Early Dark Energy Can Resolve The Hubble Tension

V. Poulin

Tristan L. Smith
Swarthmore College, tsmith2@swarthmore.edu

T. Karwal

M. Kamionkowski

Follow this and additional works at: https://works.swarthmore.edu/fac-physics

Part of the Physics Commons

Let us know how access to these works benefits you

Recommended Citation

https://works.swarthmore.edu/fac-physics/375

This work is brought to you for free by Swarthmore College Libraries' Works. It has been accepted for inclusion in Physics & Astronomy Faculty Works by an authorized administrator of Works. For more information, please contact myworks@swarthmore.edu.
Early Dark Energy can Resolve the Hubble Tension

Vivian Poulin,1 Tristan L. Smith,2 Tanvi Karwal,1 and Marc Kamionkowski1

1Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA
2Department of Physics and Astronomy, Swarthmore College, 500 College Avenue, Swarthmore, Pennsylvania 19081, USA

(Received 11 December 2018; published 4 June 2019)

Early dark energy (EDE) that behaves like a cosmological constant at early times (redshifts \(z \gtrsim 3000 \)) and then dilutes away like radiation or faster at later times can solve the Hubble tension. In these models, the sound horizon at decoupling is reduced resulting in a larger value of the Hubble parameter \(H_0 \) inferred from the cosmic microwave background (CMB). We consider two physical models for this EDE, one involving an oscillating scalar field and another a slowly rolling field. We perform a detailed calculation of the evolution of perturbations in these models. A Markov Chain Monte Carlo search of the parameter space for the EDE parameters, in conjunction with the standard cosmological parameters, identifies regions in which \(H_0 \) inferred from Planck CMB data agrees with the SH0ES local measurement. In these cosmologies, current baryon acoustic oscillation and supernova data are described as successfully as in the cold dark matter model with a cosmological constant, while the fit to Planck data is slightly improved. Future CMB and large-scale-structure surveys will further probe this scenario.

DOI: 10.1103/PhysRevLett.122.221301

Local measurements of the Hubble parameter, from supernovae [1,2] and lensing time delays [3,4], disagree with the value inferred from a cold dark matter model with a cosmological constant (ΛCDM) fit to the cosmic microwave background (CMB) [5,6], with local measurements suggesting a higher value. This discrepancy is not easily explained by any obvious systematic effect in either measurement [7–10], and so increasing attention is focusing on the possibility that this “Hubble tension” may be indicating new physics beyond the standard ΛCDM cosmological model [11,12]. However, theoretical explanations for the Hubble tension are not easy to come by. The biggest challenge remains the very precisely determined angular scale of the acoustic peaks in the CMB power spectrum, which fix the ratio of the sound horizon at decoupling to the distance to the CMB surface of last scatter. Possible late-time resolutions include a phantomlike dark energy (DE) component [13,14], a vacuum phase transition [15–18], or interacting DE [19,20]. However, these resolutions are tightly constrained [1,14,20,21] by late-time observables, especially those from baryon acoustic oscillations (BAOs) [22–24]. Model-independent parametrizations of the late-time expansion history are similarly constrained [25–27]. An early-time resolution, which reduces the sound horizon with additional radiation energy density [1,2], is constrained by BAOs and by the higher peaks in the CMB power spectrum [20,25]. It is also possible to address the Hubble tension through a modification of gravity [28–34].

Another early-time resolution [35,36] is an exotic early dark energy (EDE) that behaves like a cosmological constant before some critical redshift \(z_c \) but whose energy density then dilutes faster than radiation. This addresses the Hubble tension by increasing the early expansion rate while leaving the later evolution of the Universe unchanged. Reference [35] investigated the effects on the CMB under the assumption that the dark energy exhibited no spatial fluctuations. A simple Fisher analysis of CMB data suggested that the model could push the CMB-inferred \(H_0 \) in the right direction, but not enough.

Here, we present two physical models for EDE, one that involves an oscillating scalar field and another with a slowly rolling scalar field. These models allow us to perform a complete analysis of the growth of perturbations and of CMB fluctuations. We then perform a thorough search of the parameter space for the scalar-field model parameters, along with the classical cosmological parameters. Doing so, we find regions of the combined parameter space where the CMB likelihoods match (and even slightly improve upon) those in the best-fit ΛCDM model with values of \(H_0 \) consistent with those from local measurements. Moreover, our cosmological model is in good agreement with constraints from BAOs [22–24] and the Pantheon supernovae dataset [37]. The fact that both an oscillating and slowly rolling scalar field can resolve the Hubble tension indicates further that the success of the resolution does not depend on the detailed mechanism that underlies it. Our resolution requires a \(\sim 5\% \) contribution from EDE to the total energy density at redshift \(z \approx 5000 \) that then dilutes later. Interestingly, hints for such an increased expansion rate and/or reduced sound horizon had been previously identified [10,38].

Our first model for EDE is nominally a scalar field \(\phi \) with a potential \(V(\phi) \propto (1 – \cos(\phi/f))^n \) [39]. At early
times, the field is frozen and acts as a cosmological constant, but when the Hubble parameter drops below some value, at a critical redshift \(z_c = a_c^{-1} - 1 \), the field begins to oscillate and then behaves as a fluid with an equation of state \(w_a = (n - 1)/(n + 1) \). In practice, numerical evolution of the scalar-field equations of motion becomes extremely difficult once the oscillations become rapid compared with the expansion rate, and so our numerical work is accomplished with an effective-fluid approach [40] that has been tailored specifically for this potential. Still, as that work (and discussion below) indicates, our conclusions do not depend on the details of the potential and would work just as well with, e.g., a simpler \(\Phi^2 \) potential. Our second model is a field that slowly rolls down a potential that is linear in \(\Phi \) at early times and asymptotes to zero at late times. Numerical evolution of the scalar-field equations of motion confirm that the resolutions we find here with the effective-fluid approach are valid for that model as well; details will be presented elsewhere [41].

In the effective-fluid approximation, the EDE energy density evolves as [40]

\[
\Omega_{\Phi}(a) = \frac{2\Omega_{\Phi}(a_c)}{(a/a_c)^{3(w_a+1)} + 1},
\]

which has an associated equation-of-state parameter

\[
w_{\Phi}(z) = \frac{1 + w_a}{1 + (a_c/a)^{3(1+w_a)} - 1}.
\]

It asymptotically approaches \(-1\) as \(a \to 0 \) and \(w_a \) for \(a \gg a_c \), showing that the energy density is constant at early times and dilutes as \(a^{-3(1+w_a)} \) once the field is dynamical [42]. The homogeneous EDE energy density dilutes like matter for \(n = 1 \), like radiation for \(n = 2 \), and faster than radiation whenever \(n \geq 3 \). For \(n \to \infty \), on reaching the minimum of the potential, \(w_{\Phi}\infty = 1 \) (i.e., the scalar field is fully dominated by its kinetic energy) and the energy density dilutes as \(a^{-6} \).

The equations governing the evolution of the perturbations to the effective density \(\delta_{\Phi} \) and heat flux \(u_{\Phi} \equiv (1 + w_{\Phi})\dot{\theta}_{\Phi} \), where \(\theta_{\Phi} \) is the bulk velocity perturbation, [It is known [40,43] that for a scalar field the evolution equation of the velocity perturbation is unstable as \(w \to -1 \) and we therefore solve for the heat-flux.] can be written as discussed in Refs. [40,43,44]. Solving these equations requires the specification of the EDE equation of state \(w_{\Phi}(z) \), the adiabatic sound speed \(c_s^2 \equiv \left(\partial p_{\Phi}/\partial \rho_{\Phi}\right)_s \), and effective sound speed \(c_s^0 \equiv \left(\partial p_{\Phi}/\partial \rho_{\Phi}\right)_{\text{def}} \) (defined in the rest frame of the field). During slow roll and assuming \(\dot{\Phi} = 0 \), generic scalar fields have \(w_{\Phi} \simeq -1 \), \(c_s^2 \simeq -7/3 \), and \(c_s^0 = 1 \) [40,43]. When the field becomes dynamical, \(w_a \) and \(c_s^2 \) can be calculated from the background parametrization. The exact behavior of \(c_s^2 \) depends on the particular shape of the potential as described in Ref. [40]. We also note that, just as with the background dynamics, this parametrization describes the case of the slow-roll model [41] by taking the limit \(n \to \infty \) and setting \(c_s^2 = 1 \) [44].

We run a Markov chain Monte Carlo (MCMC) simulation using the public code MONTEPYTHON-V3 [https://github.com/brinckmann/mon.python_public] [45,46] and a modified version of the CLASS-code [47,48]. We perform the analysis with a Metropolis-Hasting algorithm, assuming flat priors on \{\(\omega_b, \omega_{\text{cdm}}, \theta_*, h, n_s, r_{\text{reio}}, \Omega_{\Phi,0}, \log_{10}(a_c), \phi_i \}\). In addition, we run separate MCMC simulations to compare [The \(n = 1 \) case leads to an over-production of cdm once the field starts diluting. We checked explicitly that it does not solve the \(H_0 \)-tension by performing a dedicated run.] \(n = (2, 3, \infty) \). Following the Planck collaboration, we model free-streaming neutrinos as two massless species and one massive with \(M_\nu = 0.06 \text{ eV} \) [49]. Our datasets include the latest SH0ES measurement of the present-day Hubble rate \(H_0 = 73.52 \pm 1.62 \text{ km/s/Mpc} \) [2], Planck high-\(\ell \) and low-\(\ell \) temperature auto-correlation (TT), E-mode polarization auto-correlation (EE) and their cross-correlation (TE), and lensing likelihood [50]. We also include BAO measurements from 6dFGS at \(z = 0.106 \) [22], from the MGS galaxy sample of SDSS at \(z = 0.15 \) [23], and from the CMASS and LOWZ galaxy samples of BOSS DR12 at \(z = 0.38, 0.51, \) and 0.61 [24]. Note that the BOSS DR12 measurements also include measurements of the growth function \(f\sigma_8(z) \). Additionally, we use the Pantheon [https://github.com/dscolnic/Pantheon] supernovae dataset [37], which includes measurements of the luminosity distances of 1048 SNe Ia in the redshift range \(0.01 < z < 2.3 \). Moreover, there are many nuisance parameters that we analyze together with the cosmological ones using a Choleski decomposition [51]. We consider chains to be converged using the Gelman-Rubin [52] criterion \(R < 1 < 0.1 \).

In Fig. 1, we show the marginalized 1D and 2D posterior distributions of \(H_0, \omega_{\text{cdm}}, f_{\text{EDE}}(a_c), \text{and } \log_{10}(a_c) \) in ΛCDM and in the EDE cosmology with \(n = 2, 3 \) and \(n \to \infty \), where \(f_{\text{EDE}}(a_c) \equiv \Omega_{\Phi}(a_c)/\Omega_{\text{tot}}(a_c) \). We report the best-fit \(\chi^2 \) for each experiment in Table I, while the reconstructed mean, best fit, and 1σ confidence interval of the cosmological parameters are given in Table II. We find that the best-fit \(\chi^2 \) in the EDE cosmology is reduced by \(-9 \) to \(-14 \) compared to ΛCDM using the same collection of datasets. This reduction in the \(\chi^2 \) is not only driven by an improved fit of SH0ES data, but also by an improved fit of CMB data compared to a ΛCDM fit to all datasets. Interestingly, in the global fit, the EDE fits Planck data slightly better than ΛCDM fitted on Planck only [The fit of ΛCDM on Planck only yields \(\chi^2_{\text{Planck}} \simeq 12951.5 \) for the exact same precision parameters as the one used in the EDE fits and convergence criterion \(R < 1 < 0.008 \). It can vary slightly from the one quoted in Planck tables [51]. This is in stark contrast to the case of extra relativistic degrees of freedom, for which the \(\chi^2 \) of CMB and BAO data degrade
(as shown on the last column of Table I and also found by Refs. [13,25,27]). In order to get an estimate of the statistical preference of the EDE cosmology compared to ΛCDM, we trade the full high-ℓ likelihood for the much faster “lite” version and make use of MULTINEST [53] (with 500 livepoints and an evidence tolerance of 0.2) to compute the Bayesian evidence. We checked that this gives results which are fully consistent with the MCMC simulation on the full likelihood. We perform model comparison by calculating Δ log B = log B(EDE) − log B(ΛCDM). Interestingly, we find “definite” (or “positive”) evidence in favor of the EDE cosmology in the n = 3 and n = ∞ model according to the modified Jeffreys’ scale [54,55]. While n = 2 has a better χ² than the n = ∞ model, it has weaker evidence. We attribute this to the fact that n = 2 effectively has one more free parameter since c_s² depends on φ_i, while c_s² = 1 in the n = ∞ model.

One of the most interesting aspects of the EDE resolution of the Hubble tension is that the posterior distributions show that the field must become dynamical around matter-radiation equality. Within the context of ΛCDM, a simplified picture of the CMB power spectrum can be described by three angular scales: ℓ_eq (the projected Hubble horizon at matter-radiation equality), ℓ_s (the projected photon-baryon sound-horizon at decoupling), and ℓ_D (the projected Silk damping scale at decoupling) [56]. These angular scales are given by the ratio of a physical scale at decoupling with the angular diameter distance to the surface of last scattering:

\[ℓ_x = \pi D_A(z_x)/r_S(z_x) \]

Additionally, the overall amplitudes of the CMB peaks (in particular, the first one) are accurately measured by Planck. It is straightforward to show that \(PH \propto \omega_{cdm}^{0.5} \), \(ℓ_eq \propto \omega_{cdm}^{0.5} h^{-0.2} \), \(ℓ_s \propto \omega_{cdm}^{-0.16} h^{-0.2} \), \(ℓ_s/ℓ_D = r_s/r_D \propto \omega_{cdm}^{0.03} \), where PH stands for the height of the first peak and we assume that the heights of the even and odd peaks fixes \(o_b \). In ΛCDM, the measured peak height determines \(\omega_{cdm} \), allowing an inference of \(h \) through ℓ_eq, ℓ_s, and ℓ_D. Alternatively, using the determination of \(H_0 \) from SHOES, one would deduce values of ℓ_eq, ℓ_s, and ℓ_D too small compared to their measured values. As shown by several recent studies [10,25,57], this can be recast as a mismatch between the sound horizon deduced from Planck data, and that reconstructed from the standard distance ladder. The value of \(r_s \) measured by Planck is higher by ∼10 Mpc compared to that directly deduced from the distance ladder.

The role of the EDE is to decrease \(r_s \), while keeping the angular scales and peak heights fixed via small shifts in other cosmological parameters. For each value of \(n \), we show the fractional change in \(r_s, r_s/r_D \) and PH with \(f_{EDE}(a_c) \) as a function of \(a_c \) in Fig. 2. The 1σ errors on \(a_c \), reconstructed from our analysis, are also shown. Unsurprisingly we find that the value of \(a_c \) is driven to be close to the maximal fractional change in \(r_s \) (solid line). Additionally, one can see that such an EDE leads to a shift in the ratio \(r_s/r_D \) (dash-dotted line) and increase in peak height (dotted line). From the above scaling relations it is clear that the increase in the peak height can be compensated by an increase in \(a_{cdm} \), giving the positive correlation between \(f_{EDE}(a_c) \) and \(a_{cdm} \) visible in the 2D-posterior distribution shown in Fig. 1. Moreover, the dynamics of the EDE compensate for such a change in \(a_{cdm} \), leaving the
TABLE II. The mean (best-fit) ± 1σ error of the cosmological parameters reconstructed from our combined analysis in each model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ΛCDM</th>
<th>n = 2</th>
<th>n = 3</th>
<th>n = ∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>100θ_v</td>
<td>1.04198(1.04213) ± 0.00032</td>
<td>1.04175(1.0414) ± 0.00046</td>
<td>1.04138(1.0414) ± 0.00044</td>
<td>1.04159(1.04149) ± 0.00035</td>
</tr>
<tr>
<td>100ω_b</td>
<td>2.238(2.239) ± 0.014</td>
<td>2.244(2.228) ± 0.022</td>
<td>2.255(0.258) ± 0.022</td>
<td>2.257(2.277) ± 0.024</td>
</tr>
<tr>
<td>ω_cdm</td>
<td>0.1179(0.1177) ± 0.0012</td>
<td>0.1248(0.1281) ± 0.003</td>
<td>0.1272(0.1299) ± 0.0045</td>
<td>0.1248(0.1249) ± 0.0041</td>
</tr>
<tr>
<td>H_0</td>
<td>1.03(2.14) ± 0.051</td>
<td>2.185(2.230) ± 0.056</td>
<td>2.176(2.177) ± 0.054</td>
<td>2.151(2.177) ± 0.051</td>
</tr>
<tr>
<td>n_s</td>
<td>0.9686(0.9687) ± 0.0044</td>
<td>0.9768(0.9828) ± 0.0065</td>
<td>0.9812(0.9880) ± 0.0080</td>
<td>0.9764(0.9795) ± 0.0073</td>
</tr>
<tr>
<td>δω</td>
<td>0.075(0.068) ± 0.013</td>
<td>0.075(0.083) ± 0.013</td>
<td>0.068(0.068) ± 0.013</td>
<td>0.062(0.066) ± 0.014</td>
</tr>
<tr>
<td>f_EDE(a_c)</td>
<td>⋯</td>
<td>−4.136(−3.728) ± 0.57</td>
<td>−3.737(−3.696) ± 0.100</td>
<td>−3.449(−3.509) ± 0.047</td>
</tr>
<tr>
<td>r_s/ r_D</td>
<td>145.05(145.1) ± 0.26</td>
<td>141.4(139.8) ± 0.14</td>
<td>140.3(138.5) ± 0.19</td>
<td>141.6(141.3) ± 0.18</td>
</tr>
<tr>
<td>S_8</td>
<td>0.824(0.814) ± 0.012</td>
<td>0.826(0.836) ± 0.014</td>
<td>0.838(0.842) ± 0.015</td>
<td>0.836(0.839) ± 0.015</td>
</tr>
<tr>
<td>H_0</td>
<td>68.16(68.33) ± 0.54</td>
<td>70.3(71.1) ± 1.2</td>
<td>70.6(71.6) ± 1.3</td>
<td>69.9(70) ± 1.1</td>
</tr>
</tbody>
</table>

The effects of an additional radiation energy density can be read off of Fig. 2 for the n = 2 case at log_{10}(a_c) ≪ −4.5. In that case, the EDE simply behaves like additional radiation all relevant times. One can see that r_s/ r_D is significantly affected, leading to additional tension with the data, as previously noted in Ref. [58].

We find that it is essential to consistently include perturbations in the EDE fluid. Neglecting perturbations is inconsistent with the requirement of overall energy conservation and therefore leads to unphysical features in the CMB power spectra which restrict the success of the resolution. This, in part, explains why a former study [35] did not find a good fit to the CMB for f_EDE(a_c) ≈ 10^{−3.5} ∼ 5%.

In Fig. 3, we show the residuals of the CMB TT (top panel) and EE (bottom panel) power spectra calculated in the best-fit EDE model with respect to our best-fit ΛCDM (i.e., fit on all datasets). One can see that the EDE leads to

![FIG. 2. The variation of the scales that are “fixed” by the CMB data with respect to f_EDE(a_c) as a function of a_c with all other cosmological parameters fixed at their Planck best-fit values [6]. The colored bands indicate the marginalized 1σ range of a_c for each EDE model considered here.](image)

![FIG. 3. Residuals of the CMB TT (top panel) and EE (bottom panel) power spectra calculated in the best-fit EDE model with respect to ΛCDM, obtained from our MCMC analyses. Blue points show residuals of Planck data, while orange bands show the binned Cosmic Variance with the same bins and weights as Planck.](image)
residual oscillations particularly visible at small scales in the EE power-spectrum, which represent an interesting target for next-generation experiments such as the Simons Observatory [49], CMB-S4 [59] or CoRE [60]. Additionally, the pattern around the first peak ($\ell' \sim 30-500$) in the EE spectrum might be detectable in the future by large-scale E-mode measurements such as CLASS [61] or LiteBird [62]. Finally, the changes in r_s, n_s, and A_s leave signatures in the matter power spectrum that can potentially be probed by surveys such as KiDS, DES, and Euclid. This can also be seen in the parameter $S_8 \equiv \sigma_8 (\Omega_m / 0.3)^{0.5}$, which is shifted by about 1σ upwards from its ΛCDM value. This slightly increases the so-called “S_8 tension” (e.g., Ref. [63]) and therefore deserves more attention in future work. For example, the tension with the most recent KiDS cosmic-shear measurement [64] increases from 2.3σ to 2.5σ. As a first check, we have performed additional runs including SDSS DR7 [65] and KiDS [66] likelihoods, and found that our conclusions are unaffected.

In this Letter, we have shown that an EDE that begins to dilute faster than matter at a redshift $z_c \gtrsim 3000$ can explain the increasingly significant (currently 3.8σ) tension between H_0 inferred from the CMB [6] and Cepheid variables or supernovae at low redshifts [2]. Using Planck, BAO measurements, the Pantheon supernovae data, the local SH0ES measurement of H_0, and a MCMC analysis, we found that a field accounting for $\sim 5\%$ of the total energy density around $z \sim 5000$ and diluting faster than radiation afterwards can solve the Hubble tension without upsetting the fit to other datasets. We found that in the EDE cosmology the best-fit χ^2 is reduced by -9 to -14 (with a slight preference for $n = 3$) compared to ΛCDM using the same datasets. Moreover, the ΛCDM fit to just the Planck data is as good as the combined fit to all of the datasets in the EDE cosmology. This is in stark contrast with the popular increased-N_{eff} resolution.

The oscillating field EDE may naturally arise in the “string-axiverse” scenario [39,67–70]. The standard axion potential is obtained for $n = 1$, while higher-n potentials may be generated by higher-order instanton corrections [71]. The EDE resolution of the Hubble tension, along with the current accelerated expansion and the evidence for early-Universe inflation (and perhaps the accelerated expansion postulated [40,72] to account for EDGES [73]) may suggest that the Universe undergoes episodic periods of anomalous expansion, as suggested in Refs. [35,39,74–77].

A future cosmic-variance-limited experiment around $\ell' \sim 30-500$ and above $\ell' \sim 1500$ could probe the specific residual oscillations in the CMB power spectra associated with the EDE dynamics, while the shifts in A_s, n_s, r_s, and k_{eq} will be probed by future LSS surveys.

We thank Adam Riess and Tommi Tenkanen for useful conversations. We thank Antony Lewis and Colin Hill for detailed comments. This research was conducted using computational resources at the Maryland Advanced Research Computing Center (MARCC) and the Université Savoie Mont-Blanc MUST computing center. This work was supported at JHU by NSF Grant No. 1818899, NASA NNX17AK38G, and the Simons Foundation. T.L.S. acknowledges support from NASA 80NSSC18K0728 and the Hungerford Fund at Swarthmore College.

Note added.—Recently, a new value of H_0 was published by SH0ES increasing the tension with ΛCDM from Planck to 4.4σ [78].

[41] T. Karwal, V. Poulin, T. L. Smith, and M. Kamionkowski, The background and perturbation dynamics necessary to resolve the Hubble tension with early dark energy (to be published).

[53] F. Feroz, M. P. Hobson, and M. Bridges, MultiNest: An efficient and robust Bayesian inference tool for cosmology