of

the 22-day signal based on its chromatic dependence.

To explicitly test the idea that an additional RV com-

ponent is required to completely model the data, we

considered a two-planet RV model with components for

TOI-1235 b, a second Keplerian ‘c’ at 22 days, plus

quasi-periodic GP activity models for each spectrograph

with an imposed prior on its periodic timescale equal to

that of Prot: N (44.7, 4.5) days. We sampled the two-

planet model parameter posteriors using an identical

method to what was used in our fiducial analysis of the

one-planet RV model (Sect. 4.2). We adopted narrow

uniform priors on Pc of U(17, 27) days and on T0,c of

U(1821.5, 1848.5) BJD - 2,457,000. The resulting Kep-

lerian model parameters on the hypothetical planet ‘c’

are reported in Table 4. We find that the hypothetical

planet would have a period of Pc = 21.8+0.9
−0.8 days and

an RV semi-amplitude of Kc = 4.2+1.2
−1.7, which implies a

minimum mass of mp,c sin i = 13.0+3.8
−5.3 M⊕.

We now have one and two-planet RV models of the

HARPS-N plus HIRES RVs that both include a GP ac-

tivity component whose periodic time scales are con-

strained to be close to Prot/2 and Prot respectively.

Therefore, we can use our models to conduct a model

comparison to assess the favorability of one model over

the other. We used the marginalized posterior PDFs

from each model’s MCMC results to estimate their

Bayesian model evidences Z using the estimator from

Perrakis et al. (2014). We estimate model evidences

of lnZ1 = −110.0 and lnZ2 = −91.0, which gives

a model evidence ratio of Z2/Z1 = 108. This result

strongly favors the two-planet model although we cau-

tion that Bayesian model evidences are notoriously dif-

ficult to accurately calculate and their interpretation is

dependent on the assumed model parameter priors (Nel-

son et al. 2020). Alternatively, we also compute the

Bayesian information criterion (BIC) and the Akaike

information criterion (AIC) to perform model compar-

isons that are independent of the model priors. We

Table 4. Point estimates of the hypthetical planet ‘c’
Keplerian model parameters

Parameter Model Values

Orbital period, Pc [days] 21.8+0.9
−0.8

Time of mid-transit, T0,c [BJD - 2,457,000] 1835.3+2.2
−2.1

Log RV semi-amplitude, lnKc/m/s 1.4+0.3
−0.5√

ec cosωc 0.08+0.3
−0.4√

ec sinωc 0.12+0.37
−0.47

Derived parameters

RV semi-amplitude, Kc [m s−1] 4.2+1.2
−1.7

Minimum planet mass, mp,c sin i [M⊕] 13.0+3.8
−5.3

Semimajor axis, ac [AU] 0.1319+0.0046
−0.0043

Insolation, Fc [F⊕] 4.6+0.6
−0.5

Equilibrium temperature, Teq,c [K]

Bond albedo = 0.0 407± 12

Bond albedo = 0.3 373± 11

Note—Note that we do not conclude that the hypothetical
planet ‘c’ presented in this table is a bona-fide planet.

measure BIC1 = 225.0 and BIC2 = 205.2 such that

the two-planet model is again strongly favored since

∆BIC12 ≡ BIC1 − BIC2 = 19.8 > 10. This is fur-

ther supported by AIC1 = 202.1 and AIC2 = 174.1

whereby the two-planet model remains strongly favored

as ∆AIC12 ≡ AIC1 −AIC2 = 28.0 > 10.

Encouraged by the prospect of a second planet or-

biting TOI-1235, we used its measured orbital period

Pc = 21.8+0.9
−0.8 days and its time of inferior conjunc-

tion T0,c = 2458835.3+2.2
−2.1 BJD to search for transit-like

events in the TESS PDCSAP and archival MEarth-North

light curves. With TESS we conducted the search for

periodic transit-like signals close to Pc using the imple-

mentation of the Box Least Squares algorithm (BLS;

Kovács et al. 2002) in Cloutier (2019). We conducted

a complementary BLS search on the full MEarth-North

light curve following the methods outlined in Ment et al.

(2019). We do not find any significant transit-like signals

other than those associated with TOI-1235 b. Therefore,

if the 22-day signal is truly a planet, then it is unlikely to

be transiting. This result is perhaps unsurprising given

that if the hypothetical planet ‘c’ is coplanar with TOI-

1235 b at 88.1◦, then ‘c’ would not have a transiting

configuration at its separation of ac/Rs = 45.1+2.0
−1.9.

We emphasize that while the aforementioned lines

of evidence are suggestive of a second, non-transiting

planet around TOI-1235, the data presented herein are

not sufficient to firmly distinguish between planetary

and stellar activity origins of the 22-day RV signal. On-

going spectroscopic monitoring of TOI-1235 over many

rotation cycles may help to solve this ambiguity by test-
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ing for temporal correlations of the signal’s amplitude

over the star’s evolving magnetic activity cycle. A more

secure detection of the stellar rotation period from con-

tinued photometric monitoring would also be beneficial.

5.4. An independent analysis of the TOI-1235 system

Following the announcement of the TOI-1235.01 level

one planet candidate in October 2019, multiple PRV

instrument teams began pursing its mass characteriza-

tion through TFOP. This study has presented the subset

of those efforts from HARPS-N and HIRES but we ac-

knowledge that another collaboration has also submitted

a paper presenting their own RV time series and analysis

(Bluhm et al. 2020). Although the submissions of these

complementary studies were coordinated between the

two groups, their respective data, analyses, and write-

ups, were intentionally conducted independently.

6. SUMMARY

We have presented the discovery and confirmation of

TOI-1235 b, a transiting super-Earth around a bright

early M dwarf from the TESS mission. The planet was

confirmed through intensive follow-up observations in-

cluding a set of precise RV measurements from HARPS-

N and HIRES. The main findings of our study are sum-

marized below:

• TOI-1235 is a bright (V=11.495, Ks=7.893) early

M dwarf at 39.6 pc with mass and radius of

0.640± 0.016 M� and 0.630± 0.015 R�. Archival

MEarth-North photometry reveals a probable ro-

tation period of 44.7± 4.5 days.

• The transiting planet TOI-1235 b has an orbital

period of 3.44 days with a mass and radius of

6.91+0.75
−0.85 M⊕ and 1.738+0.087

−0.076 R⊕. TOI-1235 b di-

rectly contributes to the completion of the TESS

level one science requirement to deliver masses for

fifty planets with radii < 4 R⊕.

• Planetary structure models reveal that the TOI-

1235 b mass and radius are consistent with an

iron mass fraction of 20+15
−12% and a H/He envelope

mass fraction of < 0.5% at 90% confidence, there-

fore making the planet consistent with an Earth-

like bulk composition.

• The period and radius of TOI-1235 b place it be-

tween competing model predictions of the loca-

tion of the rocky/non-rocky planet transition. The

rocky composition of TOI-1235 b makes it consis-

tent with thermally-driven atmospheric mass loss

scenarios but inconsistent with gas-poor formation

models suggesting that the former physical pro-

cess is still efficient at sculpting the radius valley

around early M dwarfs.

• We also see a periodic signal in the RV measure-

ments at 22-days, close to the first harmonic of the

star’s probable rotation period. While this is sug-

gestive of the signal’s origin being related to stellar

activity, estimates of the RV activity signal’s am-

plitude from photometry and the comparison of

one and two-planet RV models, suggest that the

signals’ origin may instead be planetary. However,

we are unable to definitely distinguish between ac-

tivity and a second planet with the data presented

herein.
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Table 5. Point estimates of the TOI-1235 model parameters

Parameter Fiducial Model Valuesa EXOFASTv2 Model Valuesb

TESS light curve parameters

Baseline flux, f0 1.000024± 0.000010 1.000035± 0.000018

lnω0 1.45± 0.17 -

lnS0ω4
0 −0.16+0.52

−0.57 -

ln s2TESS 0.064± 0.006 -

TESS limb darkening coefficient, u1 0.47+0.32
−0.24 0.40+0.34

−0.26

TESS limb darkening coefficient, u2 0.20+0.38
−0.35 0.23+0.37

−0.38

Dilution - 0.09+0.21
−0.34

RV parameters

lnλ/day 4.75+0.22
−0.10 -

ln Γ −0.04+1.9
−1.9 -

lnProt/day 3.82+0.10
−0.11 -

ln aHARPS-N/m/s 2.94+0.71
−0.69 -

ln aHIRES/m/s 1.46+0.76
−0.61 -

Jitter, sHARPS-N [m s−1] 1.18+0.64
−0.75 1.37+0.46

−0.40

Jitter, sHIRES [m s−1] 0.11+0.61
−0.09 2.47+1.10

−0.83

Velocity offset, γHARPS-N [m s−1] −0.81+2.81
−3.03 1.39+0.45

−0.43

Velocity offset, γHIRES [m s−1] 0.69+2.50
−2.70 −0.33+0.96

−0.99

TOI-1235 b parameters

Orbital period, P [days] 3.444729+0.000031
−0.000028 3.444727+0.000035

−0.000039

Time of mid-transit, T0 [BJD - 2,457,000] 1845.51696+0.00099
−0.00098 1845.5173+0.0008

−0.0010

Transit duration D [hrs] 1.84+0.09
−0.16 1.94+0.05

−0.04

Transit depth, Z [ppt] 0.645+0.049
−0.044 0.662+0.039

−0.038

Scaled semimajor axis, a/Rs 13.20+0.41
−0.40 13.15+0.34

−0.32

Planet-to-star radius ratio, rp/Rs 0.0254± 0.0009 0.0257± 0.0007

Impact parameter, b 0.45+0.21
−0.19 0.33+0.15

−0.19

Inclination, i [deg] 88.1+0.8
−0.9 88.6+0.8

−0.6

e cosω - 0.00+0.03
−0.03

e sinω - 0.00+0.04
−0.06√

e cosω 0.07+0.13
−0.15 -

√
e sinω −0.02+0.23

−0.23 -

Eccentricity, e < 0.15c < 0.16c

Planet radius, rp [R⊕] 1.738+0.087
−0.076 1.763+0.071

−0.066

Log RV semi-amplitude, lnK/m/s 1.41+0.10
−0.13 1.46+0.11

−0.13

RV semi-amplitude, K [m s−1] 4.11+0.43
−0.50 4.32+0.50

−0.51

Planet mass, mp [M⊕] 6.91+0.75
−0.85 7.53+0.88

−0.89

Bulk density, ρp [g cm−3] 7.4+1.5
−1.3 7.5+1.4

−1.2

Surface gravity, gp [m s−2] 22.6+3.5
−3.4 23.7+3.3

−3.2

Escape velocity, vesc [km s−1] 22.4+1.3
−1.5 23.1+1.2

−1.1

Semimajor axis, a [AU] 0.03845+0.00037
−0.00040 0.03846+0.00033

−0.00032

Insolation, F [F⊕] 53.6+5.3
−4.7 53.6+4.2

−4.3

Equilibrium temperature, Teq [K]

Table 5 continued
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Table 5 (continued)

Parameter Fiducial Model Valuesa EXOFASTv2 Model Valuesb

Bond albedo = 0.0 754± 18 754± 18

Bond albedo = 0.3 689± 16 689± 16

Keplerian parameters of the 22-day RV signald

Period [days] - 21.99+0.47
−0.32

Reference epoch (analogous to T0) [BJD - 2,457,000] - 1835.34+0.89
−0.87

Log RV semi-amplitude, lnK/m/s - 1.50+0.15
−0.14

RV semi-amplitude, K [m s−1] - 4.50+0.62
−0.57

e cosω - 0.02+0.11
−0.09

e sinω - 0.09+0.18
−0.10

aOur fiducial model features sequential modeling of the TESS light curve followed by the RV analysis conditioned
on the results of the transit analysis.

bOur alternative analysis is a global model of the TESS and ground-based light curves, along with the RVs using
the EXOFASTv2 software.

c 95% upper limit.

dThe 22-day RV signal is modeled as an eccentric Keplerian in our EXOFASTv2 model although we emphasize that
here we do not attribute this signal to a second planet.
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