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GENERALIZED SASAKIAN STRUCTURES FROM A POISSON

GEOMETRY VIEWPOINT

JANET TALVACCHIA

Abstract. In this paper we define a canonical Poisson structure on a normal
generalized contact metric space and use this structure to define a generalized
Sasakian structure. We show also that this canonical Poisson structure enables
us to distinguish generalized Sasakian structures from generalized coKähler
structures.

1. Introduction

The notion of a generalized complex structure, introduced by Hitchin in his pa-
per [14] and developed by Gualtieri ([9],[10]) gives a framework that unifies both
complex and symplectic structures on even dimensional manifolds. The odd di-
mensional analog of this structure, a generalized contact structure, was taken up
by Vaisman ([24],[25]), Poon, Wade [20], Sekiya [21], and Aldi and Grandini [2].
This framework unifies almost contact, contact, and cosymplectic structures. In
odd dimensions, classical coKähler and classical Sasakian structures are special al-
most contact metric structures distinguished by the fact that both generate Kähler
structures on the cone M × R. It is natural to consider what their generalized
counterparts would be.

Generalized Kähler structures were introduced by Gualtieri ([9],[10],[11]) and
found their way immediately into the physics literature ([15], [17]). Generalized
coKähler spaces were defined and studied by the author and R.Gomez in [8] where
it was shown that the standard product construction yielded a generalized Kähler
manifold if and only if each of the factors in the product was a generalized coKähler
manifold. It is shown there as well that classical Sasakian manifolds lie outside of
this class of spaces. (Generalized coKähler spaces were later studied by Wright
[28] from the point of view of reduction of generalized Kähler spaces.) In [23] the
author showed that, indeed, any notion of generalized Sasakian could not arise via
a standard product construction. What a possible notion of generalized Sasakian
might be has been discussed in ([16], [21], [24], [25]) but the definitions, while
encapsulating many of the properties one would want in generalized Sasakian space,
are not all consistent, are defined on the cone M ×R instead of intrinsically on the
spaceM , and don’t give an immediate way to distinguish generalized Sasakian from
generalized coKähler spaces.

In Abouzaid and Boyarchenko [1], an approach to generalized geometry via Pois-
son structures was written down. They showed that there was a canonical Poisson
structure associated to a generalized complex structure and this Poisson structure
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2 JANET TALVACCHIA

in fact determines the generalized complex structure. (The existence of such a
Poisson structure was independently noted by Gualtieri [11] and Lyakhovich and
Zabzine[18].) In more recent years, several authors (see for example [5], [3], [4], [12])
approach generalized complex geometry from the point of view of the underlying
Poisson structure as the fundamental object. An approach to generalized contact
structures via Poisson geometry has not previously been undertaken. The aim of
this paper is two-fold. The first is to define a canonical Poisson structure on a
normal generalized contact structure that characterizes it. We do that in section 3.
The second objective is to use this structure to propose a definition of a generalized
Sasakian structure in terms of an invertibility criterion on the Poisson structure.
We do that in sections 4 and 5. In [12], Gualtieri proved results that describe
how a generalized Kähler structure can be generated via gauge transformations of
the Poisson structure underlying a generalized complex structure. In section 4,
we look at these theorems in the context of M × R where M is a normal gener-
alized contact metric manifold whose underlying Poisson structure is the product
Poisson structure of canonical Poisson structure on M defined earlier in the paper
and the canonical Poisson structure on the space R with its usual normal general-
ized contact metric structure. In section 5, we then reduce the conditions on the
Poisson structure on M × R to conditions on the canonical Poisson structure on
M . This suggests a definition of generalized Sasakian in terms of an invertibility
criterion on this Poisson structure on M . We show that classical Sasakian spaces
are always generalized Sasakian. Generalized coKähler structures are shown to
never satisfy this criterion so it distinguishes between the generalized Sasakian and
generalized coKähler cases. In essence, we show that while generalized coKähler
spaces generate generalized Kähler spaces via a product construction, generalized
Sasakian spaces generate generalized Kähler spaces via gauge transformations of
its underlying canonical Poisson structure.

2. Preliminaries

We begin with a very brief review of generalized geometric structures. Through-
out this paper we let M be a smooth manifold. Consider the big tangent bundle,
TM ⊕ T ∗M . We define a neutral metric on TM ⊕ T ∗M by

〈X + α, Y + β〉 = 1

2
(β(X) + α(Y ))

and the Courant bracket by

[[X + α, Y + β]] = [X,Y ] + LXβ − LY α− 1

2
d(ιXβ − ιY α)

where X,Y ∈ TM and α, β ∈ T ∗M . A subbundle of TM ⊕ T ∗M is said to be
involutive or integrable if its sections are closed under the Courant bracket[9].

Definition 2.1. [9] A generalized almost complex structure on M is an endomor-
phism J of TM ⊕ T ∗M such that J + J ∗ = 0 and J 2 = −Id. If the

√
−1

eigenbundle L ⊂ (TM ⊕ TM∗) ⊗ C associated to J is involutive with respect to
the Courant bracket, then J is called a generalized complex structure.

Here are the prototypical examples:
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Example 2.2. [9] Let (M2n, J) be a complex structure. Then we get a generalized
complex structure by setting

JJ =

(
−J 0
0 J∗

)
.

Example 2.3. [9] Let (M2n, ω) be a symplectic structure. Then we get a general-
ized complex structure by setting

Jω =

(
0 −ω−1

ω 0

)
.

Diffeomorphisms ofM preserve the Lie bracket of smooth vector fields and in fact
diffeomorphisms are the only such automorphisms of the tangent bundle. But in
generalized geometry, there is actually more flexibility. Given TM⊕T ∗M equipped
with the Courant bracket, the automorphism group is comprised of the diffeomor-
phisms of M and some additional symmetries called B -field transformations [9].

Definition 2.4. [9] Let B be a two-form which we view as a map from TM → T ∗M
given by interior product. Then the invertible bundle map

eB :=

(
1 0
B 1

)
: X + ξ 7−→ X + ξ + ιXB

is called a B-field transformation.

The bundle map defined above by the two form B preserves the Courant bracket
if and only if B is closed (see [9]).

Recall that we can reduce the structure group of TM ⊕ T ∗M from O(2n, 2n) to
the maximal compact subgroup O(2n)×O(2n). This is equivalent to an orthogonal
splitting of TM ⊕ T ∗M = V+ ⊕ V−, where V+ and V− are positive and negative
definite respectfully with respect to the inner product. Thus we can define a positive
definite Riemannian metric on the big tangent bundle by

G =<,> |V+
− <,> |V−

.

Definition 2.5. [9] A generalized metricG onM is an automorphism of TM⊕T ∗M
such that G∗ = G and G2 = 1.

In the presence of a generalized almost complex structure J1, if G commutes with
J1 (GJ1 = J1G) then GJ1 squares to −1 and we generate a second generalized
almost complex structure, J2 = GJ1, such that J1 and J2 commute and G =
−J1J2. This leads us to the following:

Definition 2.6. [9]A generalized Kähler structure is a pair of commuting general-
ized complex structures J1,J2 such that G = −J1J2 is a positive definite metric
on T ⊕ T ∗.

Example 2.7. [9] Consider a Kähler structure (ω, J, g) on M . By defining JJ and
Jω as in Examples 2.2 and 2.3, we obtain a generalized Kähler structure on M ,
where

G =

(
0 g−1

g 0

)
.

We now recall the odd dimensional analog of generalized complex geometry. We
use the definition given by Sekiya (see [21]).
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Definition 2.8. [21] A generalized almost contact structure on M is a triple
(Φ, E±) where Φ is an endomorphism of TM ⊕ T ∗M , and E+ and E− are sec-
tions of TM ⊕ T ∗M which satisfy

(2.1) Φ + Φ∗ = 0

(2.2) Φ ◦ Φ = −Id+ E+ ⊗ E− + E− ⊗ E+

(2.3) 〈E±, E±〉 = 0, 2〈E+, E−〉 = 1.

Now, since Φ satisfies Φ3 + Φ = 0, we see that Φ has 0 as well as ±
√
−1 eigen-

values when viewed as an endomorphism of the complexified big tangent bundle
(TM ⊕ T ∗M) ⊗ C. The kernel of Φ is LE+

⊕ LE−
where LE±

is the line bundle

spanned by E±. Let E
(1,0) be the

√
−1 eigenbundle of Φ. Let E(0,1) be the −

√
−1

eigenbundle. Observe:

E(1,0) = {X + α−
√
−1Φ(X + α)|〈E±, X + α〉 = 0}

E(0,1) = {X + α+
√
−1Φ(X + α)|〈E±, X + α〉 = 0}.

Then the complex vector bundles

L+ = LE+
⊕ E(1,0)

and

L− = LE−
⊕ E(1,0)

are maximal isotropics.

Definition 2.9. [20] A generalized almost contact structure (Φ, E±) is a generalized
contact structure if either L+ or L− is closed with respect to the Courant bracket.
The generalized contact structure is strong if both L+ and L− are closed with
respect to the Courant bracket.

Definition 2.10. [8] A generalized almost contact structure (M,Φ, E±) is a normal
generalized contact structure if Φ is strong and [[E+, E−]] = 0.

Remark 2.11. This definition of normality is motivated by Theorem 1 of [7] that
shows that product of two generalized almost contact spaces (M1,Φ1, E±,1) and
(M2,Φ2, E±,2) induces a standard generalized almost complex structure on M1 ×
M2. The generalized complex structure is integrable if each Φi is strong and
[[E+,i, E−,i]] = 0.

Here are the standard examples:

Example 2.12. [20] Let (φ, ξ, η) be a normal almost contact structure on a man-
ifold M2n+1. Then we get a generalized almost contact structure by setting

Φ =

(
φ 0
0 −φ∗

)
, E+ = ξ, E− = η

where (φ∗α)(X) = α(φ(X)), X ∈ TM, α ∈ T ∗M . Moreover, (Φ, E±) is an
example of a strong generalized contact structure. In fact, this structure is a normal
generalized contact structure.
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Example 2.13. [20] Let (M2n+1, η) be a contact manifold with ξ the corresponding
Reeb vector field so that

ιξdη = 0 η(ξ) = 1.

Then

ρ(X) := ιXdη − η(X)η

is an isomorphism from the tangent bundle to the cotangent bundle. Define a
bivector field by

π(α, β) := dη(ρ−1(α), ρ−1(β)),

where α, β ∈ T ∗M. We obtain a generalized almost contact structure by setting

Φ =

(
0 π

dη 0

)
, E+ = η, E− = ξ.

In fact, (Φ, E±) is an example of a generalized contact structure which is not strong.

Definition 2.14. [21]
A generalized almost contact metric structure is a generalized almost contact

structure (Φ, E±) along with a generalized Riemannian metric G that satisfies

(2.4) −ΦGΦ = G− E+ ⊗ E+ − E− ⊗ E−.

Definition 2.15. [8]
A generalized coKähler structure is a normal generalized contact metric structure

(M,Φ, E+, E−, G) where both Φ and GΦ are strong.

The following theorem was proved in [8]

Theorem 2.16. Let M1 and M2 be odd dimensional smooth manifolds each with a
generalized contact metric structure (Φ, E±,i, Gi), i = 1, 2 such that on the product
M1 × M2 are two generalized almost complex structures: J1 which is the natu-
ral generalized almost complex structure induced from Φ1 and Φ2 and J2 = GJ1

where G = G1 ×G2. Then (M1 ×M2,J1,J2) is generalized Kähler if and only if
(Φi, E±,i, Gi), i = 1, 2 are generalized coKähler structures.

3. The Canonical Poisson Structure on a Generalized Almost

Contact Manifold

In this section, we show there is a canonical Poisson structure underlying a strong
generalized almost contact structure (M,Φ, E+, E−) provided [[E+, E−]] = 0. The
condition [[E+, E−]] = 0 arose previously in [7] as a necessary and sufficient condi-
tion for the product of two strong generalized contact manifolds to be a generalized
complex manifold. It is not surprising that it appears as a condition to obtain a
Poisson structure on the generalized almost contact space that is formed from the
defining elements of the space.

First, we show that a manifoldM with generalized contact structure (M,Φ, E+, E−)
satisfying the condition [[E+, E−]] = 0 admits a foliation. Let e± = prTME±.
Since [[E+, E−]] = 0, it follows that [e+, e−] = 0. The Frobenius theorem im-
plies that {e+, e−} is an integrable distribution that induces a foliation of M . If
(M2n+1,Φ, E+, E−) is in fact a strong generalized contact structure, then the folia-
tion has one dimensional leaves and in a neighborhood of a point p, (E+ ⊕E−)

⊥ =
E(1,0) ⊕E(0,1) has a generalized complex structure transverse to this foliation. We
see this as follows. Recall that a complex distribution D ⊂ TM ⊗ C = TCM
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of constant complex codimension k on a real manifold M of dimension n is in-
tegrable if, in some neighborhood U of each point m ∈ M , there exists complex
functions f1, . . . fk ∈ C∞(U,C) such that {df1, . . . , dfk} are linearly independent
at each point in U and annihilate all complex vector fields lying in D. By the
Newlander-Nirenberg theorem [19] ( see also [9] for an exposition of this version
of the theorem), we know that D is integrable if D is involutive, dim D ∩ D̄ is
constant, and D ⊕ D̄ is involutive. If these conditions are satisfied, every point
m ∈ M has a neighborhood U isomorphic, as a smooth manifold with complex dis-
tribution, to an open set in Rn−2k × Ck which has a natural distribution spanned
by { ∂

∂x1
, . . . , ∂

∂xn−2k
, ∂
∂z1

, . . . , ∂
∂zk

}.
In the situation we are considering, we takeD = prTCM (E(1,0)). Since (M2n+1,Φ, E+, E−)

is a strong generalized contact structure, we have that [[E(1,0), E(1,0)]] ⊂ E(1,0) (see
[8]) which implies that D is involutive on TCM with respect to the Lie bracket.
D ∩ D̄ = 0 so dim D ∩ D̄ is constant. Lastly, [[E(0,1), E(0,1)]] ⊂ E(0,1) as well so
that D ⊕ D̄ is involutive and all the conditions of the Newland Nirenberg theorem
are satisfied. Let U be the neighborhood of p ∈ M isomorphic to R× Cn given by
the theorem. Let W = prCn(U). Note that TCW ⊕ T ∗

C
W ≈ E(1,0) ⊕ E(0,1) so that

Φ restricted to TCW ⊕ T ∗
C
W satisfies Φ2 = −id. That Φ is integrable follows from

its properties as part of a strong generalized contact structure. Thus the neigh-
borhood W has a canonical Poisson structure π0 by the results of Abouzaid and
Boyarchenko [1]. We can extend this bivector π0 on W to a bivector πM on U ⊂ M

as follows. Let e+ = prTM (E+) and let e− = prTM (E−). At each p ∈ M , define

πM = π0 + e+ ∧ e−.

Lemma 3.1. If [[E+, E−]] = 0 then πM is a Poisson structure on M .

Proof. Note that [[E+, E−]] = 0 implies [e+, e−] = 0.
Now

[πM , πM ] = [π0, π0] + 2[π0, e+ ∧ e−] + [e+ ∧ e−, e+ ∧ e−].

[π0, π0] = 0 since π0 is a Poisson structure.
[π0, e+ ∧ e−] = [πo, e+]∧ e+ + e+ ∧ [π0, e−] We see that [πo, e±] = 0 by using the

definition of the Schouten bracket and the fact that π0 is a bivector on (E+⊕E−)
⊥.

Thus, [π0, e+ ∧ e−] = 0
The condition [e+, e−] = 0 insures [e+ ∧ e−, e+ ∧ e−] = 2[e+, e−] ∧ e+ ∧ e− = 0.

�

Example 3.2. LetM = SU(2). On the Lie algebra su(2) choose a basis {X1, X2, X3}
and a dual basis {σ1, σ2, σ3} such that [Xi, Xj ] = −Xk and dσi = σj ∧σk for cyclic
permutations of {i, j, k}. One can construct a classical normal almost contact struc-
ture by taking φ = X2 ⊗ σ1 −X1 ⊗ σ2, ξ = X3, and η = σ3. Then, as in Example
2.12, we can construct a generalized almost contact structure by letting

Φ =

(
φ 0
0 −φ∗

)
, E+ = X3, E− = σ3

where (φ∗α)(X) = α(φ(X)), X ∈ TM, α ∈ T ∗M .
We compute:

E
(1,0)
φ = span{X1 −

√
−1X2, σ

1 −
√
−1σ2}

E
(0,1)
φ = span{X1 +

√
−1X2, σ

1 +
√
−1σ2}
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L+ = span{X3, X1 −
√
−1X2, σ

1 −
√
−1σ2}

L− = span{σ3, X1 −
√
−1X2, σ

1 −
√
−1σ2}

Computing the Courant brackets we get

[[X1 ±
√
−1X2, σ

1 ±
√
−1σ2]] = 0

[[X3, σ
1 −

√
−1σ2]] = −

√
−1(σ1 −

√
−1σ2)

[[X3, X1 −
√
−1X2]] =

√
−1(X1 −

√
−1X2)

[[σ3, X1 −
√
−1X2]] =

√
−1(σ1 −

√
−1σ2)

[[σ3, σ1 −
√
−1σ2]] = 0

Also we compute that [[E+, E−]] = LX3
σ3 = 0. Thus we see that L+ and L− are

closed under the Courant bracket, Φφ is strong and (Φφ, E±) is a normal generalized

contact structure on SU(2). One can verify directly that [[E(1,0), E(1,0)]] ⊂ E(1,0)

and [[E(0,1), E(0,1)]] ⊂ E(0,1). Since e+ = X3 and e− = 0, the foliation of M

is the characteristic foliation induced by the Reeb vector field X3. Any point
p ∈ M has local coordinates x1, z1 in some neighborhood U where ∂

∂x1
= X3 and

∂
∂z1

= X1 −
√
−1X2. Φφ restricted to W = prC(U) defines a generalized complex

structure which has a canonical Poisson structure π0. At any point p ∈ SU(2) we
define πM = π0 + e+ ∧ e−. Note that e+ ∧ e− = 0 here as one can observe happens
with the generalized contact structures arising from classical structures.

Remark 3.3. Vaisman has constructed important Poisson structures associated to
generalized CRF structures (see [25, 26, 27]). When (M,φ,E+, E−) is a quasi-
classical generalized CRF structure that admits a foliation, the Poisson structure
here coincides with Vaisman’s. (See [27], section 3, for a discussion of quasi-classical
generalized CRF structures with foliations.) It would be interesting to study further
possible relationships between these Poisson structures.

In the rest of this paper, we look at this canonical Poisson structure on normal
generalized contact metric spaces.

4. Gauge Transformations of Poisson structures and Gualtieri’s

Theorem

In this section we review a theorem by Gualtieri [12] that we will use to generate
the invertibility criterion on the canonical Poisson structure of the normal general-
ized contact metric manifold. Recall that a Dirac structure is a maximal isotropic
subbundle L ⊂ TM ⊕ T ∗M that is involutive under the Courant bracket. Let L1

and L2 be transverse Dirac structures, prTM (L1) + prTM (L2) = TM . Then their
sum is defined by

L1 + L2 = {X + α+ β | X + α ∈ L1, X + β ∈ L2}.
We use the notation L2 − L1 for the Dirac structure (−1)L1 + L2.
The scaling of a Dirac structure by a nonzero number λ ∈ R is defined by

λL = {X + λα | X + α ∈ L}.
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A real Poisson structure π ∈ C∞(
∧2

TM) on a real smooth manifold M can be
viewed as a Dirac structure by considering its graph sub-bundle Γπ ⊂ TM ⊕T ∗M .

Γπ = {πξ + ξ | ξ ∈ T ∗M}
Since [π, π] = 0, Γπ is an involutive maximal isotropic on TM ⊕ T ∗M .

Definition 4.1. Two real Poisson structures π0 and π1 on M are gauge equivalent
if there exists a real closed two form B such that

eBΓπ0
= Γπ1

In [22], where this notion was introduced, it was shown that π0 and π1 are gauge
equivalent if and only if (I +Bπ0) is invertible as a bundle automorphism of T ∗M .
When this happens,

π1 = π0(I +Bπ0)
−1

We see from this that π0 and π1 are gauge equivalent when their symplectic
leaves coincide.

Theorem 4.2. (Gualtieri, [12])
Fix a generalized complex structure J0 on an even dimensional manifold M with√
−1 eigenbundle L0 and underlying real Poisson structure π0. Let β be a complex

two form. Then L1 = eβL0 defines a generalized complex structure J1 if and only
if (I + Bπ0) is invertible for B = Im β. The underlying real Poisson structure π1

of J1 is given by π1 = π0(I +Bπ0)
−1.

Let’s look at this theorem now in the context of an even dimensional space
M ×R where M is a normal generalized contact metric manifold and R is given its
standard normal generalized contact metric structure

(R,ΦR ≡ 0, (0, dt), (
∂

∂t
, 0), GR =

(
0 (dt2)−1

dt2 0

)
)

where dt2 is the standard euclidean metric.
The canonical Poisson structure πR underlying this generalized contact metric

structure on R is the zero Poisson structure. We get a Poisson structure on M ×R

by taking the product Poisson structure : π = πM + πR. Theorem 1 of [7] implies
that M × R admits a generalized complex structure J0 constructed from the data
on M and R. In fact , an explicit formula for J0 is given there:

J0(X + α, a
∂

∂t
+ bdt) =(Φ(X + α)− 2〈dt, a ∂

∂t
+ bdt〉E+ − 2〈 ∂

∂t
, a

∂

∂t
+ bdt〉E−,

0 + 2〈E+, X + α〉dt+ 2〈E−, X + α〉 ∂
∂t

).

From this formula we see that π is the underlying Poisson structure for J0. Let
η = prT∗M (E+) + prT∗M (E−). Assume dη 6= 0. Let B = d(etη). Then if (I +Bπ)
is invertible, we get a new complex structure J1 on M × R. To show that J0 and
J1 form a generalized Kähler structure, we must show that J0 and J1 commute
and G = −J0J1 is positive definite. In [12], Gualtieri proved the following theorem
that allows one to verify the generalized Kähler conditions on J0 and J1 in terms
of their underlying Dirac structures L0 and L1:

Theorem 4.3. (Gualtieri [12])
The pair of complex Dirac structures (L0, L1) defines a generalized Kähler struc-

ture if and only if it satisfies all of the following conditions:
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(1) L0 is transverse to L̄0; i.e., prTCM (L0) + prTCM (L̄0) = TCM . Similarly L1

is transverse to L̄1.
(2) The real Dirac structures

Γπ1
=

1

2
√
−1

(L0 − L̄0), Γπ2
=

1

2
√
−1

(L1 − L̄1),

define real Poisson structures, i.e. Γπ1
∩ TM = Γπ2

∩ TM = 0.
(3) The complex Dirac structures

Lσ+
=

1

2
√
−1

(L0 − L1), Lσ−
=

1

2
√
−1

(L0 − L̄1)

define holomorphic Poisson structures (I+, σ+), (I−, σ−) respectively, i.e.
TCM = (Lσ+

∩ TCM)⊕ (L̄σ+
∩ TCM) and TCM = (Lσ−

∩ TCM)⊕ (L̄σ−
∩

TCM).
(4) For all nonzero u ∈ L0 ∩ L1 we have 〈u, ū〉 > 0.

We use this theorem to verify the generalized Kähler conditions since we have
the existence of J1 but no formula for it to allow us to check its commutativity
with J0 directly. In [7], there is an explicit formula for J0 as well as for generators
of L0. The relation L1 = eβL0 allows us thus to compute generators for L1.

From [7], L0 is generated by

• (E(1,0), 0)
• (E−1,−

√
−1 ∂

∂t
)

• (E+1,−
√
−1dt)

Setting β =
√
−1 d(etη), we see that L1 = eβL0 is generated by

• (E(1,0), 0) + ιXd(etη) where X + α ∈ E(1,0)

• (E−1,−
√
−1 ∂

∂t
) + ι(e+−

√
−1 ∂

∂t
)d(e

tη)

• (E−1,−
√
−1dt) + ιe−d(e

tη)

It is a straightforward computation to verify the conditions of Theorem 4.3 using
the generators of L0 and L1. As an example, we verify condition (2): Consider
Γπ1

= 1
2
√
−1

(L0− L̄0). Recall that L0− L̄0 = {X+α−β | x+α ∈ L0, X+β ∈ L̄0}.
In particular, note that the vector field component in L0− L̄0 comes from elements
of L0 and L̄0 with the same vector field part. Consider, now, the generators of
L0 and L̄0. Since E(1,0) ∩ E(0,1) = 0 and E±,1 ∈ (E(1,0) ⊕ E(0,1))⊥, the generator

(E(1,0), 0) contributes nothing to Γπ1
. The generator (E−1,−

√
−1 ∂

∂t
) ∈ L0 and

its corresponding generator (E−1,+
√
−1 ∂

∂t
) ∈ L̄0 also yield no terms in Γπ1

. The

generators (E+1,−
√
−1dt) and (E+1,+

√
−1dt) contribute to Γπ1

so we see that
Γπ1

= 1
2
√
−1

span{(E+,1,−2
√
−1dt)} and Γπ1

∩TC(M ×R) = ∅. The argument that

Γπ2
∩ TC(M × R) = ∅ goes similarly.

In summary, if (I+Bπ) is invertible for B = d(etη) with dη 6= 0 and π = πM+πR,
we can use Gualtieri’s theorems to see that a normal generalized contact metric
structure generates a generalized Kähler structure on M × R.

5. Reducing the Invertibility Condition to a Condition on M and

the Definition of Generalized Sasakian

Ideally, we’d like a condition directly on M that would tell us whether this con-
struction of Kähler structures via a gauge transformation of the canonical Poisson
structure on M ×R by B = d(etη) will work. We do this in the following theorem.
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Theorem 5.1. Let (M,Φ, E+, E−, G) be a normal generalized contact metric struc-
ture. Let πM be the canonical Poisson structure on M . Let η = prT∗ME+ +
prT∗ME−.

Let ( R,Φ = 0, dt, ∂
∂t
, GR =

(
0 (dt2)−1

dt2 0

)
) be the standard normal gener-

alized contact metric structure on R. Let πR be its underlying Poisson structure ,
πR = 0.

Let π = πM + πR be the product Poisson structure on M × R.

Let B = d(etη). Let B̂ = dη.
Then (I +Bπ) is invertible as a map from T ∗(M ×R) to T ∗(M ×R) if and only

if (I + etB̂πM ) is invertible as a map from T ∗M to T ∗M for all t ∈ R.

Proof.

(I +Bπ) = I +B(πM + πR)

= I +BπM

= I + d(etη)(π0 + π1)

= I + etdη(π0 + π1) + etdt ∧ dη(π0 + π1)

Direct computation shows that etdt ∧ dη(π0 + π1) = 0. (To see this, write out
etdt ∧ dη(π0 + π1)as a sum of tensor products using the definition of the wedge
product and note that each summand zero due to the absence of any ∂

∂t
terms.)

So, (I +Bπ) = I + etdη(π0 + π1) as a map from T ∗(M × R) to T ∗(M × R).
Let {x1, x2, . . . xn, t} be local coordinates on M × R. Let α be an arbitrary 1-

form in T ∗(M × R) given in local coordinates by α = a1dx1 + . . . amdxn + atdt.
Then

(I +Bπ)(α) = (I + etdη(π0 + π1))(a1dx1 + . . . andxm + atdt)

= a1dx1 + . . . andxn + atdt+ etdη(π0 + π1)(a1dx1 + . . . andxn + atdt)

= a1dx1 + . . . andxn + atdt+ etdη(π0 + π1)(a1dx1 + . . . andxn)

= (I + etB̂πM )(a1dx1 + . . . andxn) + atdt

From this equation it is clear that (I +Bπ) is invertible as a map from T ∗(M ×R)

to T ∗(M ×R) if and only if (I + etB̂πM ) is invertible as a map from T ∗M to T ∗M
for all t ∈ R. �

Definition 5.2. A normal generalized contact metric space (M,Φ, E+, E−, G) is
defined to be generalized Sasakian if (I + et(dη)πM ) is invertible as a map from
T ∗M to T ∗M for all values of t ∈ R where πM is the canonical Poisson structure
on M , η = prT∗ME+ + prT∗ME− and dη 6= 0.

A natural question to ask is whether a closed B transform takes a general-
ized Sasakian structure to a generalized Sasakian structure. Given a generalized
Sasakian structure (M,Φ, E+, E−, G), a closed B transform takes it to a generalized
contact metric structure

(eBΦe−B, eBE+, e
BE−, e

BGe−B)
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satisfying [[eBE+, e
BE−]] = 0 (see [21, 8]). Let E± = X± + α±. The following

lemma shows that if LX+
B = 0 and LX−

B = 0, this B transformed Sasakian
structure is also generalized Sasakian.

Lemma 5.3. Let (M,Φ, E+, E−, G) be a generalized Sasakian structure. Let E+ =
X+ + α+ and E− = X− + α−. Let B be a closed two form such that LX+

B = 0

and LX−
B = 0. Then (eBΦe−B, eBE+, e

BE−, e
BGe−B) is a generalized Sasakian

structure.

Proof. Since (M,Φ, E+, E−, G) is generalized Sasakian, (I+et(dη)πM ) is invertible
as a map from T ∗M to T ∗M for all values of t ∈ R where πM is the canonical Poisson
structure on M , η = prT∗ME+ + prT∗ME− and dη 6= 0. Let ηB = prT∗M(e

BE+) +

prT∗M (ebE−) = prT∗ME++ ιX+
B+prT∗ME−+ ιX−

B. Then dηB = dη+dιX+
B+

dιX−
B = dη + LX+

B + LX−
B. Since LX+

B = 0 and LX−
B = 0, dη = dηB . Thus

(I + et(dηB)πM ) = (I + et(dη)πM ) is invertible as a map from T ∗M to T ∗M for
all values of t ∈ R as well and (ebΦe−B, eBE+, e

BE−, e
BGe−B) is Sasakian.

�

Theorem 5.4. A classical Sasakian space is generalized Sasakian.

Proof. Let M1 = (M,φ, η, ξ, g) be a classical Sasakian space. (Here, φ is a (1,1)
tensor, ξ is the Reeb vector field, η is a 1-form, and g is the metric.)

Let

Φ1 = Φφ =

(
φ 0
0 −φ∗

)

E+1 = ξ

E−1 = η

be the generalized contact structure generated by the classical almost contact struc-
ture φ. The compatible generalized metric is

G1 =

(
0 g−1

g 0

)
.

Since e+ ∧ e− = 0 for this space, πm = π0. Also for a classical Sasakian space, π0

restricted to (E+ ⊕ E−)
⊥ equals (dη)−1. Let α be an arbitrary element of T ∗M .

Then

(I + etB̂πM )(α) = (I + etdη ◦ π0)(α)

= (1 + et)(α)

which is invertible. �

Remark 5.5. Definitions of generalized Sasakian structures have been put forth by
Vaisman ([24, 25]) and Sekiya ([21]). The definitions of Vaisman and Sekiya are
not invariant under B transforms hence this definition is distinct from theirs.

Recall that for a classical coKähler space (M,φ, ξ, η, g) we always have that
dη = 0. So when we look at a classical coKähler space as a generalized contact
metric structure, the gauge transform of its canonical poisson structure onM×R by
B = d(etη) does not yield a new generalized complex structure. The map (I +Bπ)
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reduces to just the identity map. As a result we see that the procedure using
gauge transformation by d(etη) on the canonical Poisson structure fails to generate
a Kähler structure on M × R even though a Kähler structure can be constructed
on M × R via a product construction. This holds true with generalized coKähler
spaces as well.

Theorem 5.6. Let (M,Φ, E+, E−, G) be a generalized coKähler space. Let η =
prT∗M (E+) + prT∗M (E−). Then dη = 0 when restricted to ker η = (E+ ⊕ E−)

⊥.
As a consequence, we see that there is no intersection between the set of generalized
Sasakian spaces and the set of generalized coKähler spaces.

Proof. Note that since G(E±) = E∓, the 1-form η is the same for both generalized

contact metric structures (M,Φ, E+, E−, G) and (M, Φ̃ = GΦ, Ẽ+ = GE+, Ẽ− =
GE−, G). Since Φ and GΦ are both strong, the pair (L,L∗) forms a Lie bialgebroid
where L = LE+ + E(1,0) and L∗ = LE− + E(0,1). By theorem 2.9 of [20], this is
true if and only if dη = 0 when restricted to ker η = (E+ ⊕ E−)

⊥.
�

6. Arbitrary Products of Generalized Sasakian Manifolds

The famous result of Calabi and Eckman (see [6]) showed that the product of
Sasakian spaces need not be Kähler. This holds true for generalized Sasakian spaces
as well. One expects this since (I +B(π1 + π2)) need not be invertible even if both
(I + B(π1)) and (I + B(π2)) are both invertible. The details of the argument in
section 4 shows that it works in part because the underlying Poisson structure
on R is the zero Poisson structure. The argument on the product of generalized
Sasakian spaces being Kähler will go through if one of the generalized contact metric
structures has the zero Poisson structure as its canonical Poisson structure. Hence,
we get the following theorem:

Theorem 6.1. Let (M1,Φ, E+1, E−1, G1) be a generalized Sasakian space with
canonical Poisson structure πM1

. Let (M2,Φ, E+2, E−2, G2) be a generalized Sasakian
space with canonical Poisson structure πM2

= 0. Then M1 ×M2 admits a general-
ized Kähler structure.
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