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Realistic sensitivity curves for pulsar timing arrays
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(Received 16 July 2019; published 14 November 2019)

We construct realistic sensitivity curves for pulsar timing array searches for gravitational waves,
incorporating both red and white noise contributions to individual pulsar noise spectra, and the effect of
fitting to a pulsar timing model. We demonstrate the method on both simulated pulsars and a realistic array
consisting of a subset of NANOGrav pulsars used in recent analyses. A comparison between the results
presented here and measured upper limit curves from actual analyses shows agreement to tens of percent.
The resulting sensitivity curves can be used to assess the detectability of predicted gravitational-wave
signals in the nanohertz frequency band in a coherent, flexible, and computationally efficient manner.

DOI: 10.1103/PhysRevD.100.104028

I. MOTIVATION

Pulsar timing arrays (PTAs) are poised to make the first
detection of nanohertz gravitational waves (GWs) in the
next 2–5 yrs [1–4]. These galactic-scale GW detectors
search for correlations in the times of arrival (TOAs) of the
pulses from millisecond pulsars as a signature for the
presence of GWs [5–7]. The recent inception of GW
astronomy by the advanced LIGO and VIRGO ground-
based detectors [8,9] and the multimessenger observations
of binary neutron stars [10] have drastically changed our
understanding of stellar-mass compact objects. PTAs are
poised to complement these observations by observing
GWs from binary systems comprised of supermassive
black holes (SMBHs) in the centers of distant galaxies.
A common tool used to assess the observability of GW

sources across the spectrum are detection sensitivity curves
(see, e.g., [11,12] and Fig. 1). These curves are basic
“figures of merit,” constructed by the developers of GW
observatories to assess the sensitivity of current detectors
and to predict the sensitivity of future, next-generation
detectors. The wider astrophysics community uses detec-
tion sensitivity curves as an initial estimate of the ability of
a given detector to observe GWs from a particular source.
While detailed sensitivity curves for extant detectors are

usually published for each observation run, those for PTAs
are often simplified [11,13,14], only including identical
white-noise components and often assuming that all pulsar
observation epochs are evenly spaced and have the same
baseline of observations. When drawn, these curves are
often cutoff at the time span of the observations and do not

include important insensitivities at frequencies of 1=yr
and 2=yr, due to the fitting for a pulsar’s astrometric
parameters (Fig. 1). Sensitivity curves should be contrasted
with both measured upper limit curves from actual analyses
and similar upper limit or detection curves produced by
analyzing mock data containing simulated injected signals.
A measured upper limit curve is a frequency-dependent
illustration of the current limits on the amplitude of a GW
signal set by a particular detector (or detectors) analyzing a
particular set of real data. Upper limit or detection curves
produced by analyzing simulated data typically use the
same data analysis routines that are run on the real data and
hence are often as computationally involved as the real

FIG. 1. Sensitivity curves for different GWobservations and the
predicted spectra of various GW sources. Note, in particular,
the (over) simplicity of the PTA sensitivity curves relative to
those for LISA and LIGO. The goal of our paper is to construct
more realistic PTA sensitivity curves. (Figure produced by
gwplotter and based on [11].)*hazboun@uw.edu
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analyses. Sensitivity curves, on the other hand, are not
calculated by analyzing real or simulated data. Rather they
simply use properties of the detector network (noise
characteristics, configuration, observing schedule, etc.)
and expected properties of the signal being searched for
to assess the ability of a PTA, for example, to detect such a
signal. Sensitivity curves are not meant as a replacement for
a full analysis of real PTA data, but instead allow
researchers a coherent, flexible, and computationally effi-
cient framework to asses various PTA configurations.
It has long been known that the fit to a pulsar’s timing

model acts as a filter function [15,16], absorbing frequen-
cies in the pulsar timing data in a predictable manner. These
effects have been studied in the context of searches for
GWs [3,16,17]. Reference [18] goes one step further,
showing how one can mitigate for losses in sensitivity
using very-long-baseline interferometry to localize pulsars
without explicitly fitting for their positions using the
timing data.
Modern PTA data analysis strategies and algorithms

are designed with this complication of the timing model
fit in mind [19–25]. This formalism was used e.g., in [26]
to study PTA sensitivity curves for deterministic and
stochastic sources of GWs, calculating sensitivity curves
both analytically and numerically, using frequentist and
Bayesian methods. The approach in [26] is similar in spirit
to ours in that they start from the same likelihood function
as we do (Sec. II B), and they use properties of the expected
signal-to-noise ratios for deterministic and stochastic GW
signals to start to incorporate the effect of timing model fits.
Our analysis differs from theirs in that we explicitly identify
a component of the likelihood function that encodes both
the noise power spectral density in a given pulsar’s data
set and the effects of the timing model fit. This informa-
tion is combined with known sources of realistic noise in
pulsar timing data, including time-correlated (red) noise,
to construct sensitivity curves for individual pulsars.
(Reference [27] also discusses the effect of red noise on
the sensitivity of pulsar timing searches for GWs, using a
Fisher matrix calculation to estimate the errors.) For an
array of pulsars, we use the expected signal-to-noise ratio
of detection statistics for both deterministic and stochastic
GW signals to construct effective sensitivity curves for the
whole array.

A. Plan of paper

In Sec. II, we describe the basic formalism underlying
pulsar timing analyses—i.e., timing residuals, timing mod-
els, and the effect of fitting to a timing model. This leads us
to timing-model-marginalized residuals and their associ-
ated transmission functions, which play a key role in the
subsequent construction of detection sensitivity curves. In
Sec. III, we describe in detail the response of pulsar timing
measurements to both deterministic and stochastic GWs.
Then, in Sec. IV, we introduce detection statistics for both

types of signals. The expressions for their corresponding
expected signal-to-noise ratios allow us to read off an
effective strain-noise power spectral density for the PTA,
which has the interpretation of a detection sensitivity curve.
As an application of our analysis, we construct sensitivity
curves for the NANOGrav 11-yr pulsars using realistic
noise properties and timing model fits, and compare our
predicted sensitivities to published upper limits. We con-
clude in Sec. V. We also include the Appendix, in which we
cast the results of an early seminal paper [16] into the more
modern notation used in recent pulsar timing analyses.
The calculations provided in this work are packaged in

the Python package hasasia, available on the Python
Package Index (PyPI) and GitHub, with documentation and
tutorials available at ReadTheDocs.

II. PULSAR TIMING ANALYSES

Here we review the formalism underlying pulsar timing
analyses used in GW searches. Readers interested in more
details should see [16,19,22,23,28]. The new part of our
analysis is the identification of the inverse-noise-weighted
transmission function N −1ðfÞ given in (20), which incor-
porates both the noise characteristics of the pulsar and the
effect of fitting to a timing model; see Sec. II D.

A. Times of arrival and timing residuals

Let us start with a single pulsar. The measured pulse
times of arrival (TOAs) consist of three parts,1

t ¼ tdetðξÞ þ nþ h: ð1Þ

The first term gives the expected TOAs due to deterministic
processes, which depend on intrinsic properties of the
pulsar (e.g., its spin period, period derivative,…), extrinsic
properties of the pulsar (e.g., its sky location, proper
motion, distance from the solar system barycenter, …),
and processes affecting the pulse propagation (e.g., dis-
perion delays due to the interstellar medium, relativistic
corrections, …). The timing model parameters are denoted
by ξ. The second term is (stochastic) noise intrinsic to the
pulsar or to the measurement process itself. The third term
is a perturbation to the pulse arrival times induced by GWs,
which in general will have contributions from both deter-
ministic and stochastic sources, h ¼ hdet þ hstoch.
Timing residuals are then defined by subtracting the

expected TOAs (predicted by the timing model for an initial
estimate of the model parameters ξ0) from the measured
TOAs,

1To simplify the notation, we have not included indices to
label the particular pulsar (I ¼ 1; 2;…; Np), the individual
TOAs (i ¼ 1; 2;…; N), or the timing model parameters
(a ¼ 1; 2;…; Npar). If one wants to include those indices explic-
itly, one should write tIi ¼ tdetIi ðξaÞ þ nIi þ hIi.
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δt≡ t − tdetðξ0Þ ¼ Mδξþ nþ h; ð2Þ

where

M ≡
�∂tdet

∂ξ
�����

ξ¼ξ0

ð3Þ

is the design matrix. The above expression for δt is
obtained by Taylor expanding the timing model tdetðξÞ
around the initial parameter estimates ξ0, assuming that the
initial estimates are close enough to the true values that only
first-order terms in the parameter deviations δξ are needed
in the expansion. The design matrix M is a rectangular
matrix of dimension N × Npar, with componentsMia. Each
column of the design matrix encodes the linearized fit to
one parameter in the timing model.

B. Fitting to a timing model

From the form of (2), one sees that errors δξ in our
original estimate ξ0 of the timing model parameters lead to
deterministic features in the timing residuals. For example,
an error in the pulse period leads to timing residuals that
grow linearly with time, δt ∼ t, while an error in the period
derivative leads to residuals that grow quadratically with
time, δt ∼ t2. Thus, we can improve our estimates of the
timing model parameters by fitting for δξ in our linear
timing model for the residuals.
This can be done in two ways, both of which take the

likelihood function

pðδtjδξ; Cn; Ch; θÞ

∝ exp

�
−
1

2
ðδt −Mδξ − hðθÞÞTC−1ðδt −Mδξ − hðθÞÞ

�
ð4Þ

as the starting point. In the above expression,

C≡ Cn þ Ch ð5Þ

is the noise covariance matrix, which has contributions
from both detector noise Cn (i.e., noise intrinsic to the
pulsar and from the measurement process) and a potential
GW background Ch. The term hðθÞ are the timing residuals
induced by a deterministic GW source (e.g., the expected
waveform from an individual SMBH binary parametrized
by θ).
(i) The first approach to fitting to the timing model is

to maximize the likelihood function with respect to the
parameter deviations δξ. Since δξ appears linearly in the
expression for the timing residuals (quadratically in
the argument of the exponential), the maximization is
easy to do. One obtains the standard result,

δξML ¼ ðMTC−1MÞ−1MTC−1δt: ð6Þ

From these maximum-likelihood estimates, we can then
form postfit residuals,

δtpost ≡ δt −MδξML ¼ Rδt; ð7Þ

R≡ 1 −MðMTC−1MÞ−1MTC−1: ð8Þ

Note thatR is anN × N matrix that implements the fit to the
linear timingmodel; it depends in general on both the timing
model (viaM) and the detector noise (via C). One can show
that R is a projection operator (R2 ¼ R), and hence not
invertible.
(ii) The second approach to fitting to the timing model is

to marginalize the likelihood function over the parameter
deviations δξ, assuming flat priors for δξ. The result of this
marginalization is the timing-model-marginalized (TMM)
likelihood function [20,22],

pðδtjCn; Ch; θÞ

∝ exp

�
−
1

2
ðδt − hðθÞÞTGðGTCGÞ−1GTðδt − hðθÞÞ

�
;

ð9Þ

where G is an N × ðN − NparÞ matrix constructed from a
singular-value decomposition of the design matrix

M ¼ USVT; U ¼ ðF;GÞ: ð10Þ

Here U and VT are orthogonal matrices of dimensions
N × N and Npar × Npar, respectively, and S is an N × Npar

diagonal matrix with the singular values along the diagonal.
F is the N × Npar matrix containing the first Npar columns
of U and G is the N × ðN − NparÞ matrix consisting of the
other columns of U. Note that G depends only on the
timing model (via M) and not on the noise. In terms of
components,G≡Giα, where α ¼ 1; 2;…; N − Npar. Using
G, one can construct associated TMM residuals,

r≡GTδt; ð11Þ

which are orthogonal to the timing model. Since U is a
unitary matrix, it follows that ½GTG�αβ ¼ δαβ. For white
noise (i.e., C proportional to the identity matrix), we have
the identity R ¼ GGT.
Although both approaches for fitting to the timing model

have been used in the past (compare for instance [28] with
[23]), in this paper we will use the second approach, given
that it is the one used most often for current pulsar timing
array searches for GWs.

C. Transmission functions

The process of fitting to a timing model removes power
from the postfit or TMM residuals. This can be easily
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demonstrated by calculating the variance of the TMM
residuals r≡ GTδt. One finds

σ2r ¼
Z

∞

0

df T ðfÞPðfÞ; ð12Þ

where PðfÞ is the (one-sided) power spectral density of the
original (pre-fit) timing residuals δt, and

T ðfÞ≡ 1

N

X
k;l

ðGGTÞklei2πfðtk−tlÞ: ð13Þ

Here tk and tl denote the times of arrival of the kth and lth
pulses, with k; l ¼ 1; 2;…; N. The function T ðfÞ has the
interpretation of a transmission function, selectively remov-
ing power associated with the timing model fit. A plot of
T ðfÞ for a simple timing model consisting of quadratic
spin-down (i.e., fitting to the phase offset, spin period, and
period derivative of the pulsar), the pulsar’s sky position,
and the distance to the pulsar is shown in Fig. 2(a). Note
that fitting to the sky position absorbs power at and around
a frequency of 1=year, corresponding to the Earth’s yearly
orbital motion around the Sun. Fitting to the pulsar distance
absorbs power at a frequency of 2=yr, which corresponds to
a parallax measurement. The quadratic spin-down param-
eter fit acts as a high-pass filter, absorbing frequencies
substantially below 1=T, where T is the time span of the
data. The effect of the observing time on the shape of the
transmission function is shown in Fig. 2(b).
Pulsars in binaries famously have additional components

to the timing model that take into account the various
Doppler shifts due to binary motion and relativistic effects,
if the line-of-sight passes by the companion (Shapiro delay)
or if the binary is in a tight enough orbit to observe the loss
of power due to GWs [29]. These components of the timing
model have a minimal effect on sensitivity curves for GWs

as the frequencies in question are much higher than those of
the sources for which PTAs are searching. We do not
include these components when simulating pulsar design
matrices, but we will see the (mostly subtle) changes they
make when looking at the design matrices of real pul-
sar data.
Finally, we note that one can also calculate an analogous

transmission function associated with the postfit timing
residuals δtpost ≡ Rδt. One finds

σ2post ¼
Z

∞

0

df T RðfÞPðfÞ; ð14Þ

where

T RðfÞ≡ 1

N

X
k;l

Rklei2πfðtk−tlÞ: ð15Þ

This R-matrix transmission function was originally
described in [16], although from a slightly different
perspective. In the Appendix, we cast the approach of
[16] into the more modern R-matrix notation.

D. Inverse-noise-weighted transmission function

It turns out that there is another way of obtaining a
quantity that behaves like a transmission function by
working directly with the TMM likelihood (9). The argu-
ment of the exponential can be written as − 1

2
χ2, where

χ2 ≡ ðδt − hðθÞÞTGðGTCGÞ−1GTðδt − hðθÞÞ: ð16Þ

If we write this in the Fourier domain by substituting

hkðθÞ≡ hðtk; θÞ ¼
Z

fNyq

−fNyq
df h̃ðf; θÞei2πftk ; ð17Þ

(a) (b)

FIG. 2. Transmission functions corresponding to a fit to a simple timing model. Panel (a): The ∼f6 dependence of power absorption at
low frequencies is due to fitting the quadratic spin-down model for the pulsar; see [16]. Other absorption dips, due to fits for the sky
position and distance to the pulsar (parallax), can also be seen. The blue vertical line corresponds to a frequency of 1=T, where T is the
observation time. Panel (b): Dependence of the transmission function on the duration of the observation. The spikes become deeper and
narrower, and the knee frequency shifts to the left, as the observing time T increases.
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where tk ≡ kΔt and fNyq ≡ 1=ð2ΔtÞ, we find

χ2 ¼ 2T
Z

fNyq

−fNyq
df

Z
fNyq

−fNyq
df0 ðeδtðfÞ − h̃ðf; θÞÞ

×N −1ðf; f0Þðeδt�ðf0Þ − h̃�ðf0; θÞÞ; ð18Þ

where

N −1ðf; f0Þ≡ 1

2T

X
k;l

ei2πftk ½GðGTCGÞ−1GT �kle−i2πf0tl :

ð19Þ

The quantity N −1ðf; f0Þ is a function of two frequencies,
ðf; f0Þ, but it turns out to be diagonally dominated, with the
majority of its support on the diagonal f ¼ f0, as shown in
Fig. 3(a). (The broadening of the diagonal band at low
frequencies is an artifact of using log-scale axes for the
frequencies.) The diagonal component,

N −1ðfÞ≡ 1

2T

X
k;l

½GðGTCGÞ−1GT �klei2πfðtk−tlÞ; ð20Þ

and three off diagonal cross sections of N −1ðf; f0Þ are
shown in Fig. 4. (The fact that the off diagonal cross
sections are curved in panel (a) of Fig. 4 is again due to
using log-scale axes for the frequencies.) A few remarks are
in order:

(i) For this particular example, the diagonal component
N −1ðfÞ is identical in shape with the transmission function
T ðfÞ shown in Fig. 2(a). The amplitude of N −1ðfÞ differs
from T ðfÞ by a constant factor 1=PðfÞ ¼ 1=ð2σ2ΔtÞ,
corresponding to a white noise covariance matrix.2 Thus,
for white noise,

N −1ðfÞ ¼ T ðfÞ=PðfÞ: ð21Þ
This is illustrated in Fig. 5(a). If we also include red noise in
the noise covariance matrix C by taking

Cij ¼
Z

fNyq

0

df cos½2πfðti − tjÞ�PðfÞ; ð22Þ

PðfÞ ¼ 2σ2Δtþ A2f−γ; γ > 0; ð23Þ

then the relationship between N −1ðfÞ and T ðfÞ=PðfÞ is
only approximate,

N −1ðfÞ ≈ T ðfÞ=PðfÞ: ð24Þ

This is illustrated in Fig. 5(b).
(ii) Away from the dip at 1=yr, where there is suppres-

sion of power due to the timing model fit to the pulsar sky

FIG. 3. Two-dimensional plot of the real part of the function N −1ðf1; f2Þ for f1, f2 > 0 plotted on log-scale axes. Panel (a):
Re½N −1ðf1; f2Þ� for white noise (C is proportional to the identity matrix) and a fit to the simple quadratic spin-down timing model
described in the main text. The small amplitude in the bottom-left hand corner of the plot is due to the absorption of power by the timing
model fit at and below 1=T. There is also suppression at f1 ¼ f2 ¼ 1=yr and f1 ¼ f2 ¼ 2=yr. Panel (b): For comparison, a two-
dimensional plot of Re½N −1ðf1; f2Þ� for white noise, but without performing a timing model fit (so G is proportional to the identity
matrix).

2For our white noise simulations, we take PðfÞ ¼ 2σ2Δt, with
σ ¼ 100 ns and Δt ¼ yr=20. These numerical values are often
chosen for pulsar timing simulations.
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position, the off diagonal cross sections are proportional to
Dirichlet sinc functions,

DNððf − f0ÞΔtÞ≡ 1

N
sin½Nπðf − f0ÞΔt�
sin½πðf − f0ÞΔt� : ð25Þ

When multiplied by T, a Dirichlet sinc function can be
thought of as finite-time approximation to the Dirac delta
function—i.e., δðf − f0Þ ≃ TDNððf − fÞ0ΔtÞ. Dirichlet
sinc functions arise when taking the Fourier transform
of a discretely sampled rectangular window of duration
T ¼ NΔt; see e.g., [30]. This diagonally dominated behav-
ior is what you would expect forN −1ðf; f0Þ if one had only
Gaussian-stationary noise. This is the case if one does not
have to fit a timing model [Fig. 3(b)]. Then one can simply
replace G by the identity matrix, for which

N −1ðf; f0Þ ¼ 1

2T

X
k;l

ei2πftk ½C−1�kle−i2πf0tl

≃ P−1ðfÞδff0 : ð26Þ

The approximate equality in the above equation is a
consequence of the Karhunen-Loeve theorem, which states
that the discrete Fourier transform operation defined by the
unitary matrix Ujk ≡ 1

N e
−i2πjk=N approximately diagonal-

izes a stationary covariance matrix in the limit that the
observation time T ¼ NΔt is much larger than the corre-
lation time of the noise.
(iii) Since fitting to a timing model introduces non-

stationarities into the TMM residuals [22], one cannot
directly appeal to the Karhunen-Loeve theorem for the
general expression (19). One needs to explicitly check the

(a) (b)

(c) (d) (e)

FIG. 4. Diagonal and off diagonal cross sections of N −1ðf1; f2Þ. Panel (a): Re½N −1ðf1; f2Þ� from Fig. 3(a) with off diagonal cross
sections shown by white-dotted lines. Panel (b): Diagonal component N −1ðfÞ (the dotted vertical lines show the frequencies of the off
diagonal cross sections). Panels (c)–(e): Real part of the off-diagonal cross sections of N −1ðf1; f2Þ for f ¼ 1=ð3 yrÞ, f ¼ 1=yr, and
f ¼ 3=yr. Away from 1=yr, the off diagonal cross sections are proportional to Dirichlet sinc functions (the dotted vertical lines indicate
offsets of �1=T).
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validity of the diagonal approximation forN −1ðf; f0Þ as we
have done in Figs. 3 and 4. We have also numerically
computed the sum of N −1ðf; f0Þ over the full two-
dimensional array of frequencies ðf; f0Þ and compared
that to the sum of N −1ðf; f0Þ just along the diagonal
f ¼ f0. Even for the more challenging case of
a redþ white noise covariance matrix [Fig. 5(b] and a
fit to the quadratic spin-down model, the two summations
agree to within ≈6%.
(iv) Even though we transformed the likelihood function

into the Fourier domain to obtain expressions (19) and (20)
for N −1ðf; f0Þ and N −1ðfÞ, those expressions are calcu-
lable directly in terms of the times-of-arrival tk and tl.
This means that these expressions for the inverse-noise-
weighted transmission functions are valid even for irregu-
larly sampled data. Our use of a sampling period Δt is only
for convenience when discussing power spectra or when
calculating the Fourier transform of the GW response; it is
not a requirement for our sensitivity curve analysis.

III. TIMING RESIDUAL RESPONSE
TO GRAVITATIONAL WAVES

To proceed further in our calculation of pulsar timing
sensitivity curves, we need to describe in more detail the
timing residual response of a pulsar to an incident GW. We
will consider both deterministic and stochastic sources of
GWs. Interested readers should see [19–22] for more details.
Readers already familiar with this material can skip to
Sec. IV, where we show how the inverse-noise-weighted
transmission functionN −1ðfÞ enters into expressions for the
expected signal-to-noise ratio of standard statistics used to
search for both deterministic and stochastic GW signals.

A. Response to a single deterministic source

We will start by writing down the metric perturbations
habðt; x⃗Þ for a single deterministic source emitting plane

GWs in the direction k̂ (Fig. 6). To do this we introduce
two coordinate frames: one associated with the solar
system barycenter (SSB) and the other associated with
the propagation of the GW. We will assume that the source
has a symmetry axis (e.g., the direction of the orbital
angular momentum vector L⃗ for a binary system) and that
the symmetry axis makes an angle ιwith respect to the line
of sight k̂ from the GW source to the solar system
barycenter, and an angle ψ with respect to the vector l̂
when projected onto the plane perpendicular to k̂ (Fig. 7).

FIG. 6. Definition of the unit vectors k̂, l̂, m̂. The direction of
propagation of the GW, k̂, is opposite the direction to the source,
n̂. The unit vectors l̂, m̂ are in the plane perpendicular to k̂, and
point in directions of constant declination and right ascension,
respectively.

(a) (b)

FIG. 5. Plots of the inverse-noise-weighted transmission function N −1ðfÞ for the simple quadratic spin-down model described in the
main text, and for white noise (a) and redþ white noise (b). Panel (a): For white noise, the amplitude of N −1ðfÞ is set by the constant
value of 1=PðfÞ indicated by the horizontal dashed line. Panel (b): The curved dashed line is a plot of T ðfÞ=PðfÞ, which is an
approximation to N −1ðfÞ for PðfÞ consisting of redþ white noise.
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The vectors k̂, l̂, m̂ are defined in the solar system
barycenter frame by

k̂ ¼ ð− sin θ cosϕ;− sin θ sinϕ;− cos θÞ≡ −r̂;

l̂ ¼ ðsinϕ;− cosϕ; 0Þ≡ −ϕ̂;

m̂ ¼ ð− cos θ cosϕ;− cos θ sinϕ; sin θÞ≡ −θ̂; ð27Þ

where ðθ;ϕÞ are the standard polar and azimuthal angles
on the 2-sphere in equatorial coordinates, and the origin of
coordinates is at the solar system barycenter. The right
ascension α and declination δ of a source are given in
terms of θ and ϕ by α ¼ ϕ and δ ¼ π=2 − θ.
The angles ι and ψ are the inclination and polarization

angles of the source, respectively. They can be written in
terms of the unit vectors k̂, l̂, L̂≡ L⃗=jL⃗j, and û via

cos ι≡ k̂ · L̂; cosψ ≡ û · l̂; ð28Þ

where

û≡ L̂ × k̂

jL̂ × k̂j ; v̂≡ k̂ × û; ð29Þ

are two orthogonal unit vectors in the plane perpendicular
to k̂ (Fig. 7). Note that ι ¼ 0 or π corresponds to the orbital
plane being seen face-on or face-off; ι ¼ π=2 or 3π=2
corresponds to seing the orbital plane edge on. The unit
vectors û, v̂ are related to l̂, m̂ by a rotation around k̂
through the angle ψ as shown in Fig. 7(b).
From û and v̂, we can construct a preferred set of

polarization tensors,

ϵþabðk̂;ψÞ≡ ûaûb − v̂av̂b;

ϵ×abðk̂;ψÞ≡ ûav̂b þ v̂aûb; ð30Þ

where a, b in the above and following expressions3 refer to
spatial indices in transverse-traceless coordinates ðt; x⃗Þ≡
ðt; xaÞ, with a ¼ 1, 2, 3. Using these polarization tensors,
we can expand the metric perturbations,

habðt; x⃗Þ ¼ hþðt − k̂ · x⃗=c; ιÞϵþabðk̂;ψÞ
þ h×ðt − k̂ · x⃗=c; ιÞϵ×abðk̂;ψÞ ð31Þ

or, equivalently,

habðt; x⃗Þ ¼
Z

∞

−∞
df ½h̃þðf; ιÞϵþabðk̂;ψÞ þ h̃×ðf; ιÞϵ×abðk̂;ψÞ�

× ei2πfðt−k̂·x⃗=cÞ; ð32Þ

where h̃þ;×ðf; ιÞ are the Fourier transforms of hþ;×ðt; ιÞ.
The timing residual response of a pulsar to such a
deterministic GW is then [31],

hðt; k̂; ι;ψÞ ¼
Z

∞

−∞
df h̃ðf; k̂; ι;ψÞei2πft; ð33Þ

where

h̃ðf; k̂; ι;ψÞ ¼ Rþðf; k̂;ψÞh̃þðf; ιÞ þ R×ðf; k̂;ψÞh̃×ðf; ιÞ;
ð34Þ

with

Rþ;×ðf; k̂;ψÞ≡ 1

i2πf
1

2

p̂ap̂b

1þ p̂ · k̂
ϵþ;×
ab ðk̂;ψÞ

× ð1 − e−i2πfDð1þk̂·p̂Þ=cÞ: ð35Þ

Here p̂a is a unit vector pointing from the solar system
barycenter to the pulsar, and D is the distance to the pulsar.
The function Rþ;×ðf; k̂;ψÞ is the timing residual response
function of a pulsar to a monochromatic plane GW
propagating in direction k̂, with frequency f, polarization
þ;×, and polarization angle ψ . The two terms in the
response function are called the “Earth term” and “pulsar
term”, respectively, since they involve sampling the GW
phase at Earth and at the location of the pulsar, a distanceD
away from Earth. The factor of 1=ði2πfÞ comes from the
fact that we are working with timing residuals, as opposed
to Doppler shifts in the pulse frequency.
For the analyses that we will do in this paper, we will

typically ignore the pulsar-term contribution to the timing
residual response to GWs, as this term will not contribute to
the cross-power when correlating the signal associated with

(a) (b)

FIG. 7. Relation between the unit vectors l̂, m̂ and û, v̂.
Definition of (a) inclination angle ι and (b) polarization angle
ψ . Here L⃗ is the angular momentum vector and k̂ is the
propagation direction of the GW. The vectors l̂, m̂ and û, v̂
are orthogonal unit vectors in the plane perpendicular to k̂,
defined by (27) and (29), respectively.

3In footnote 1, we mentioned that a; b;…would also be used to
label the individual timing parameters ξa, witha ¼ 1; 2;…; Npar. It
should be clear from the context whether ana index refers to spatial
indices (as above) or timing model parameters.
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distinct pulsars. [The separation between pulsars (∼kpc) is
much greater the wavelengths of the GWs that we are
sensitive to, which are of order ≲10 lyr.] There is a
contribution, however, to the autocorrelated power for a
single pulsar, which comes from the exponential part of
jRþ;×ðf; k̂;ψÞj2,

j1 − e−i2πfDð1þk̂·p̂Þ=cj2

¼ 2½1 − cosð2πfDð1þ k̂ · p̂Þ=cÞ� ≃ 2; ð36Þ

where we have ignored the cosine term since it is a rapidly
oscillating function of the GW propagation direction k̂ and
hence does not contribute significantly when summed over
the sky. The value “2” corresponds to the sum of the Earth-
Earth and pulsar-pulsar autocorrelation terms.

1. Circular binaries

To proceed further, we need to specify the form of
hþ;×ðt; ιÞ or its Fourier transform h̃þ;×ðf; ιÞ. For example,
for a circular binary,

hþðt; ιÞ ¼ h0ðtÞ
�
1þ cos2ι

2

�
cos 2ΦðtÞ;

h×ðt; ιÞ ¼ h0ðtÞ cos ι sin 2ΦðtÞ; ð37Þ

whereΦðtÞ is the orbital phase and h0ðtÞ is a dimensionless
amplitude given by

h0ðtÞ ¼
4c
DL

�
GMc

c3

�
5=3

ωðtÞ2=3: ð38Þ

Here DL is the luminosity distance to the source, Mc ≡
ðm1m2Þ3=5=ðm1 þm2Þ1=5 is the chirp mass of the binary
system, and ωðtÞ is the instantaneous orbital angular fre-
quency, ΦðtÞ ¼ R

t dt0 ωðt0Þ. For an evolving binary system,

dω
dt

¼ 96

5

�
GMc

c3

�
5=3

ωðtÞ11=3; ð39Þ

which is a consequence of energy balance between the
radiated power in GWs and the orbital energy lost by the
binary system. The instantaneous GW frequency fðtÞ is
related to the orbital frequency ωðtÞ via ωðtÞ ¼ πfðtÞ.
It is fairly easy to show that for a binary system consisting

of SMBHs with component masses M ∼ 109Msolar in the
PTA sensitivity band (nHz), the frequency evolution of the
binary over a decade-long observation is roughly 4 orders of
magnitude smaller than the frequency bin width, 1=T, set by
the total observation time T ∼ 10 yr. Thus, for the purposes
of this paper, we will take our deterministic source to be a
monochromatic binary with fðτÞ ¼ f0 ¼ const.

With this simplification, Eqs. (37) and (38) become

hþðt; ι;ϕ0Þ ¼ h0

�
1þ cos2ι

2

�
cosð2πf0tþ ϕ0Þ;

h×ðt; ι;ϕ0Þ ¼ h0 cos ι sinð2πf0tþ ϕ0Þ; ð40Þ
where ϕ0 is the initial phase and h0 is the (constant) strain
amplitude,

h0 ¼
4c
DL

�
GMc

c3

�
5=3

ðπf0Þ2=3: ð41Þ

The Fourier transforms of hþ;×ðt; ι;ϕ0Þ are then

h̃þðf; ι;ϕ0Þ ¼ h0

�
1þ cos2ι

2

�
×
1

2
½eiϕ0δðf − f0Þ þ e−iϕ0δðf þ f0Þ�;

h̃×ðf; ι;ϕ0Þ ¼ h0 cos ι

×
1

2i
½eiϕ0δðf − f0Þ − e−iϕ0δðf þ f0Þ�: ð42Þ

But since the signals are observed for only a finite duration,
the Dirac delta functions δðf ∓ f0Þ should be replaced by
their finite-time equivalents δTðf ∓ f0Þ defined by

δTðfÞ≡
Z

T=2

−T=2
dt e−i2πft ¼ sinðπfTÞ

πf
≡ TsincðπfTÞ; ð43Þ

where T is the observation time for the pulsar. If one wants
to also include the discreteness Δt of the time-series data,
then the Dirac delta functions should be replaced by
Dirichlet sinc functions, TDN ½ðf ∓ f0ÞΔt� [see (25)]. It
turns out that the final (approximate) expressions that we
obtain, cf. (45) and (49), are independent of which finite-
time approximation we use.

2. Averaging over inclination, polarization,
and sky position

Using the above expressions for h̃þ;×ðf; ι;ϕ0Þ and (35)
for Rþ;×ðf; k̂;ψÞ, we can calculate the squared response
jh̃ðfÞj2 averaged over the inclination of the source (defined
by the inclination and polarization angles ι and ψ), initial
phase ϕ0, and sky direction n̂≡ −k̂. This is relevant for the
case where these quantities are not known a priori.
Defining

jh̃ðf; k̂Þj2 ≡ 1

2π

Z
2π

0

dϕ0

�
1

4π

Z
2π

0

dψ

×
Z

1

−1
dðcos ιÞjh̃ðf; k̂; ι;ψ ;ϕ0Þj2

�
; ð44Þ

it is fairly easy to show that
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2jh̃ðf; k̂Þj2
T

≃
4

5
Rðf; k̂ÞShðfÞ; ð45Þ

where

Rðf; k̂Þ≡ 1

2
ðjRþðf; k̂; 0Þj2 þ jR×ðf; k̂; 0Þj2Þ; ð46Þ

ShðfÞ≡ 1

2
h20½δðf − f0Þ þ δðf þ f0Þ�: ð47Þ

The factor of 4=5 in (45) comes from the average over
inclination angles ðι;ψÞ; Rðf; k̂Þ encodes the timing
residual response of a pulsar to a plane GW propagating
in direction k̂ averaged over the ðþ;×Þ polarizations and
the polarization angle ψ ; and ShðfÞ is the strain power-
spectral density of a monochromatic GW having frequency
f0. The approximate equality in (45) is there because we
made the approximation δ2Tðf ∓ f0Þ ≃ Tδðf ∓ f0Þ for the
product of two finite-time Dirac delta functions. This
allows us to write ShðfÞ in terms of ordinary Dirac delta
functions, which are formally singular at f ¼ �f0. But this
is not a problem, as ShðfÞ will only need to be evaluated
under an integral sign for the expected signal-to-noise ratio
calculations that we will perform in Sec. IVA. This
approximation gives answers that are good to within
≲10% for noise power spectral densities that do not vary
significantly over a frequency bandwidth Δf ∼ 1=T in the
neighborhood of �f0.
If we also average over sky location, defining

jh̃ðfÞj2 ≡ 1

4π

Z
d2Ωk̂

�
1

2π

Z
2π

0

dϕ0

×

�
1

4π

Z
2π

0

dψ
Z

1

−1
dðcos ιÞjh̃ðf; k̂; ι;ψ ;ϕ0Þj2

��
;

ð48Þ

we find

2jh̃ðfÞj2
T

≃
4

5
RðfÞShðfÞ; ð49Þ

where

RðfÞ≡ 1

8π

Z
d2Ωk̂ ðjRþðf; k̂; 0Þj2 þ jR×ðf; k̂; 0Þj2Þ

¼ 1

12π2f2
: ð50Þ

Note that the expression for RðfÞ is independent of the
direction p̂ to the pulsar. The above expressions will be
used later on when defining the detection sensitivity curves
in Sec. IV.

B. Response to a stochastic GW background

For a stochastic GW background, the metric perturba-
tions can be written as a superposition of plane GWs having
different frequencies f, polarizations fþ;×g, and propa-
gation directions k̂,

habðt; x⃗Þ ¼
Z

d2Ωk̂

Z
∞

−∞
df ½h̃þðf; k̂Þeþabðk̂Þ

þ h̃×ðf; k̂Þe×abðk̂Þ�ei2πfðt−k̂·x⃗=cÞ; ð51Þ

where eþ;×
ab ðk̂Þ≡ ϵþ;×

ab ðk̂; 0Þ. This is basically (32) but
allowing for contributions from different propagation
direction k̂. Since we will assume that the sources produc-
ing the GW background have no preferred polarization
direction or symmetry axis, we have set ψ ¼ 0 and ι ¼ 0 in
the expansion for habðt; x⃗Þ. The timing residual response of
a pulsar to the background is then

hðtÞ ¼
Z

∞

−∞
df h̃ðfÞei2πft; ð52Þ

where

h̃ðfÞ ¼
Z

d2Ωk̂ ½Rþðf; k̂;0Þh̃þðf; k̂ÞþR×ðf; k̂;0Þh̃×ðf; k̂Þ�

ð53Þ

with Rþ;×ðf; k̂; 0Þ given by (35). As discussed there, we
will ignore the contribution of the pulsar term to the
response function, except when calculating the autocorre-
lated power, which will have contributions from both the
Earth-Earth and pulsar-pulsar autocorrelation terms.
The Fourier components h̃þ;×ðf; k̂Þ that enter the plane

wave expansion of the metric perturbations are random
fields. Their quadratic expectation values completely define
the statistical properties of the background, under the
assumption that it is Gaussian-distributed. For simplicity,
we will assume that the GW background is stationary,
unpolarized, and isotropic,4 for which hh̃Pðf; k̂Þi ¼ 0 and

hh̃Pðf; k̂Þh̃�P0 ðf0; k̂0Þ ¼ 1

16π
ShðfÞδðf − f0ÞδPP0δ2ðk̂; k̂0Þ;

ð54Þ

where P ¼ fþ;×g. Here ShðfÞ is the (one-sided) strain
power spectral density of the background (units of
strain2=Hz), which is related to the dimensionless
energy-density spectrum ΩgwðfÞ via

4See e.g., [30] for a review of analyses that drop these
assumptions.
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ShðfÞ ¼
3H2

0

2π2
ΩgwðfÞ

f3
: ð55Þ

It is also common to describe the background in terms of its
dimensionless characteristic strain defined by

hcðfÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fShðfÞ

p
¼ Agwðf=fyrÞα; ð56Þ

where the second equality assumes a power-law form for
the background. Note that for a background produced by
the cosmological population of SMBH binaries, α ¼ −2=3.

1. GW contribution to the noise covariance matrix

Using the above expressions for the timing residual
response of a pulsar to a GW background, we can calculate
the GW contribution to the noise covariance matrix when
cross-correlating timing residuals associated with two
Earth-pulsar baselines I and J. Denoting the GW contri-
butions to the two sets of timing residuals as hIðtÞ and
hJðtÞ, respectively, one can show that the covariance matrix
is block-diagonal with components,

Ch;IJ ≡ hhIhTJ i − hhIihhTJ i ¼ χIJCh; ð57Þ

where

χIJ ≡ 1

2
þ 3

2

�
1 − p̂I · p̂J

2

��
ln

�
1 − p̂I · p̂J

2

�
−
1

6

�
þ 1

2
δIJ;

ð58Þ

and

Ch;ij ¼
Z

fNyq

0

df cos½2πfðti − tiÞ�PhðfÞ; ð59Þ

PhðfÞ ¼ RðfÞShðfÞ ¼
A2
gw

12π2

�
f
fyr

�
2α

f−3: ð60Þ

The full noise covariance matrix, which includes contri-
butions intrinsic to the pulsar and to the measurement
process, is also block-diagonal with components,

CIJ ¼ δIJCn;I þ Ch;IJ: ð61Þ

Here Cn;I is given by (59), but with the pulsar noise power
spectral density PnIðfÞ replacing PhðfÞ. This last equation
assumes that the noise contributions associated with differ-
ent pulsars are not correlated with one another.
The quantity χIJ ≡ χðζIJÞ defined in (58) is the value of

the Hellings and Downs [32] curve χðζÞ for a pair of pulsars
separated by angle ζIJ ¼ cos−1ðp̂I · p̂JÞ (see Fig. 8). It
arises when cross-correlating the GW-induced timing
residuals for an unpolarized, isotropic GW background.

Note that χIJ has been normalized such that χII ¼ 1 (for a
single pulsar).

IV. SENSITIVITY CURVES

Ultimately, a detection sensitivity curve should tell us
how likely it is to detect a particular type of GW signal. So
it should depend not only on the properties of the noise in
the detector, but also on the type of signal that one is
searching for and the method that one uses to search for it.
So here we extend the formalism of the previous two
sections to define sensitivity curves for searches for a
deterministic GW signal from a circular binary and an
unpolarized, isotropic stochastic GW background. We
begin by writing down expressions for the optimal detec-
tion statistics for these two different sources and their
corresponding expected signal-to-noise ratios (SNRs)
familiar from the literature in order to demonstrate how
the inverse-noise-weighted transmission function, N −1ðfÞ,
appears in these expressions. We will see that from these
expected SNRs, we can read off an effective strain-noise
power spectral density, which has the interpretation of a
detection sensitivity curve.

A. Matched filtering for a deterministic GW signal

For a deterministic GW signal, we can use the method of
matched filtering to construct an optimal detection statistic.
This method has been used extensively in the PTA literature,
[28,33–35] and is also the basis for the approximate
deterministic sensitivity curves in [26]. Letting QI denote
the filter function for pulsar I (where I ¼ 1; 2;…; Np), we
define

Ŝ ≡X
I

QT
I rI ¼

X
I

X
α

QIαrIα; ð62Þ

where rI ≡ GT
I δtI are the TMM residuals for pulsar I. The

filter function is determined by maximizing the expected
signal-to-noise ratio, ρ≡ μ=σ, of Ŝ. The expectationvalue of
Ŝ is given by

0 20 40 60 80 100 120 140 160 180
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Angle ζ between Earth−pulsar baselines (degrees)

FIG. 8. Hellings and Downs curve χðζÞ. Plotted is the expected
correlation for the timing residuals induced in a pair of distinct
Earth-pulsar baselines by an unpolarized, isotropic GW back-
ground.
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μ≡ hŜi ¼
X
I

QT
I G

T
I hIðθÞ; ð63Þ

and its variance is given by

σ2 ≡ hŜ2i − hŜi2 ¼
X
I

QT
I Σn;IQI; ð64Þ

whereΣn;I ≡GT
I Cn;IGI is the noise covariance matrix for rI.

This result for the variance assumes that the only GW
contribution to the timing residuals is from a deterministic
GW source, and not from a stochastic GW background. The
presence of a stochastic backgroundwould contribute to both
the diagonal and off diagonal block matrices [see (61)]. In
what follows, we will assume that the off diagonal terms are
small compared to the diagonal (autocorrelated) terms. But
wewill replaceΣn;I byΣI≡GT

I CIGI,whereCI ≡ Cn;I þ Ch,
thereby allowing a stochastic background to contribute to the
autocorrelated noise (sometimes called GW self-noise).
Using the above results for the mean and variance of Ŝ,

the square of the expected signal-to-noise ratio is

ρ2 ≡ μ2

σ2
¼

P
I;JQ

T
I G

T
I hIðθÞQT

JG
T
J hJðθÞP

KQ
T
KΣKQK

; ð65Þ

with the optimal filter given by

δρ2

δQI
¼ 0 ⇒ QI ¼ Σ−1

I GT
I hIðθÞ: ð66Þ

Note thatQI is a noise-weighted version of the TMM signal
waveform, as expected for a matched-filter statistic. Using
this expression, the expected signal-to-noise ratio becomes

ρ2ðθÞ ¼
X
I

hIðθÞTGIΣ−1
I GT

I hIðθÞ

¼
X
I

hIðθÞTGIðGT
I CIGIÞ−1GT

I hIðθÞ: ð67Þ

By evaluating this last expression in the frequency domain,
using (19) for N −1

I ðf; f0Þ and restricting to the diagonal
component N −1ðfÞ as discussed in Sec. II D,

ρ2ðθÞ ≃ 4

Z
fNyq

0

df
X
I

jh̃Iðf; θÞj2N −1
I ðfÞ: ð68Þ

Recall that θ denote the set of GW parameters. This
expression is now written in a form where the formalism
of Sec. II D is easily used. For the case of a circular binary
discussed in Sec. III A 1, θ ¼ fk̂; ι;ψ ;ϕ0g.

1. Detection sensitivity curve for sky
and inclination-averaged sources

To proceed further, we first consider the case of GWs
from a single binary system averaged over the initial phase,

inclination of the source, as well as its sky location. Using
(49) for jh̃IðfÞj2, we have

hρ2iinc;sky ≃ 4

Z
fNyq

0

df
X
I

TI

2

4

5
RðfÞShðfÞN −1

I ðfÞ

¼ 2Tobs

Z
fNyq

0

df
ShðfÞ
SeffðfÞ

; ð69Þ

where

SeffðfÞ≡
�
4

5

X
I

TI

Tobs

1

SIðfÞ
�

−1
; ð70Þ

SIðfÞ≡ 1

N −1
I ðfÞRðfÞ ; ð71Þ

and Tobs is a timescale characteristic of the PTA, here
chosen as the time span of the full data set. Here, SIðfÞ is
the strain-noise power spectral density for pulsar I, and
SeffðfÞ is an effective strain-noise power spectral density for
an array of pulsars. Given how SeffðfÞ appears in the
expression for the expected signal-to-noise ratio, we will
use it, or its dimensionless characteristic strain,

hcðfÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSeffðfÞ

p
; ð72Þ

as a sensitivity curve for detecting a deterministic GW
source averaged over its initial phase, inclination, and sky
location. A plot of SeffðfÞ for the array of pulsars in the
NANOGrav 11-year data [36] is shown in Fig. 9. Our
calculation uses the noise parameters of the pulsars to build
the covariance matrix used in calculating N −1ðfÞ, as
discussed in Sec. IV B. In addition, the sky positions,
TOAs, and TOA errors are used. Note that for a mono-
chromatic source, ShðfÞ has a very simple form given by
(47), which implies
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FIG. 9. Sensitivity curve for a single deterministic GW source
averaged over its initial phase, inclination, and sky location. This
plot was constructed using the NANOGrav 11-year data.
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ρ̄≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hρ2iinc;sky

q
≃ h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tobs

Seffðf0Þ

s
: ð73Þ

2. SNR and characteristic amplitude sky maps
for inclination-averaged sources

If we average over initial phase and source inclination,
but not over sky location, cf. (45) for jh̃Iðf; k̂Þj2, we
obtain

hρ2ðk̂Þiinc ≃ 4

Z
fNyq

0

df
X
I

TI

2

4

5
RIðf; k̂ÞShðfÞN −1

I ðfÞ

¼ 2Tobs

Z
fNyq

0

df
ShðfÞ

Seffðf; k̂Þ
; ð74Þ

where

Seffðf; k̂Þ≡
�
4

5

X
I

TI

Tobs

1

SIðf; k̂Þ

�
−1
; ð75Þ

SIðf; k̂Þ≡ 1

N −1
I ðfÞRIðf; k̂Þ

; ð76Þ

with RIðf; k̂Þ given by (46). These expressions are
analogous to (70), but with added dependence on the
propagation direction k̂ of the GW. It turns out that we
can factor out the k̂ dependence on the right-hand side of
the above expression for Seffðf; k̂Þ if we ignore the
frequency-dependent part of the pulsar-term contribution
to jRP

I ðf; k̂; 0Þj2, as discussed in the context of (36).
Making this approximation,

Seffðf; k̂Þ ≃
�
12

5

X
I

TI

Tobs

1

SIðfÞ

× ½ðFþ
I ðk̂ÞÞ2 þ ðF×

I ðk̂ÞÞ2�
�

−1
; ð77Þ

where Fþ;×
I ðk̂Þ are defined by

Fþ;×
I ðk̂Þ≡ 1

2

p̂a
I p̂

b
I

1þ p̂I · k̂
eþ;×
ab ðk̂Þ: ð78Þ

As before, it is easy to do the integral over frequency for
a monochromatic source, for which ShðfÞ is given by
(47). The result is

ρðn̂Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hρ2ðk̂Þiinc

q
≃ h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tobs

Seffðf0; k̂Þ

s
; ð79Þ

where the direction n̂ of the source on the sky is opposite
the direction of GW propagation, n̂ ¼ −k̂. A plot of ρðn̂Þ

for a pair of 109 solar-mass BHs at a luminosity distance
of 100 Mpc, emitting monochromatic GWs at the
frequency f0 ¼ 8 nHz is shown in Fig. 10.
Finally, it is a simple matter to recast the form of the sky

map so that we solve (79) for the strain amplitude h0 of a
monochromatic binary, cf. (41), that would produce a
particular value of the signal-to-noise ratio ρ,

h0ðn̂Þ ¼ ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Seffðf0; k̂Þ

Tobs

s
: ð80Þ

A sky map of h0ðn̂Þ is shown in panel (a) of Fig. 11 for
ρ ¼ 2 using the NANOGrav 11-year data. For comparison,
panel (b) shows the actual 95% confidence-level upper
limit map taken from the NANOGrav 11-yr single-source
paper [37]. Our sensitivity calculation gives h0 ¼ 1.82 ×
10−15 at a right ascension and declination of (17.6 h, 0°) for
the most sensitive sky location, while the full NANOGrav
Bayesian analysis gives h0 ¼ 1.82 × 10−15 at a right
ascension and declination of (17.6 h, 9.6°). This agreement
is impressive in the sense that the full Bayesian analysis
done by the NANOGrav collaboration took thousands of
cpu-hours to complete, whereas the calculation using our
formalism takes less than ten minutes on a laptop. It is
unsurprising in the sense that, since PTAs have not made a
detection of GWs, the statistics of PTAs are still dominated
by the pulsar noise, observation cadence and PTA con-
figuration, all characteristics used in the sensitivity curve
calculation.

B. Single-pulsar characteristic strain noise curves

For an individual pulsar, we will use the characteristic
strain,

FIG. 10. Sky map of the expected matched-filter signal-to-noise
ratio ρðn̂Þ for a monochromatic circular binary (GW frequency
f0 ¼ 8 nHz) consisting of a pair of 109 solar-mass BHs at a
luminosity distance of 100 Mpc. The stars show the locations of
the NANOGrav pulsars. This plot was constructed using the
NANOGrav 11-year data.
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hc;IðfÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSIðfÞ

p
; SIðfÞ≡ 1

N −1
I ðfÞRðfÞ ; ð81Þ

to characterize its polarization and sky-averaged sensitivity;
see (71). Plots of single-pulsar characteristic strain-noise
sensitivity curves for the simple quadratic spin-down model
described in Sec. II A and for both white and redþ white
noise are shown in Fig. 12. More realistic single-pulsar
strain-noise sensitivity curves can be constructed using a
subset of the NANOGrav 11-year pulsars (Fig. 13) [36].
These pulsars have noise contributions specified by the
parameters EQUAD, ECORR, and EFAC [36,38–40],
which are denoted by Q, Jij, and F in the following
expression for the noise covariance matrix:

Cn;ij ¼ F2½σ2i δij� þQ2δij þ Jij: ð82Þ

Here σ2i are individual TOA errors, which are associated
with the finite-signal-to-noise ratio determination of the
pulse arrival times (obtained by correlating the observed
pulses with a pulse template). EQUAD are white noise
contributions to the covariance matrix that add in quad-
rature with the TOA errors. EFAC is an overall scale factor
that can be used to adjust the overall uncertainty if
necessary. ECORR are noise contributions that are corre-
lated within an observing epoch, but not from epoch to
epoch. Hence the ECORR contributions to the covariance
matrix are block diagonal. Red noise, modeled as a power
law, was added for those pulsars that show significant
detections in the NANOGrav 11-yr data set [36]. In Fig. 13,
B1937þ 21, J1713þ 0747 and J1909-3744 have injec-
tions of red noise. This can be distinguished by the “flatter”
appearance of the sensitivity curves around the minimum,
as compared to the other pulsars. For a detailed list of noise
parameters, and to see which pulsars have significant
detections of red noise, consult Table 2 in [38].
The NANOGrav 11-yr pulsars also have more compli-

cated timing model fits than the simple quadratic spin-
down model described in Sec. II A. In Fig. 13, one can see
that pulsar J1024-0719 is fit to a cubic spin-down model,
leading to a steeper frequency-dependence (∼f−5=2) at low
frequencies. One also sees that J1713þ 0747 and J1853þ
1303 are in binary systems: there are additional spikes at
the binary orbital frequency and twice the binary orbital
frequency for J1853þ 1303. Finally, these pulsars have
timing models that also include fits to a piecewise-constant,
time-dependent dispersion measure fluctuation (DMX),
which is associated with perturbations of the dispersion
of the radio pulses as they propagate through the interstellar
medium from the pulsar to a radio receiver on Earth.

(a)

(b)

FIG. 11. Panel (a): Sensitivity sky map for the strain amplitude
of a monochromatic continuous-wave source, calculated using
the NANOGrav 11-yr data [38]. The stars show the locations
of the NANOGrav pulsars and the red dot shows the most
sensitive sky location. For this plot, we have taken f0 ¼ 8 nHz
and ρ ¼ 2. Panel (b): For comparison, a 95% confidence-level
upper limit sky map taken from the NANOGrav 11-yr single-
source paper [37].

FIG. 12. Single-pulsar characteristic strain-noise sensitivity
curves for the simple quadratic spin-down timing model fit
described in the main text and for white noise (solid curve)
and redþ white noise (dashed curve). The vertical blue line
corresponds to a frequency of 1=T.

HAZBOUN, ROMANO, and SMITH PHYS. REV. D 100, 104028 (2019)

104028-14



[The lower-(radio)frequency components of a pulse are
delayed more than the higher-frequency components.]
Fitting to DMX in the timing model leads to broadband
absorption of power relative to a timing model that does not
fit for DMX. A piecewise-constant fit to the dispersion
measure variations allows processes with all timescales

represented in the data to be removed: from the large-
timescale variations, due to the slow movement of the
interstellar medium, down to the short-timescale changes
from the scintillation and scattering of the radio pulses.
Figure 14 shows plots of the transmission function for
NANOGrav pulsar J1944þ 0907, with and without DMX
included in the timing model. Other models exist for
dispersion measure variations and are treated exhaustively
in [42]. The transmission function’s dependence on these
models depends greatly on the type of model being used.
Alternatively, one can trade out the effect of dispersion
measure variations on the transmission function by making
the dispersion measure variation model part of the noise
analysis, rather than part of the marginalized timing model,
effectively replacing the power loss with uncertainty in the
dispersion measure model parameters; see, e.g., [27,43].

C. Optimal cross-correlation statistic
for a stochastic GW background

The derivation of the optimal cross-correlation statistic
for a stochastic GW background is similar to that presented
above for a single deterministic GW, expect that we work
with data from pairs of pulsars. Starting with a single
distinct pair, labeled by I and J, we define

ŜIJ ≡ rTI QrJ; ð83Þ

FIG. 13. Single-pulsar characteristic strain-noise sensitivity curves for a subset of NANOGrav 11-yr pulsars. The ∼f−5=2 behavior for
PSR J1024-0719 is evidence of a fit to a cubic spin-down model for the pulsar spin frequency. The cubic term in the fit is needed due to
an acceleration of the pulsar, evident in the TOAs from its unusually long binary period [36,41]. The additional spikes seen for
J1713þ 0747 and J1853þ 1303 show that the pulsar is in a binary system; the second binary spike for J1853þ 1303 is the second
harmonic of the binary orbital frequency.

FIG. 14. Plots of transmission functions showing the effect of
including time-dependent dispersion measure (DMX) into the
timing model fit. Including DMX in the timing model leads to
broadband absorption of power (solid blue curve) relative to that
for a timing model without DMX.
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where rI and rJ are the TMM residuals for pulsars I and J
(assuming that we have already fit for all deterministic
GW sources), and Q is an mI ×mJ matrix, where
mI ≡ NI − Npar;I , etc. As before, we determine the filter

function Q by maximizing the signal-to-noise ratio of ŜIJ.
Similar derivations appear in the literature [23,28,44–46].
The final result for the optimal filter is

Q ∝ Σ−1
I ΣIJΣ−1

J ; ð84Þ

where

ΣI ≡GT
I ðCn;I þ ChÞGI;

ΣIJ ≡ χIJGT
I ChGJ: ð85Þ

The expected squared signal-to-noise ratio for this optimal
choice of Q is then

ρ2IJ ¼ Tr½ΣJIΣ−1
I ΣIJΣ−1

J �: ð86Þ

The above calculation assumes that we are in the weak-
signal limit where the cross-correlation terms are assumed
to be negligible compared to autocorrelation terms (i.e., we
assume that the GW signal power is much less than that for
the intrinsic pulsar and measurement noise).
We can then combine the signal-to-noise ratios for each

distinct pair in quadrature since, in the weak-signal limit,
there is negligible correlation between these estimators,

ρ2 ≃
X
I

X
J>I

ρ2IJ: ð87Þ

As we saw for deterministic GWs, it is useful to write the
above expression for the expected squared signal-to-noise
ratio in the frequency domain. Proceeding as we did there,
we find

ρ2 ≃
X
I

X
J>I

2TIJχ
2
IJ

Z
fNyq

0

df S2hðfÞR2ðfÞN −1
I ðfÞN −1

J ðfÞ;

ð88Þ

where PhðfÞ ¼ RðfÞShðfÞ, and where N −1
I ðfÞ is defined

by (20). This suggests defining the following effective
strain-noise power spectral density for the whole PTA:

SeffðfÞ ¼
�X

I

X
J>I

TIJ

Tobs

χ2IJ
SIðfÞSJðfÞ

�−1=2
; ð89Þ

which includes contributions from the Hellings and Downs
factors χIJ and the individual pulsar strain-noise power
spectral densities SIðfÞ≡ 1=ðN −1

I ðfÞRðfÞÞ. Note that
SeffðfÞ has dimensions of strain2=Hz, and that

ρ2 ≃ 2Tobs

Z
fNyq

0

df
S2hðfÞ
S2effðfÞ

ð90Þ

in terms of SeffðfÞ.
A plot comparing dimensionless characteristic strain

curves hcðfÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSeffðfÞ

p
for stochastic GW backgrounds

for the NANOGrav 11-yr pulsars is given in Fig. 15. The
three curves show the effect of including a contribution
from the GWB to the autopower spectra of all the pulsars
(blue versus dashed-orange curves) and the false improve-
ment in sensitivity that arises if one fails to include the red-
noise component of the individual pulsar noise covariance
matrices (green versus dashed-orange curves). Typical PTA
sensitivity curves that one sees in the literature incorrectly
ignore this red noise component, [13,26].
Since calculating sensitivity curves of this type is much

more computationally efficient than doing real data analy-
ses or analyzing simulated data with injected signals,
another use of this formalism is making predictions about
the sensitivity of PTAs into the future. Figure 16 shows a
simulated PTA at various stages of maturity. All of the
pulsars have a precision of 1 μs and red noise correspond-
ing to a GWB of AGWB ¼ 6 × 10−16. Half of the pulsars in
each curve additionally have power-law red noise with
ARN ¼ 10−13 and γ ¼ 2. The array starts with 35 pulsars
that range in time span from 3 yrs to 10 yrs. The next
sensitivity curve shows the sensitivity 10 yrs later, with the
addition of 15 pulsars, with a minimum of 3 yr baseline.
The most sensitive curve shows the PTA another 10 yrs
later with 75 pulsars, now spanning from 3 yrs to 30 yrs.

FIG. 15. Comparison of stochastic sensitivity curves (effective
characteristic strain noise) for the NANOGrav 11-yr PTA. All
the curves include realistic pulsar noise characteristics and
individual timing model fits. The blue curve includes a contri-
bution to the autopower spectra, produced by a GWB at the level
of Agwb ¼ 1 × 10−16. The dashed-orange curve shows the sensi-
tivity without including the GWB, and the green curve shows
what happens if you also ignore the red noise contributions to the
noise covariance matrices.
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1. Comparing stochastic and deterministic
sensitivity curves

Although one uses different statistics to search for
deterministic and stochastic GW signals, it is interesting
to compare the sensitivity curves for these two different
cases. Figure 17 shows plots of the deterministic and
stochastic sensitivity curves for the NANOGrav 11-yr
pulsars (taken from Fig. 9 and Fig. 15, dashed-orange
curve). Note that the sensitivity curve for a single deter-
ministic source is lower than that for a stochastic back-
ground, since the Hellings and Downs factors χIJ in (89)
reduce the effective number of pulsar pairs that contribute
to the stochastic analysis. To demonstrate this explicitly,
compare Eqs. (70) and (89) for SeffðfÞ assuming that all the
pulsars have the same noise characteristics and timing
model fits [i.e., SIðfÞ≡ SðfÞ for all I], and that all the
pulsars are observed for the full observation time
(i.e., TI ≡ TIJ ≡ Tobs). Then,

Sdeteff ðfÞ ¼
5

4Np
SðfÞ; ð91Þ

Sstocheff ðfÞ ¼
�X

I

X
J>I

χ2IJ

�
−1=2

SðfÞ; ð92Þ

where Np is the number of pulsars. Since the maximum
value of χIJ for any pair of pulsars is 1=2, we have

X
I

X
J>I

χ2IJ ≤
NpðNp − 1Þ

2

1

4
; ð93Þ

which implies �X
I

X
J>I

χ2IJ

�
−1=2

>
2

ffiffiffi
2

p

Np
: ð94Þ

Thus,

Sstocheff ðfÞ > 2
ffiffiffi
2

p

Np
SðfÞ ⇒ Sstocheff ðfÞ > Sdeteff ðfÞ: ð95Þ

Although we have compared the full sensitivity curves
SeffðfÞ for deterministic and stochastic GW sources, we
note that the corresponding signal-to-noise ratio for a
monochromatic deterministic source uses only the value
of the sensitivity curve at a single frequency f ¼ f0
[see (73)]; while that for a stochastic source involves an
integral of SeffðfÞ over all f [see (90) and the discussion in
Sec. IV C 3].

2. Pairwise stochastic sensitivity curves

As a by-product of the stochastic sensitivity curve
analysis, we obtain pairwise stochastic sensitivity curves,

hc;IJ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSIJðfÞ

p
; SIJðfÞ≡

ffiffiffiffiffiffiffiffi
Tobs

TIJ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SIðfÞSJðfÞ

p
jχIJj

;

ð96Þ

by simply restricting ourselves to a single term in the sum
(89). Plots of such curves are useful as a diagnostic for
comparing the contribution of different pulsar pairs to the
stochastic optimal statistic signal-to-noise ratio. Figure 18
shows pairwise sensitivity curves for a subset of the
NANOGrav 11-yr pulsars, comparing pairwise correlations
of some of the most and least sensitive NANOGrav pulsars.

3. Power-law integrated sensitivity curves

For stochastic backgrounds that have a power-law
spectrum, cf. (56), it is possible to construct a sensitivity
curve that takes into account the improvement in sensitivity
that comes from integrating over frequency [13]. Given a
range of power-law indices, one determines the amplitude

FIG. 16. A simulated pulsar timing array with sensitivity curves
shown at 10, 20 and 30 years into its observing campaign. All
pulsars have 1 μs precision and a GWB of AGWB ¼ 6 × 10−16.
Half of the pulsars, for each time span, additionally have power-
law red noise with ARN ¼ 10−13 and γ ¼ 2.

FIG. 17. Comparison of the sensitivity curves for the NANO-
Grav 11-yr pulsars to a single deterministic GW signal and a
stochastic GW background; see also Figs. 9 and 15. The two
curves differ by a factor of ∼2.6.
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of each power-law background that yields a prescribed value
of the optimal statistic signal-to-noise ratio ρ (e.g., ρ ¼ 1).
The envelope of these power-law backgrounds defines
the power-law-integrated sensitivity curve for the PTA.
Figure 19 shows the ρ ¼ 1 power-law integrated sensitivity
curve for the NANOGrav 11-yr data set using the dashed-
orange characteristic strain-noise curve from Fig. 15. For the
expected GWB spectral index of α ¼ −2=3 we calculate
an amplitude of AGWB ¼ 1.55 × 10−15 needed to obtain
SNR ¼ 1. Compare this to the full NANOGrav 11-yr
Bayesian analysis 95% credible upper limit value ofAGWB ¼
1.67 × 10−15 and the frequentist optimal statistic results of
AGWB ¼ 9.8� 4.7 × 10−16 and SNR ¼ 0.8� 0.7. Our
result is within 10% of the Bayesian result and reasonably
close to the optimal statistic results, given that both the SNR
and amplitude have error bars.

V. DISCUSSION

We have presented a method for constructing realistic
detection sensitivity curves for pulsar timing arrays, valid
for both deterministic and stochastic GW signals. We can
include different noise characteristics and the effect of
fitting to a timing model via an inverse-noise-weighted
transmission function N −1

I ðfÞ ≈ T IðfÞ=PðfÞ. Single-
pulsar sensitivity curves are then calculated from the strain-
noise power spectral density SIðfÞ≡ 1=ðN −1

I ðfÞRðfÞÞ,
where RðfÞ is the polarization and sky-averaged timing
residual response of a pulsar to a passing GW. Detection
sensitivity curves for multiple pulsars (i.e., a PTA) are
similarly constructed from an effective strain-noise power
spectral density SeffðfÞ, which is a combination of single-
pulsar strain-noise power spectral densities SIðfÞ, cf. (70),
(75), (89), appropriate for the GW source that one is
interested in detecting.
The realistic sensitivity curves that we have calculated

can be used to assess the detectability of different GW
signals by existing or planned PTAs. This is in contrast to
the usual approach in the literature where PTA sensitivity
curves are computed using a highly simplified model. The
computational cost of producing these sensitivity curves is
minimal; they can be calculated much faster than analyzing
simulated data containing injected signals. By properly
incorporating realistic noise properties and the effect of
timing model fits into the sensitivity curves, we can
produce detectability estimates that agree quite well with
the more computationally involved calculations.
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pairwise sensitivity curve is worse (that is, higher) than the other
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most sensitive pulsar in the data set; while that for J1713þ 0747
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χIJ ¼ 0.3304. Pulsars J1713þ 0747 and J1909-3744 are also
both individually very sensitive, but since their angular correla-
tion is only χIJ ¼ 0.0058, their pairwise sensitivity curve is an
order of magnitude worse than that for J1713þ 0747 and
J1744-1134.

FIG. 19. Power-law-integrated sensitivity curve for the NANO-
Grav 11-yr data set. The blue line is the stochastic sensitivity
curve for the NANOGrav 11-yr data set. Each of the straight grey
lines represents a power-law GWB detectable with an optimal-
statistic signal-to-noise ratio ρ ¼ 1 for the plotted spectral index.
The envelope of these lines (i.e., the maximum value of all the
power-law backgrounds at a given frequency) defines the power-
law-integrated sensitivity curve for the PTA. The orange line is
the power-law with spectral index of α ¼ −2=3, corresponding to
a GWB background, at the amplitude needed for a detection with
SNR ¼ 1; in this case, AGWB ¼ 1.55 × 10−15.

HAZBOUN, ROMANO, and SMITH PHYS. REV. D 100, 104028 (2019)

104028-18



Fund at Swarthmore College. Finally, we thank Robert
Caldwell, Rutger van Haasteren, and Xavi Siemens for
useful discussions and Justin Ellis for sharing some
preliminary code.

APPENDIX: CASTING THE BLANDFORD ET AL.
ANALYSIS [16] IN MORE MODERN NOTATION

When using pulsar timing data to search for GWs,
one needs to take into account the effects of fitting to
a deterministic timing model when doing any type of
additional signal analysis. Following [16], we define the
residuals RðtÞ as the difference between the observed
arrival times of the pulses and the expected arrival times
as determined by our best guesses to the parameters. These
residuals are fit to an expression linear in the corrections to
the unknown parameters, αa.

5 (Noise terms are added later
in their analysis.) We start in the notation of [16] and then
translate to expressions in terms of modern PTA GW
analyses,

RðtÞ ¼
XNpar

a¼1

αaψaðtÞ: ðA1Þ

We will define Ri ≡ RðtiÞ, which is a vector of length N,
and ψ ia ≡ ψaðtiÞ, which is a two-dimensional matrix with
dimensions N × Npar. (Note we have reversed the order of
the indices on ψ ia from that in [16], to be consistent with
later work.) In more modern PTA data analysis papers, like
[22] or [23,47], this matrix is referred to as the design
matrix of the timing model (ourMia.) The above expression
for the residuals can be transformed into an orthonormal
basis,

Ri ¼
XNpar

a¼1

α0aψ 0
ia; ψ 0

ia ≡
XNpar

b¼1

ψ ibLba; ðA2Þ

where

XN
i¼1

ψ 0T
aiψ

0
ib ¼ δab: ðA3Þ

Using these definitions we calculate a relation that will
be useful in the next section. To simplify the notation a bit
we will use the Einstein convention of summing over
repeated indices without including summation symbols,
using matrix transposes where necessary. Thus, for exam-
ple, the orthonormality conditions can be written as

δab ¼ ψ 0T
aiψ

0
ib ¼ LT

acψ
T
ciψ idLdb: ðA4Þ

Since a change of basis change is invertible, we can act with
the inverse transformation matrices,

L−T
ea δabL−1

bf ¼ L−T
ea LT

acψ
T
ciψ idLdbL−1

bf ;

L−T
ea L−1

af ¼ ψT
eiψ if; ðA5Þ

where L−T denotes the inverse of the transpose matrix LT ,
which is the same as the transpose of the inverse matrix
L−1. Finally, using the well-known identity for the inverse
of a product of two matrices,

ðL−T
ea L−1

af Þ−1 ¼ ðψT
eiψ ifÞ−1 ⇒ LfaLT

ae ¼ ðψT
eiψ ifÞ−1: ðA6Þ

1. Least-squares regression

One finds the best fit to a timing model by minimizing a
χ2 function, which wewill define below. In [16] an ordinary
least squares (OLS) minimization is used. In subsequent
PTA papers a weighted-least-squares (WLS) regression
is used, where each residual is weighted by the inverse of
the TOA error, Wi ≡ 1=σi. In the most modern work a
generalized least squares (GLS) regression is used where
the noise covariance matrix, Nij, is used, encoding cova-
riances between all residuals,

χ2 ≡ ðRi − α0aψ 0T
aiÞN−1

ij ðRj − ψ 0
jbα

0
bÞ: ðA7Þ

Here we solve the GLS minimization problem, restricting
to simpler scenarios if needed—i.e., N−1

ij ¼ σ−2i δij for the
case of WLS, and N−1

ij ¼ δij for OLS (as noise is not taken
into account during the OLS fit). We minimize the
expression for χ2 above by finding the root(s) of the
derivative with respect to the parameters,

0 ¼ ∂χ2
∂α0a

¼ −ψ 0T
aiN

−1
ij Rj þ ψ 0T

aiN
−1
ij ψ

0
jbα

0
b þ ðtransposeÞ: ðA8Þ

Solving for α0b gives

α0b ¼ ðψ 0T
aiN

−1
ij ψ

0
jbÞ−1ψ 0T

akN
−1
kl Rl: ðA9Þ

In [16], they consider OLS fitting. There the noise is taken
into account after the fit, but its existence is implicit
throughout. For instance the difference between the lhs
and rhs side of their Eq. (2.9) would be zero if there was no
noise. Setting Nij ¼ δij gives

α0b ¼ ðψ 0T
aiψ

0
ibÞ−1ψ 0T

ajRj ¼ δ−1abψ
0T
ajRj ¼ ψ 0T

biRi: ðA10Þ

This is the result that [16] reports for the best fit. For WLS
fitting, we have

α0b ¼ ðψ 0T
aiW

2
ijψ

0
jbÞ−1ψ 0T

akW
2
klRl; ðA11Þ

where W2
ij ≡ σ−2i δij.

5In our notation, RðtÞ is δti and αa is δξa.
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2. Transmission function for ordinary
least-squares regression

The transmission function is defined by [16] as the
transfer function relating the power in the prefit residuals Ri
to that in the postfit residuals,

Rpost
i ≡ Ri − ψ 0

iaα
0
a; ðA12Þ

where α0a are the best-fit values to the parameter deviations,
determined by the χ2 minimization procedure discussed
above. For the case of OLS fitting, which [16] consider, α0a
is given by (A10), implying

Rpost
i ≡ Ri − ψ 0

iaψ
0T
ajRj ¼ ðδij − ψ 0

iaψ
0T
ajÞRj: ðA13Þ

The variance in the postfit residual is then

σ2post ≡ 1

N
hRpostTRposti

¼ 1

N
hRjRkiðδji − ψ 0

jaψ
0T
aiÞðδik − ψ 0

ibψ
0T
bkÞ

¼ 1

N
hRjRkiðδjk − ψ 0

jaψ
0T
ak − ψ 0

jbψ
0T
bk þ ψ 0

jaψ
0T
aiψ

0
ibψ

0T
bkÞ

¼ 1

N
hRjRkiðδjk − ψ 0

jaψ
0T
akÞ; ðA14Þ

where we used orthogonality of the ψ 0
ja to get the last line.

Since the covariance matrix hRiRji is related to its power
spectral density PðfÞ via

hRiRji ¼
Z

∞

0

df PðfÞei2πfðti−tjÞ; ðA15Þ

it follows that

σ2post ¼
Z

∞

0

df T ðfÞPðfÞ; ðA16Þ

where

T ðfÞ≡ 1 −
1

N
ψ 0
iaψ

0T
aje

i2πfðti−tjÞ

¼ 1 −
1

N
ψ̃ 0
aðfÞðψ̃ 0

aðfÞÞ† ðA17Þ

with ψ̃ 0
a the Fourier transforms of the basis functions,

ψ̃ 0
aðfÞ ¼ ψ 0

iae
i2πfti : ðA18Þ

Making this substitution and transforming ψ 0
ia back to the

original basis, we find

T ðfÞ ¼ 1 −
1

N
ψ ibLbaLT

acψ
T
cje

i2πfðti−tjÞ

¼ 1 −
1

N
ψ ibðψT

ckψkbÞ−1ψT
cje

i2πfðti−tjÞ

¼ 1

N
ðδij − ψ ibðψT

ckψkbÞ−1ψT
cjÞei2πfðti−tjÞ; ðA19Þ

which is an expression for transmission function in terms of
the original design matrix ψ ia.

3. Transmission function for generalized
least-squares regression

For the case of GLS fitting, the best-fit values for the
timing parameter deviations are given by (A9), for which
the postfit residuals are given by

Rpost
i ¼ Ri − ψ 0

iaðψ 0T
bjN

−1
jk ψ

0
kaÞ−1ψ 0T

bmN
−1
mjRj

¼ ðδij − ψ 0
iaðψ 0T

bkN
−1
kl ψ

0
laÞ−1ψ 0T

bmN
−1
mjÞRj: ðA20Þ

We can write this in terms of the original basis as

Rpost
i ¼ ðδij − ψ icLcaðLT

beψ
T
ekN

−1
kl ψ ldLdaÞ−1LT

bfψ
T
fmN

−1
mjÞRj

¼ ðδij − ψ icLcaL−1
adðψT

ekN
−1
kl ψ ldÞ−1L−T

eb L
T
bfψ

T
fmN

−1
mjÞRj

¼ ðδij − ψ idðψT
ekN

−1
kl ψ ldÞ−1ψT

emN−1
mjÞRj; ðA21Þ

which has exactly the same form as (A20) with ψ 0
ia replaced by ψ ia. The variance of the postfit residuals is thus

σ2post ≡ 1

N
hRpostTRposti

¼ 1

N
ðδij − ψ iaðψT

blN
−1
lmψmaÞ−1ψT

bnN
−1
nj ÞhRjRkiðδki − N−1

kqψqcðψT
drN

−1
rs ψ scÞ−1ψT

diÞ: ðA22Þ

Since hRiRji≡ Njk for GLS fitting, we get
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σ2post ¼
1

N
ðNik − ψ iaðψT

blN
−1
lmψmaÞ−1ψT

bkÞðδki − N−1
kqψqcðψT

drN
−1
rs ψ scÞ−1ψT

diÞ

¼ 1

N
ðNikδki − ψ iaðψT

blN
−1
lmψmaÞ−1ψT

bi − ψ icðψT
drN

−1
rs ψ scÞ−1ψT

di

þ ψ iaðψT
blN

−1
lmψmaÞ−1ψT

bkN
−1
kqψqcðψT

drN
−1
rs ψ scÞ−1ψT

diÞ

¼ 1

N
ðNikδki − ψ iaðψT

blN
−1
lmψmaÞ−1ψT

biÞ

¼ 1

N
ðδij − ψ iaðψT

blN
−1
lmψmaÞ−1ψT

bkN
−1
kj ÞNij; ðA23Þ

where we used the symmetry of Nij throughout. Finally, using (A15) for Nij, we recover (A16) with

T ðfÞ ¼ T RðfÞ≡ 1

N
ðδij − ψ iaðψT

blN
−1
lmψmaÞ−1ψT

bkN
−1
kj Þei2πfðti−tjÞ: ðA24Þ

We thus obtain the same R-matrix-dependent transmission function T RðfÞ found in (15), with the R-matrix given by the
expression in parentheses, Rij ≡ δij − ψ iaðψT

blN
−1
lmψmaÞ−1ψT

bkN
−1
kj .
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