Mechanism Of 14N(t,p) To The Ground State Quadruplet In 16N

H. T. Fortune

Oleksa-Myron Bilaniuk
Swarthmore College

G. Stephans

R. Middleton

Let us know how access to these works benefits you

Follow this and additional works at: https://works.swarthmore.edu/fac-physics

Part of the Physics Commons

Recommended Citation
https://works.swarthmore.edu/fac-physics/345

This Article is brought to you for free and open access by the Physics & Astronomy at Works. It has been accepted for inclusion in Physics & Astronomy Faculty Works by an authorized administrator of Works. For more information, please contact myworks@swarthmore.edu.
Mechanism of 14N(t,p) to the ground state quadruplet in 16N

H. T. Fortune, O. M. Bilaniuk,* G. Stephans, and R. Middleton

Physics Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104

(Received 3 April 1978)

Complete angular distributions ($8'$–$168'$) have been measured for the 14N$(t,p)^{16}$N reaction, at a bombarding energy of 15 MeV, leading to the lowest four levels of 14N. Results have been analyzed using distorted-wave Born approximation and microscopic wave functions. The approximate magnitude of the compound-nucleus component has been extracted.

\[\text{NUCLEAR REACTION} \quad ^{14}\text{N}(t,p), E=15 \text{ MeV;} \quad ^{16}\text{N levels, deduced reaction mechanism and tested shell-model wave functions, DWBA analysis.} \]

An earlier distorted-wave Born-approximation (DWBA) analysis\(^1\) of the 14N$(t,p)^{16}$N reaction\(^2\) at a bombarding energy of 12 MeV gave somewhat unsatisfactory results for the low-lying quadruplet of states ($2^-, 0^-, 3^-, 1^-$) when wave functions of Zilker, Buck, and McGrory (ZBM) (Ref. 3) were used in the calculation. In particular, shapes of the angular distributions were not well fitted, and extracted overall normalization factors among the four states varied by a factor of 3. In a new investigation of this reaction, the present results go beyond the earlier work in a number of ways:

1. A somewhat higher bombarding energy—15 MeV rather than 12.
2. Measurement of absolute cross sections (no absolute cross sections were available in the earlier data).
3. Complete ($8'$–$168'$) angular distributions in order to investigate possible presence of compound-nucleus contributions to the cross sections.
4. The use of more than one set of wave functions in the analysis.

The experiment made use of a 15-MeV t beam from the University of Pennsylvania FN tandem and a gas target. Protons were momentum analyzed in a multangle spectrograph and detected in nuclear emulsion plates. Data were recorded in 7.5° intervals from 7.5° to 165°. The present report concerns only the lowest four states, whose angular distributions are displayed in Fig. 1.

The curves in Fig. 1 were computed with the microscopic two-nucleon transfer option of the code DWUCK\(^4\), using ZBM wave functions. The solid curves were obtained using the same optical-model parameters as used in Ref. 1. The dashed curves were calculated with the same triton potential, but a different proton potential. All potential parameters are listed in Table I. The overall normalization factors N obtained by normalizing the curves to the data as shown, are given in Table II.

FIG. 1. Angular distributions of the 14N$(t,p)^{16}$N reaction leading to the g.s. quadruplet in 16N. Curves are results of DWBA calculations with the optical-model potentials indicated (solid curves, potential combination (6,5); dashed set (6,3)—potentials listed in Table II), and amplitudes from ZBM wave functions (Table III). Resulting normalization factors are listed in Table II.
in Table II. The quantity, \(N \), is defined by the expression

\[
\sigma_{\exp}(\theta) = N \frac{2J_1 + 1}{2J_1 + 1} \sum \sigma_{\text{om}}(\theta)
\]

where \(J_1, J_2, \) and \(J_3 \) are the initial, transferred, and final total angular momenta, respectively, and \(\sigma_{\text{om}}(\theta) \) is the quantity computed in DWUCK.

A number of points are apparent from inspection of Fig. 1 and Table II. First, the calculations underpredict the cross section for all four states at most angles beyond \(60^\circ \) perhaps implying a compound-nucleus (CN) reaction component. The fact that the back-angle cross section is larger for states of larger \(J \), is consistent with this idea, since \(\sigma_{\text{CN}} \) should be roughly proportional to \(2J_1 + 1 \). Second, even though the dashed curves fit the data somewhat better than do the solid curves, the ground state (g.s.) angular distribution in both cases is poorly fitted. It was noted in Ref. 1 that the fit could be markedly improved by the inclusion of an \(L = 1 \) component, which is allowed by the macroscopic selection rules, but predicted to be very small with the ZBM wave functions. The same is true here. We return to this point below.

Third, the values of \(N \) still fluctuate, though not as badly as in Ref. 1. Comparing these values of \(N \) with those normally encountered in \((t,p) \) reactions on nearby nuclei, in which potential combination \((6,5)\) was used, we note that the \(1^+ \) is weaker than expected by about a factor of 2 and the other three states have about the right strength.

In an attempt to estimate the compound–nucleus

\[\begin{array}{ccccccccc}
\text{Channel} & \text{Label} & V & W & W' = 4W_p & V_{ss} & \gamma_s = \gamma_{ss} & \alpha = \alpha_{ss} & \gamma' & \alpha' & \gamma_{ss} \\
\hline
\text{t} & 6 & 130 & 18.9 & 0 & 0 & 1.29 & 0.58 & 1.37 & 0.96 & 1.29 \\
\text{p} & 5 & 60 & 0 & 34.2 & 5.5 & 1.13 & 0.57 & 1.13 & 0.50 & 1.13 \\
\text{3} & V(E)^a & 0 & 54.0 & 7.5 & 1.25 & 0.65 & 1.25 & 0.47 & 1.25 \\
\text{Bound state} & & & & & \lambda = 25 & 1.26 & 0.60 & & & \\
\end{array}\]

\[a \text{ V(E)} = 53.3 - 0.55E + 0.42/A^{1/2} + 27(N - Z)/A. \]

\[\text{See F. G. Perey, Phys. Rev.} 131, 745 (1963).\]

component, we have integrated the experimental angular distributions to obtain values of \(\sigma_{\text{om}} \) for the four states. We plot in Fig. 2 this quantity divided by \(2J_1 + 1 \) vs \(\sigma_{\text{om}}/(2J_1 + 1) \).

\[
\sigma_{\text{om}} = \frac{2J_1 + 1}{2J_3 + 1} \frac{\int \sigma_{\text{om}}(\theta) d\Omega}{2J_1 + 1}.
\]

If the direct and CN cross sections are incoherent, and if the CN cross section is proportional to \(2J_1 + 1 \), we expect

\[\sigma_{\text{om}} = \sigma_c(2J_1 + 1) + N\sigma_{\text{om}},\]

so that a plot of \(\sigma_{\text{om}}/(2J_1 + 1) \) vs \(\sigma_{\text{om}}/(2J_1 + 1) \) should produce a straight line of slope \(N \) and intercept \(\sigma_c \). With the ZBM wave functions, the points deviate quite a bit from a straight line (top of Fig. 2). Nevertheless, the best fit straight line gives a slope of \(N = 300 \pm 30 \) and an intercept of \(\sigma_c = 110 \pm 15 \mu b \). A similar analysis of \(\text{14N} (\text{He},p) \) data at the same bombarding energy and with ZBM wave functions gave \(\sigma_c = 86 \pm 15 \mu b \) and (after correcting for a factor \(D_{\text{om}}^2 = 0.72 \) \(N = 277 \pm 42 \). Thus the two analyses are consistent and suggest the

![Graph](image)

TABLE II. Normalization factors obtained for \(\text{14N} (t,p) \text{16N} \). Numbers in parentheses denote potential combinations. ZBM denotes wave functions from Ref. 2. \(\text{15N + sd} \) wave functions described in the text.

<table>
<thead>
<tr>
<th>(E) MeV</th>
<th>(J)</th>
<th>(\text{ZBM})</th>
<th>(\text{15N + sd})</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 MeV</td>
<td>(6,5)</td>
<td>(6,3)</td>
<td>(6,5)</td>
</tr>
<tr>
<td>0.0</td>
<td>2^-</td>
<td>1.56</td>
<td>490</td>
</tr>
<tr>
<td>0.120</td>
<td>0^-</td>
<td>0.84</td>
<td>390</td>
</tr>
<tr>
<td>0.287</td>
<td>3^-</td>
<td>1.02</td>
<td>450</td>
</tr>
<tr>
<td>0.287</td>
<td>1^-</td>
<td>0.88</td>
<td>270</td>
</tr>
</tbody>
</table>

\[a \text{ Reference 1 (arbitrary units).}\]
MECHANISM OF $^{14}\text{N}(t,p)$ TO THE GROUND STATE...

$$N(t,p)^{16}\text{N}(\text{g.s.})E=15\text{MeV}$$

FIG. 3. Data points are the same as Fig. 1. The range of zeroth-order estimates of α_{CN} are indicated by horizontal lines. When these have been subtracted from the data angle-by-angle, the corrected data points are indicated by vertical bars. Note that the forward-angle cross sections are barely affected. The result was then fitted with arbitrary admixtures of the allowed L values.

presence of a small CN component. We have plotted in Fig. 3 as horizontal lines the quantity $(\alpha_{\text{CN}}/4\pi)(2J_f+1)$. This is the value $\alpha_{\text{CN}}(\theta)$ would have if it were isotropic. We note with this choice that (1) α_{CN} is comparable to or only slightly less than the measured back-angle cross section, and (2) the forward-angle fits and resulting normalization factors are little affected if this value of $\alpha_{\text{CN}}(\theta)$ is subtracted from the data. In particular, the g.s. angular distribution still requires an $L=1$ component. Isotropy is a poor assumption for $\alpha_{\text{CN}}(\theta)$, but these two main conclusions would not be affected by a more realistic treatment of α_{CN}.

We thus conclude that the poor fit to the ground-state angular distribution and the smaller value of N for the 1^- state (than for the other states)

TABLE III. Two-neutron transfer amplitudes for $^{15}\text{N} \rightarrow ^{16}\text{N}$.

<table>
<thead>
<tr>
<th>J^-</th>
<th>J_α</th>
<th>Configuration</th>
<th>Amplitude $^{15}\text{N} + sd$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^-</td>
<td>3</td>
<td>$1p_{1/2}$</td>
<td>$6d_{5/2}$</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>$1p_{1/2}$</td>
<td>$6d_{5/2}$</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>$1p_{1/2}$</td>
<td>$6d_{5/2}$</td>
</tr>
<tr>
<td>0^-</td>
<td>1</td>
<td>$1p_{1/2}$</td>
<td>$2s_{1/2}$</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>$1p_{1/2}$</td>
<td>$2p_{3/2}$</td>
</tr>
<tr>
<td>3^-</td>
<td>3</td>
<td>$1p_{1/2}$</td>
<td>$1d_{5/2}$</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>$1p_{1/2}$</td>
<td>$1d_{5/2}$</td>
</tr>
<tr>
<td>1^-</td>
<td>1</td>
<td>$1p_{1/2}$</td>
<td>$2s_{1/2}$</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>$1p_{1/2}$</td>
<td>$2s_{1/2}$</td>
</tr>
</tbody>
</table>

FIG. 4. Angular distribution for the 2^- ground state and DWBA curves from potentials $(6,5)$, using $^{15}\text{N} + sd$ amplitudes (top) and arbitrary L admixtures (bottom).
are not caused by CN effects.

We next investigate the dependence of \(N \) on the exact nature of the wave functions assumed. Since the g.s. quadruplet might be better described as pure one-particle one-hole (1\(p \)-1\(h \)) states, we have chosen to calculate angular distributions assuming the states are pure 2s\(_{1/2}\) or 1d\(_{3/2}\) single particles coupled to the \(^{15}\text{N}(\text{g.s.})\). We use the Cohen-Kurath\(^6\) wave functions for \(^{1}\text{N}\) and \(^{15}\text{N}\), viz., amplitudes for \(^{14}\text{N} - ^{15}\text{N}\) of \(A_{1/2} = -0.3601/11\) and \(A_{3/2} = 0.0542/11\) for \(p_{1/2}\) and \(p_{3/2}\), respectively. The \(^{14}\text{N} - ^{15}\text{N}\) amplitudes for a given \(L \) transfer are then just

\[A_L = W(l_1 j_1 l_2 j_2; \frac{1}{2} L)A_{l_1 j_1} \]

where subscript 1 refers to the \(p \) shell and subscript 2 to the \(sd \) shell, and \(W \) is a Racah coefficient. The resulting amplitudes are listed in Table III. The principal changes are that the 1\(^-\) state can now be reached by an additional, component, \(1p_{3/2}2s_{1/2} \), and the 2\(^-\) g.s. now has an \(L = 1 \) component, viz., \(1p_{3/2}1d_{5/2} \).

The DWBA shapes for given \(L \) are barely affected by these changes, but the normalization factors, listed in Table II, are. Now the \(N \) values for the 0\(^-\) and 1\(^-\) states are roughly equal, as are those for the 2\(^-\) and 3\(^-\) states, but the latter are about twice the former. Furthermore, though the g.s. now has an \(L = 1 \) component, the \(L = 1 \) contribution is still too small by about a factor of 30 (Fig. 4).

The plot of \(\sigma_{sd} \) vs \(\sigma_{sh} \) (bottom of Fig. 2) is also changed. With the \(^{15}\text{N} + sd \) wave functions, the points lie much closer to a straight line, but now \(N = 160 \) and \(\sigma_c = 210 \mu \text{b} \). If we take this analysis at face value, it would suggest that with this potential combination we should expect \(N = 160 \), rather than 300, and that a large fraction of the cross section for the 2\(^-\) and 3\(^-\) states (35\% and 66\%, respectively) comes from compound-nucleus processes. Or, alternatively, the states of \(^{15}\text{N}\) are not very pure single-particle states coupled to \(^{15}\text{N}\).

Unfortunately, the number of nuclei in which one can reach negative-parity states via \((t,p)\) with transfers of the type \((1p)(sd)\) are small. We note that in \(^{14}\text{C}\), there exist 1\(^-\) and 3\(^-\) states (at 6.09 and 6.72 MeV, respectively) that are thought to be reasonably \(1p_{1/2}2s_{1/2}\) and \(1p_{1/2}1d_{5/2}\) configurations built on the \(^{12}\text{C}\) ground state. In an analysis\(^8\) of the \(^{13}\text{C}(t,p)\)\(^{14}\text{C}\) reaction, using potentials (6, 5) the values of \(N \) extracted were 200 for the 1\(^-\) and 260 for the 3\(^-\). It would appear that even when wave functions are simple and reasonably well known, one cannot compute \((t,p)\) cross sections to better than 50\%.

We acknowledge financial support from the National Science Foundation and thank M. E. Cobern, G. E. Moore, and S. Mordechai for their assistance in taking data. O. M. B. thanks the American Philosophical Society for a grant for nuclear emulsions.

*Permanent affiliation: Department of Physics, Swarthmore College, Swarthmore, Pennsylvania 19081.
4P. D. Kunz (private communication).
7S. Mordechai et al., Nucl. Phys. (to be published).