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Abstract
We use the Blanchfield form to obtain a lower bound on
the equivariant slice genus of a strongly invertible knot.
For our main application, let 𝐾 be a strongly invertible
genus one slice knot with nontrivial Alexander polyno-
mial. We show that the equivariant slice genus of an
equivariant connected sum #𝑛𝐾 is at least 𝑛∕4. We also
formulate an equivariant algebraic concordance group,
and show that the kernel of the forgetful map to the
classical algebraic concordance group is infinite rank.

MSC 2020
57K10, 57N35, 57N70 (primary)

1 INTRODUCTION

Let 𝛾 be a great circle in 𝑆3, and let 𝜏∶ 𝑆3 → 𝑆3 be the order two diffeomorphism given by the
rotation with axis 𝛾 through 𝜋 radians. Let 𝐾 be a knot in 𝑆3 that intersects 𝛾 in precisely two
points, and such that 𝜏(𝐾) = 𝐾. Then we say that 𝐾 is strongly invertible with strong inversion 𝜏.
Note that 𝜏|𝐾 is necessarily orientation reversing, so 𝐾 is in particular reversible. Suppose that 𝐾
bounds a compact, oriented, locally flat surface Σ of genus g in𝐷4, such that for some extension of
𝜏 to a locally linear involution 𝜏̂ ∶ 𝐷4 → 𝐷4, one has that 𝜏̂(Σ) = Σ. The minimal such g is called
the (topological) equivariant 4-genus or equivariant slice genus of (𝐾, 𝜏), and denoted g̃4(𝐾, 𝜏). A
strongly invertible knot with g̃4(𝐾, 𝜏) = 0 is called equivariantly slice.

© 2023 The Authors. Journal of the LondonMathematical Society is copyright © LondonMathematical Society. This is an open access article
under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited.
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2026 MILLER and POWELL

F IGURE 1 The pretzel knots 𝑃(𝑎, −𝑎, 𝑎) for odd 𝑎 > 1 (left) and the generalized twist knots 𝐾𝑏 for even
𝑏 > 0 (right) are strongly invertible genus one slice knots with nontrivial Alexander polynomials. The labels
indicate the number of crossings in the given twist regions, with the illustrated handedness.

1.1 Lower bounds on the equivariant 4-genus

By studying the Alexander module and the Blanchfield pairing, we derive a new lower bound for
the equivariant 4-genus, which we will explain below. First, we state our main application.

Theorem 1.1. Let 𝐾 be a genus one algebraically slice knot with nontrivial Alexander polynomial
and strong inversion 𝜏. Let (𝐾𝑛, 𝜏𝑛) be an equivariant connected sum of 𝑛 copies of (𝐾, 𝜏). Then the
equivariant 4-genus of (𝐾𝑛, 𝜏𝑛) is at least 𝑛∕4. In particular, if 𝐾 is slice then g̃4(𝐾𝑛, 𝜏𝑛) − g4(𝐾𝑛) →
∞ as 𝑛 → ∞.

There are many examples of strongly invertible genus one slice knots with nontrivial Alexan-
der polynomial; see, for example, Figure 1. Thus, the topological equivariant 4-genus of strongly
invertible slice knots can be arbitrarily large.
A fixed knot can admit multiple inequivalent strong inversions, as is the case for twist knots

with even crossing number. The equivariant connected sum is also not unique, and depends on
the choice of a direction [41] (see also Subsection 2.3). However, Theorem 1.1 holds for any choice
of strong inversion on 𝐾 and any equivariant connected sum 𝐾𝑛, so long as we use the same 𝜏 for
each copy of 𝐾.
An involution 𝜏∶ 𝑀𝑛 → 𝑀𝑛 is locally linear if for every fixed point 𝑥 ∈ 𝑀 there is a 𝜏-invariant

neighborhood 𝑈𝑥, a chart 𝜑∶ 𝑈𝑥 → ℝ𝑛 around 𝑥 with 𝜑(𝑥) = 0, and there is a linear transfor-
mation 𝜓∶ ℝ𝑛 → ℝ𝑛 such that 𝜑 ◦ 𝜏 = 𝜓 ◦𝜑. Every smooth involution is locally linear, and local
linearity is the natural analogue of smoothness in the topological category, introduced in [4]. See
[42] for a survey of work on locally linear actions.
The study of strongly invertible knots up to equivariant concordance was instigated by Sakuma

[41], who defined an equivariant knot concordance group of directed strongly invertible knots, and
introduced the 𝜂-polynomial, a homomorphism from the equivariant knot concordance group to
the abelian group ℤ[𝑡±1]. The 𝜂-polynomial was originally defined as an obstruction to smooth
equivariant concordance. However, using results from [22] one can show that it extends to an
obstruction in the topological category. Borodzik–Dai–Mallick–Stoffregen inform us that a proof
of this will appear soon in work of theirs on equivariant concordance, so to avoid duplicating
effort we will not provide our own proof. It follows that the 𝜂-polynomial obstructs many strongly
invertible slice knots from being equivariantly slice. But beyond this 𝜂 does not give information
on the equivariant 4-genus.
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STRONGLY INVERTIBLE KNOTS AND EQUIVARIANT SLICE GENERA 2027

Theorem 1.1 gives an alternative proof of the analogous smooth result, that the smooth equiv-
ariant 4-genus can be arbitrarily large for slice knots, due to Dai–Mallick–Stoffregen [15], and
proven using knot Floer homology. Our methods do not recover their specific examples, but tend
to require significantly easier computations, as evidenced by the fact that Theorem 1.1 applies to a
large class of strongly invertible knots. In [15], they also consider the isotopy-equivariant 4-genus,
where one relaxes the condition that 𝜏̂(Σ) = Σ to instead to require that 𝜏̂(Σ) is ambiently isotopic
to Σ while keeping the boundary pointwise fixed. Our lower bounds extend to this setting with
identical proofs.
Recent work of Boyle–Issa [2] used Donaldson’s theorem to give a lower bound on the smooth

equivariant 4-genus, but this bound is only capable of establishing a gap of one between the usual
smooth 4-genus and the smooth equivariant 4-genus, and therefore cannot prove Theorem 1.1
even in the smooth category. There has been further significant recent interest in equivariant con-
cordance of strongly invertible knots, including by Dai–Hedden–Mallick [14], Alfieri–Boyle [1],
and Di Prisa [16], but none of this work gives lower bounds on the equivariant 4-genus.
Theorem 1.1 is a consequence of our main obstruction theorem, which reads as follows. The

generating rank of a ℚ[𝑡±1]-module 𝑄, denoted g−rk𝑄, is by definition the number of elements
in a generating set of minimal cardinality. The (rational) Alexander module of an oriented knot 𝐾
is the first homology(𝐾) ∶= 𝐻1(𝐸𝐾;ℚ[𝑡±1]) of the infinite cyclic cover of the knot exterior 𝐸𝐾 .
This admits a nonsingular, Hermitian, sesquilinearBlanchfield pairing [3]𝓁𝐾 ∶ (𝐾) ×(𝐾) →

ℚ(𝑡)∕ℚ[𝑡±1], whose definition we will recall in detail in Section 2.

Theorem 1.2. Let (𝐾, 𝜏) be a strongly invertible knot. Let 𝑘 be the maximal generating rank of any
submodule 𝑃 of(𝐾) satisfying 𝓁𝐾(𝑥, 𝑦) = 0 = 𝓁𝐾(𝑥, 𝜏∗(𝑦)) for all 𝑥, 𝑦 ∈ 𝑃. Then

g̃4(𝐾, 𝜏) ⩾
g−rk(𝐾) − 2𝑘

4
.

To apply this lower bound to a given knot, one only needs to make a relatively straightforward
computation of the Blanchfield pairing, which can be done in terms of a Seifert matrix using [21,
27]. To prove Theorem 1.1, we compute that 𝑘 = 0 and g−rk(𝐾) = 𝑛 when 𝐾 = #𝑛𝐽 and 𝐽 is a
genus one algebraically slice knot with Δ𝐽 nontrivial.

1.2 An equivariant algebraic knot concordance group

A direction for a strongly invertible knot (𝐾, 𝜏) consists of a choice of orientation of the great circle
𝛾 and a choice of connected component of 𝛾 ⧵ 𝐾. The set of directed, strongly invertible knots
admits a well-defined connected sum, with respect to which it forms a group if we quotient by
the relation of equivariant concordance. Here two strongly invertible knots (𝐾1, 𝜏1) and (𝐾2, 𝜏2)
are equivariantly concordant if there is a locally flat concordance 𝐴 ⊆ 𝑆3 × 𝐼 between 𝐾1 and 𝐾2
together with an extension of 𝜏1 and 𝜏2 to an involution 𝜏̂ ∶ 𝑆3 × 𝐼 → 𝑆3 × 𝐼 with 𝜏̂(𝐴) = 𝐴, and
such that the directions are preserved. We give more details in Subsection 2.3.
Taking the Blanchfield form 𝓁ℤ

𝐾
of a knot 𝐾 gives rise to a homomorphism from the knot

concordance group to the algebraic knot concordance group,𝓁∶  → . The latter is theWitt
group of abstract Blanchfield forms, which is isomorphic to the possibly more familiarWitt group
of Seifert forms, see [18, 27, 28, 46], as well as [39] for a purely algebraic proof. The analogous
homomorphism for odd high-dimensional knots 𝑆2𝑘−1 in 𝑆2𝑘+1 is an isomorphism for 𝑘 ⩾ 2 [13,
28]. For 𝑘 = 1 the algebraic concordance group has been the framework for deeper investigation
of , see, for example, [6–9, 11, 17, 23, 26, 30–32, 35, 36].
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2028 MILLER and POWELL

The Blanchfield form interpretation of the algebraic concordance group lends itself to general-
ization to the equivariant setting. Let 𝑆𝐼 denote the equivariant concordance group of strongly
invertible knots. We define an equivariant algebraic concordance group 𝑆𝐼 by considering a
Witt group of abstract Blanchfield forms (𝐻,𝓁) endowed with an anti-isometry 𝜏∶ 𝐻 → 𝐻, and
requiring metabolizers to be 𝜏-invariant. We give the detailed definition of𝑆𝐼 and a homomor-
phism Ψ∶ 𝑆𝐼 → 𝑆𝐼 in Section 4.2. This fits into a commutative diagram, where the vertical
maps forget the inversion and the horizontal maps pass from geometry to algebra.

The bottom homomorphism is surjective [28] and has kernel of infinite rank [26].

Theorem 1.3. There is a subgroup of ker(𝐹 ∶ 𝑆𝐼 → ) of infinite rank, and whose image in𝑆𝐼

is infinite rank.

Remark 1.4. What else do we know about the maps in the square above?
(1) It follows from [33] that 𝐹 is not surjective. If it were, every knot would be concordant to a

reversible knot, but a knot that is concordant to a reversible knot is concordant to its own
reverse, and Livingston found knots not concordance to their own reverses.

(2) We do not know whether Ψ is surjective, nor whether the forgetful map 𝑆𝐼 →  is
surjective. However, some evidence toward the surjectivity of Ψ was given by Sakai, who
showed [40] that every Alexander polynomial is realized by a strongly invertible knot.

(3) Sakuma’s 𝜂-invariant [41] was already an effective way to obstruct knots from being equiv-
ariantly slice, and Sakuma used it to show that ker 𝐹 is nontrivial, for example by showing
that the Stevedore knot is not equivariantly slice. Moreover, he showed that for 𝐾 the
untwistedWhitehead double of the trefoil and figure eight knots, 𝜂(𝐾) ≠ 0, and therefore that
ker 𝐹 ∩ kerΨ is nontrivial. Note that these examples are isotopy-equivariantly (topologically)
slice by [12], as they have Alexander polynomial one.

(4) All of 𝑆𝐼 , , and  are abelian, whereas 𝑆𝐼 is not [16]. So, the nontrivial commutators
found by Di Prisa also lie in ker 𝐹 ∩ kerΨ.

Levine and Stoltzfus [28, 45] algebraically computed that  ≅ ℤ∞ ⊕ (ℤ∕2ℤ)∞ ⊕ (ℤ∕4ℤ)∞.
We aim to analyze the isomorphism type of𝑆𝐼 in future work.
In our proof of Theorem 1.3, we use genus one knots to exhibit the claimed subgroup of ker 𝐹.

The proof also shows the following result, which we think worth emphasizing.

Corollary 1.5. Let 𝐾 be a genus one strongly invertible knot with nontrivial Alexander polynomial.
Then 𝐾 is not equivariantly slice.

This is also formally a consequence of Theorem 1.1, although we prove the corollary before we
start the proof of Theorem 1.1.

Organization of the paper

In Section 2, we recall the Alexander module and the Blanchfield form of a knot, and we show
that a strong involution 𝜏 induces an anti-isometry of the Blanchfield form. We also recall the
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STRONGLY INVERTIBLE KNOTS AND EQUIVARIANT SLICE GENERA 2029

definition of equivariant connected sum, and consider its effect on these data. In Section 3, we per-
form some detailed computations of Blanchfield forms for some key examples. In Section 4.2, we
show that theBlanchfield formof an equivariantly slice strongly invertible knot has an equivariant
metabolizer. We use this observation to motivate the definition of an equivariant algebraic con-
cordance group𝑆𝐼 , and we then prove Theorem 1.3 and Corollary 4.2. We also give an infinite
family of amphichiral knots that are infinite order in 𝑆𝐼 . Finally, Section 5 contains the proof
of the lower bound in Theorem 1.2, and then by combining this theorem with the computations
in Section 3, we deduce Theorem 1.1.

2 ALEXANDERMODULES, BLANCHFIELD FORMS,
EQUIVARIANT CONNECTED SUM, AND EQUIVARIANT
CONCORDANCE

In this section, we recall the equivariant connected sum of strongly invertible knots, and we
deduce algebraic conclusions, on the level of Alexander modules and Blanchfield pairings, from
the existence of a strongly invertible slice disc. Throughout this section and the remainder of the
article, we write Λ ∶= ℚ[𝑡±1].

Definition 2.1. Given a finitely generated Λ-module 𝑈, we define the following notions.
(1) By the fundamental theorem on finitely generated modules over a PID, there exists some

𝑛,𝑚 ⩾ 0 and 𝑝1(𝑡), … , 𝑝𝑚(𝑡) ∈ Λ such that

𝑈 ≅ Λ𝑛 ⊕

𝑚⨁
𝑖=1

Λ∕𝑝𝑖(𝑡).

When 𝑛 = 0, the order of 𝑈 is defined to be
∏𝑚
𝑖=1 𝑝𝑖(𝑡); otherwise, the order is defined to be

0. In both cases, we denote the order of 𝑈 by |𝑈|; this is an element of Λ well-defined up to
multiplication by units of Λ.

(2) The Λ-module𝑈 setwise agrees with𝑈 and has Λ-action defined by 𝑝(𝑡) ⋅
𝑈
𝑢 = 𝑝(𝑡) ⋅𝑈 𝑢 for

all 𝑝(𝑡) ∈ Λ and 𝑢 ∈ 𝑈, where ⋅ is theℚ-linear involution onΛ sending 𝑡𝑘 to 𝑡−𝑘 for all 𝑘 ∈ ℤ.

2.1 The involution induced on the Alexander module

Let 𝐾 be an oriented knot in 𝑆3 and let 𝐸𝐾 ∶= 𝑆3 ⧵ 𝜈𝐾 denote the exterior of 𝐾. Let𝑀𝐾 ∶= 𝑆30(𝐾)
denote the result of 0-framed surgery on 𝑆3 along 𝐾. Let 𝜇𝐾 be an oriented meridian for 𝐾 and
let 𝜆𝐾 be a 0-framed oriented longitude. Requiring that 𝜇𝐾 maps to 𝑡 ∈ ∞ ≅ ⟨𝑡⟩ determines
surjections factoring through the Hurewicz maps:

𝜋1(𝐸𝐾) → 𝐻1(𝐸𝐾; ℤ) ≅ ℤ ≅ ⟨𝑡⟩,
𝜋1(𝑀𝐾) → 𝐻1(𝑀𝐾;ℤ) ≅ ℤ ≅ ⟨𝑡⟩.

These in turn determine coefficient systems for twisted homology:

𝐻𝑖(𝐸𝐾; Λ) ∶= 𝐻𝑖(Λ ⊗ℤ[𝜋1(𝐸𝐾)] 𝐶∗(𝐸𝐾)),

𝐻𝑖(𝑀𝐾;Λ) ∶= 𝐻𝑖(Λ ⊗ℤ[𝜋1(𝑀𝐾)] 𝐶∗(𝑀̃𝐾)).

One makes analogous constructions for ℤ[𝑡±1] in place of Λ = ℚ[𝑡±1].
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2030 MILLER and POWELL

Moreover, given a 4-manifold 𝑍 with 𝜕𝑍 = 𝑀𝐾 such that the inclusion induced map
𝑖∗ ∶ 𝐻1(𝑀𝐾;ℤ) → 𝐻1(𝑍; ℤ) is an isomorphism, we will frequently consider 𝐻1(𝑍;Λ) ∶=
𝐻𝑖(Λ ⊗ℤ[𝜋1(𝑍)] 𝐶∗(𝑍)) and a similarly defined 𝐻1(𝑍,𝑀𝐾;Λ), where the coefficient system on 𝑍

is given by composing 𝑖−1∗ with our standard map𝐻1(𝑀𝐾;ℤ)
≅
K→ ⟨𝑡⟩.

Definition 2.2. The (rational) Alexander module of 𝐾 is the Λ-module(𝐾) ∶= 𝐻1(𝐸𝐾; Λ). The
order of this Λ-module is exactly the Alexander polynomial of 𝐾. Observe that the 0-framed lon-
gitude of 𝐾 lifts to the infinite cyclic cover of 𝐸𝐾 and therefore defines a class in 𝐻1(𝐸𝐾; Λ),
and this homology class is trivial because any Seifert surface for 𝐾 exhibits the longitude as a
double commutator in 𝜋1(𝐸𝐾). Therefore, the inclusion-induced map 𝐻1(𝐸𝐾; Λ) → 𝐻1(𝑀𝐾;Λ)

is an isomorphism, and we could have equally well-defined the Alexander module of 𝐾 to be
𝐻1(𝑀𝐾;Λ).
The integral Alexander module of 𝐾 is ℤ(𝐾) ∶= 𝐻1(𝐸𝐾; ℤ[𝑡

±1]), or equivalently
𝐻1(𝑀𝐾;ℤ[𝑡

±1]), for the same reason as above.

A strong involution determines some additional algebraic structure on the Alexander module,
of the following type.

Definition 2.3. Let 𝑈 be a Λ-module. A Λ-module isomorphism 𝑓∶ 𝑈 → 𝑈 is called an anti-
automorphism. That is, 𝑓 is a ℚ-linear bijection such that

𝑓(𝑡𝑘 ⋅𝑈 𝑥) = 𝑡
𝑘 ⋅
𝑈
𝑓(𝑥) = 𝑡−𝑘 ⋅𝑈 𝑓(𝑥)

for all 𝑘 ∈ ℤ and 𝑥 ∈ 𝑈. An analogous definition holds forℤ[𝑡±1]-modules in place ofΛ-modules.

Let 𝐾 be a strongly invertible knot with involution 𝜏. Restricting 𝜏 to 𝐸𝐾 gives a homeomor-
phism 𝜏𝐾 ∶ 𝐸𝐾 → 𝐸𝐾𝑟 that sends 𝜇𝐾 to 𝜇𝐾𝑟 and 𝜆𝐾 to 𝜆𝐾𝑟 . For every knot 𝐽, the identity map on 𝑆3
restricts to a function 𝜌𝐽 ∶ 𝐸𝐽 → 𝐸𝐽𝑟 that sends 𝜇𝐽 to 𝜇−1𝐽 and 𝜆𝐽 to 𝜆−1𝐽 . Therefore, we can consider
the composition

𝜌−1𝐾 ◦ 𝜏∶ 𝐸𝐾 → 𝐸𝐾,

an orientation preserving homeomorphism of 𝐸𝐾 that squares to the identity map and sends 𝜇𝐾
to 𝜇−1

𝐾
, and 𝜆𝐾 to 𝜆−1𝐾 .

Further, the map 𝜌−1
𝐾

◦ 𝜏 induces an anti-automorphism of(𝐾), as in Definition 2.3, which by
a mild abuse of notation we refer to as 𝜏∗ ∶ (𝐾) → (𝐾).

Definition 2.4. Given a strongly invertible knot (𝐾, 𝜏), let

𝜏∗ ∶= (𝜌
−1
𝐾 ◦ 𝜏)∗ ∶ (𝐾) → (𝐾)

be defined as above.We call the anti-automorphism 𝜏∗ the inversion-inducedmapon theAlexander
module. There is an analogous anti-automorphism 𝜏∗ ∶ ℤ(𝐾) → ℤ(𝐾).

Example 2.5. We give some examples of inversion-induced maps.

(i) Let 𝐾 = 61 be the Stevedore knot illustrated in Figure 2. Standard arguments using Seifert
matrices or Fox calculus (see also Proposition 3.1) imply that(𝐾) ≅ Λ∕(2𝑡 − 5 + 2𝑡−1), with
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STRONGLY INVERTIBLE KNOTS AND EQUIVARIANT SLICE GENERA 2031

F IGURE 2 The Stevedore knot 𝐾 = 61, illustrated with its axis of inversion and curves 𝛼 and 𝛽, each of
whose lift generates(𝐾).

generator given by the class represented by 𝛼̃, the lift of the curve𝛼 illustrated inFigure 2 to the
infinite cyclic cover of the knot exterior. As the involution 𝜏 sends 𝛼 to itself in an orientation
reversing way while fixing our chosen basepoint for 𝐸𝐾 , we obtain that 𝜏∗([𝛼̃]) = −[𝛼̃]. As 𝜏∗
is an anti-automorphism, we see that 𝜏∗(𝑝(𝑡)[𝛼̃]) = −𝑝(𝑡−1)[𝛼̃] for all 𝑝(𝑡) ∈ Λ.
Note that this description of 𝜏∗ depends on the generator we pick for(𝐾). For example, if

we had chosen the lift of 𝛽 as our preferred generator for(𝐾), we would have computed that
𝜏 ∗ ([𝛽]) = 𝑡−1[𝛽], as 𝜏 sends 𝛽 to 𝜇−1𝛽𝜇 for a certain meridian 𝜇 of 𝐾. We therefore could
have alternately said that(𝐾) ≅ Λ∕(2𝑡 − 5 + 2𝑡−1), with 𝜏∗ the unique anti-automorphism
sending the generator [𝛽] to 𝑡−1[𝛽].
The action of 𝜏∗ on [𝛽] can also be computed using the fact, verifiable via a Seifert surface

for 𝐾, that [𝛽] = (2𝑡 − 2)[𝛼̃] in(𝐾). Then we can observe

𝜏∗([𝛽]) = (2𝑡
−1 − 2)𝜏∗([𝛼̃]) = (2 − 2𝑡

−1)[𝛼̃] = 𝑡−1(2𝑡 − 2)[𝛼̃] = 𝑡−1[𝛽],

as asserted.
(ii) Let𝐾 = 𝐽#𝐽𝑟 and let 𝜏 be the involutionwhich switches the two factors. Then(𝐾) ≅ (𝐽) ⊕

(𝐽𝑟) and 𝜏∗(𝑥, 𝑦) = (𝑦, 𝑥). Observe that for any (𝑥, 𝑦) ∈ 𝐴(𝐽) ⊕(𝐽𝑟) one has

𝜏∗(𝑡𝐽#𝐽𝑟 ⋅ (𝑥, 𝑦)) = 𝜏∗(𝑡𝐽 ⋅ 𝑥, 𝑡𝐽𝑟 ⋅ 𝑦) = (𝑡𝐽𝑟 ⋅ 𝑦, 𝑡𝐽 ⋅ 𝑥) = (𝑡
−1
𝐽 ⋅ 𝑦, 𝑡−1𝐽𝑟 ⋅ 𝑥) = 𝑡−1𝐽#𝐽𝑟 ⋅ 𝜏∗(𝑥, 𝑦),

so we can directly verify that 𝜏∗ is an anti-automorphism.

2.2 The Blanchfield pairing

As above let𝑀𝐾 be the result of zero-framed surgery on 𝑆3 along a knot𝐾. We now briefly outline
the definition of the Blanchfield pairing, referring the reader to [34] for more details. We consider
the sequence of isomorphisms of Λ-modules

Θ∶ 𝐻1(𝑀𝐾;Λ)
𝑃𝐷−1

KKKKK→ 𝐻2(𝑀𝐾;Λ)
𝐵−1

KKK→ 𝐻1(𝑀𝐾;ℚ(𝑡)∕Λ)
𝜅
K→ HomΛ(𝐻1(𝑀𝐾;Λ), ℚ(𝑡)∕Λ).

These maps are given respectively by the inverse of Poincaré duality, the inverse of the
Bockstein isomorphism corresponding to the short exact sequence of coefficients 0 → Λ →

ℚ(𝑡) → ℚ(𝑡)∕Λ → 0, and the evaluation map. The Bockstein map 𝐵 is an isomorphism because
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2032 MILLER and POWELL

𝐻𝑖(𝑀𝐾;ℚ(𝑡)) = 0 for 𝑖 = 1, 2, as 𝐻𝑖(𝑀𝐾;Λ) is Λ-torsion [29]. The evaluation map 𝜅 is an iso-
morphism by the universal coefficient theorem, because ℚ(𝑡)∕Λ is an injective Λ-module and
so Ext1

Λ
(𝐻0(𝑀𝐾;Λ), ℚ(𝑡)∕Λ) = 0.

Definition 2.6. The Blanchfield pairing 𝓁𝐾 ∶ 𝐻1(𝑀𝐾;Λ) × 𝐻1(𝑀𝐾;Λ) → ℚ(𝑡)∕Λ is given by
𝓁𝐾(𝑥, 𝑦) ∶= Θ(𝑦)(𝑥).

The Blanchfield pairing, originally defined in [3], is sesquilinear, Hermitian, and nonsingular;
see, for example, [37] for more details. Here sesquilinear means that𝓁𝐾(𝑝𝑥, 𝑞𝑦) = 𝑝𝓁𝐾(𝑥, 𝑦)𝑞
and Hermitian means that 𝓁𝐾(𝑦, 𝑥) = 𝓁𝐾(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝐻1(𝑀𝐾;Λ) and for all 𝑝, 𝑞 ∈ Λ.
The analogous definition applies with ℤ[𝑡±1] replacing Λ, giving rise to the integral Blanchfield
form 𝓁ℤ

𝐾
. It is more work to show that the evaluation map is an isomorphism in this case, but it

still holds, see, for example, [29].
Given a Λ-module 𝑈 and a sesquilinear, Hermitian pairing 𝐵∶ 𝑈 × 𝑈 → ℚ(𝑡)∕Λ, there is an

involuted pairing 𝐵∶ 𝑈 × 𝑈 → ℚ(𝑡)∕Λ given by 𝐵(𝑥, 𝑦) = 𝐵(𝑥, 𝑦). The pairing 𝐵 is sesquilinear
in the sense that 𝐵(𝑝𝑥, 𝑞𝑦) = 𝑝𝐵(𝑥, 𝑦)𝑞.

Definition 2.7. Let 𝑈 be a Λ-module and let 𝐵∶ 𝑈 × 𝑈 → ℚ(𝑡)∕Λ be a sesquilinear, Hermitian
pairing. An anti-automorphism 𝑓∶ 𝑈 → 𝑈 is called an anti-isometry of (𝑈, 𝐵) if

𝐵(𝑥, 𝑦) = 𝐵(𝑓(𝑥), 𝑓(𝑦)) = 𝐵(𝑓(𝑥), 𝑓(𝑦))

for all 𝑥, 𝑦 ∈ 𝑈. That is, an anti-isometry induces an isometry between 𝐵∶ 𝑈 × 𝑈 → ℚ(𝑡)∕Λ and
𝐵∶ 𝑈 × 𝑈 → ℚ(𝑡)∕Λ. An analogous definition holds forℤ[𝑡±1]-modules and a pairingwith values
in ℚ(𝑡)∕ℤ[𝑡±1].

We saw in the previous section that 𝜏∗ ∶ 𝐻1(𝑀𝐾;Λ) → 𝐻1(𝑀𝐾;Λ) is an anti-automorphism,
and now prove the following.

Proposition 2.8. Let (𝐾, 𝜏) be a strongly invertible knot. The inversion-inducedmap on the Alexan-
der module, 𝜏∗, induces an anti-isometry of the Blanchfield pairing 𝓁𝐾 . The same holds for the
integral Alexander module and 𝓁ℤ

𝐾
.

Proof. The homeomorphism 𝜏∶ 𝐸𝐾 → 𝐸𝐾𝑟 induces an isometry of Blanchfield pairings 𝓁𝐾 ≅
𝓁𝐾𝑟 . The map 𝜌𝐾 ∶ 𝐸𝐾𝑟 → 𝐸𝐾 identifies 𝓁𝐾𝑟 with 𝓁𝐾 . Therefore, 𝜌−1𝐾 ◦ 𝜏, the map which
induces 𝜏∗ ∶ (𝐾) → (𝐾), induces an isometry of 𝓁𝐾 with 𝓁𝐾 , or in other words an
anti-isometry of 𝓁𝐾 , as required. □

2.3 Equivariant connected sum of knots

We recall the definition of the connected sum of two directed strongly invertible knots, following
Sakuma [41]. A direction on a strongly invertible knot (𝐾, 𝜏) is a choice of orientation of the great
circle 𝛾, and a choice of one of the two connected component of 𝛾 ⧵ 𝐾. A strongly invertible knot
together with a choice of direction is called directed. These extra data enable us to remove the
indeterminacy in the definition of connected sum.
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STRONGLY INVERTIBLE KNOTS AND EQUIVARIANT SLICE GENERA 2033

F IGURE 3 Two directed strongly invertible knots (left and middle) and their connected sum (right). For
each of the three knots, the preferred component of the axis of symmetry passes through the point at infinity.

Definition 2.9 (Equivariant connected sum). Let (𝐾1, 𝜏1) and (𝐾2, 𝜏2) be directed strongly invert-
ible knots, so 𝜏𝑖 ∶ (𝑆3, 𝐾𝑖) → (𝑆3, 𝐾𝑖) is rotation by𝜋 about the axis 𝛾𝑖 . As illustrated in Figure 3, for
𝑖 = 1, 2 let𝐵𝑖 be a small neighborhood of one of the intersection points of𝐾𝑖 with 𝛾𝑖 . For𝐾1, use the
intersection point that lies at the start of the chosen connected component of 𝛾1 ⧵ 𝐾1. For 𝐾2, use
the intersection point that lies at the end of the chosen connected component of 𝛾2 ⧵ 𝐾2. Arrange
that 𝐵𝑖 ∩ 𝐾𝑖 is an unknotted arc and that 𝜏𝑖 restricts to a homeomorphism of pairs (𝐵𝑖, 𝐵𝑖 ∩ 𝐾𝑖).
Let

𝑓∶ 𝜕
(
𝐵1, 𝐵1 ∩ 𝐾1, 𝐵1 ∩ 𝛾1

)
→ 𝜕

(
𝐵2, 𝐵2 ∩ 𝐾2, 𝐵2 ∩ 𝛾2

)
be a homeomorphism of triples such that:

(i) 𝑓 is an orientation-reversing homeomorphism of 𝑆3;
(ii) 𝑓 ◦ 𝜏1 ◦𝑓−1 = 𝜏2;
(iii) the point of 𝐵1 ∩ 𝛾1 at which the orientation of 𝛾1 points into 𝐵1 is identified with the point

of 𝐵2 ∩ 𝛾2 at which the orientation of 𝛾2 points out of 𝐵2.

Then there is a homeomorphism of triples(
(𝑆3, 𝐾1, 𝛾1) ⧵ (𝐵1, 𝐵1 ∩ 𝐾1, 𝐵1 ∩ 𝛾1)

)
∪𝑓

(
(𝑆3, 𝐾2, 𝛾2) ⧵ (𝐵2, 𝐵2 ∩ 𝐾2, 𝐵2 ∩ 𝛾2)

)
≅
(
𝑆3, 𝐾1#𝐾2, 𝛾1#𝛾2

)
,

which defines the equivariant connected sum 𝐾1#𝐾2. This comes with a strong involution 𝜏
obtained from gluing 𝜏1 and 𝜏2, with fixed set 𝛾1#𝛾2 and such that 𝜏(𝐾1#𝐾2) = 𝐾1#𝐾2.
To define the direction on the connected sum, we take the orientation on 𝛾1#𝛾2 induced by

the orientations of 𝛾1 and 𝛾2, and we take the connected component of 𝛾1#𝛾2 which contains the
original preferred components of 𝛾1 and 𝛾2 (minus 𝐵1 ∩ 𝛾1 and 𝐵2 ∩ 𝛾2, respectively).
We call (𝐾, 𝜏) the equivariant connected sum of (𝐾1, 𝜏1) and (𝐾2, 𝜏2). Sakuma [41, section 1]

proved that the equivariant isotopy class of 𝐾1#𝐾2 does not depend on the choice of 𝑓 satisfying
the above conditions.

Remark 2.10. In particular, note that we did not fix an orientation on 𝐾1 nor on 𝐾2. As strongly
invertible knots are reversible, 𝐾1#𝐾2 is isotopic to 𝐾1#𝐾𝑟2. As indicated in [41, figure 1.2], the
two knots are moreover equivariantly isotopic, and so it is not necessary to choose orientations
on the 𝐾𝑖 .

Definition 2.11 (Equivariant concordance). Let (𝐾0, 𝜏0) and (𝐾1, 𝜏1) be directed strongly
invertible knots with axes 𝛾0 and 𝛾1, respectively.
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2034 MILLER and POWELL

(a) Suppose that there is a concordance between 𝐾0 and 𝐾1, that is, there is a locally flat embed-
ding 𝑐∶ 𝑆1 × [0, 1] → 𝑆3 × [0, 1] with 𝑐(𝑆1 × {𝑖}) = 𝐾𝑖 for 𝑖 = 0, 1. The image 𝐶 ∶= 𝑐(𝑆1 ×
[0, 1] is a proper submanifold of 𝑆3 × [0, 1].

(b) Suppose also that there is an involution of (𝑆3 × [0, 1], 𝐶) extending 𝜏0 and 𝜏1, that is an order
two locally linear homeomorphism 𝜏̂ ∶ 𝑆3 × [0, 1] → 𝑆3 × [0, 1] such that 𝜏̂|𝑆3×{𝑖} = 𝜏𝑖 ∶ 𝑆3 ×
{𝑖} → 𝑆3 × {𝑖} for 𝑖 = 0, 1, and such that 𝜏̂(𝐶) = 𝐶.

(c) Let 𝐴 be the set of fixed points of 𝜏̂. By Remark 2.12, 𝐴 is a locally flat concordance between
𝛾0 and 𝛾1. Suppose that the chosen connected components of 𝛾0 ⧵ 𝐾0 and 𝛾1 ⧵ 𝐾1 lie in the
same connected component of 𝐴 ⧵ 𝐶, and that the orientations of 𝛾0 and 𝛾1 induce opposite
orientations on 𝐴.

Then we say that (𝐾0, 𝜏0) and (𝐾1, 𝜏1) are directed equivariantly concordant.

Remark 2.12. We explain why the fixed point set𝐴 ofℤ∕2 acting on 𝑆3 × [0, 1] via the involution 𝜏̂
is an annulus. As 𝜏̂ is locally linear, the fixed set𝐴 is a submanifold of locally constant dimension.
Let (𝑊, 𝑓) = (𝑆3 × 𝐼, 𝜏̂) ∪ (𝐷4, 𝜎), where 𝜎 is the standard extension of 𝜏 to 𝐷4.
Smith’s theorem on finite group actions [43, 44] (see also [4, section III, Theorem 5.2] for a

modern treatment) implies that the fixed set of (𝑊, 𝑓) is a ℤ∕2-homology ball, and in particular
is connected. As the fixed set restricts to 𝛾0 in the boundary 𝑆3, it is a connected surface with
boundary 𝛾0, and as it is a ℤ∕2 homology ball it must be homeomorphic to 𝐷2. Remove (𝐷4, 𝜎),
and note that the fixed set of 𝜎 is also a disc, with boundary 𝛾1, to see that the fixed set 𝐴 of 𝜏̂ is
indeed an annulus with 𝜕𝐴 = 𝛾0 ∪ −𝛾1.

Now that we have a well-defined notion of equivariant connected sum and equivariant con-
cordance, we can define the equivariant concordance group. See also [41] and, for example, [2,
section 2] and [15, section 2.1].

Definition 2.13 (Equivariant concordance group). The set of directed equivariant concordance
classes of directed strongly invertible knots forms a group under equivariant connected sum, as
observed by Sakuma [41]. The identity element is the directed equivariant concordance class of
the unknot, and the inverse of the directed strongly invertible knot (𝐾, 𝜏) is the knot obtained
by reversing the orientations of 𝑆3, with the direction given by reversing the orientation of 𝛾 and
keeping the same preferred component. We denote the equivariant concordance group by 𝑆𝐼 .

As explained in the upcoming proposition, the choice of directions do not affect the Alexander
module nor the Blanchfield form of an equivariant connected sum, and therefore while they are
necessary in order to define 𝑆𝐼 , we will not need to focus on them in the rest of the paper.

Proposition 2.14. Let (𝐾1, 𝜏1) and (𝐾2, 𝜏2) be strongly invertible knots. For any choice of direc-
tions on 𝐾1 and 𝐾2, the Alexander module and Blanchfield pairing of the equivariant sum
(𝐾1, 𝜏1)#(𝐾2, 𝜏2) is the direct sum ((𝐾1) ⊕(𝐾2),𝓁𝐾1 ⊕ 𝓁𝐾2), andwith respect to this identifi-
cation the induced involution is (𝜏𝐾1#𝐾2)∗ = (𝜏𝐾1)∗ ⊕ (𝜏𝐾2)∗. The sameholds for the integral versions
ℤ(𝐾) and 𝓁ℤ

𝐾
.

Proof. The exterior of 𝐾1#𝐾2 can be obtained by gluing the exteriors of 𝐾1 and 𝐾2 along a thick-
ened oriented meridian for each (or, to use the perspective of Definition 2.9, gluing the exterior of
the knotted arc for 𝐾1 to that of the knotted arc for 𝐾2). A thickened meridian 𝜇 has𝐻𝑖(𝜇; Λ) = 0
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STRONGLY INVERTIBLE KNOTS AND EQUIVARIANT SLICE GENERA 2035

for 𝑖 ⩾ 1, and 𝐻0(𝜇; Λ) ≅ ℚ so the Alexander modules add by a Mayer–Vietoris argument. As
𝜏𝐾1#𝐾2 is defined by gluing 𝜏1 on 𝐸𝐾1 and 𝜏2 on 𝐸𝐾2 , it follows that it induces (𝜏𝐾1)∗ ⊕ (𝜏𝐾2)∗ on
(𝐾1) ⊕(𝐾2) ≅ (𝐾1#𝐾2). It is well-known that the Blanchfield pairing of a connected sum is
the direct sum as claimed. For example, one can see this using the fact that the Seifert forms add
in this way, and that the Blanchfield pairing can be computed using the Seifert pairing [27] (see
also [21]). Alternatively, one can apply [19]. □

3 COMPUTATIONS OF THE BLANCHFIELD PAIRING

In this section, we explicitly compute the Blanchfield pairing for specific families of strongly
invertible knots, in particular for every genus one algebraically slice knot. We will make use of
these computations in the proofs of our main results. To avoid interrupting the arguments later,
and to be able to appeal to these computations in Sections 4.2 and 5, we collect these computations
first here.
The following proposition can be deduced by combining [21, Theorems 1.3 and 1.4], and by

passing from ℤ[𝑡±1] to ℚ[𝑡±1] coefficients.

Proposition 3.1 (Friedl–Powell). Let 𝐹 be a Seifert surface for a knot 𝐾 with a collection of simple
closed curves 𝛼1, … , 𝛼2g on 𝐹 that form a basis for 𝐻1(𝐹; ℤ), and let 𝐴 be the corresponding Seifert
matrix. Let 𝛽1, … , 𝛽2g be a dual basis for𝐻1(𝑆3 ⧵ 𝜈(𝐹); ℤ), that is, a basis such that lk(𝛼𝑖, 𝛽𝑗) = 𝛿𝑖,𝑗 .
Using the standard decomposition of (𝑆3 ⧵ 𝜈(𝐾))∞ = ∪∞𝑗=−∞(𝑆

3 ⧵ 𝜈(𝐹))𝑗 , let the homology class of
the unique lift of 𝛽𝑖 to (𝑆3 ⧵ 𝜈(𝐹))0 be denoted by 𝑏𝑖 . Then the map 𝑝∶ (ℚ[𝑡±1])2g → (𝐾) given by
𝑝(𝑥1, … , 𝑥2g ) =

∑2g
𝑖=1
𝑥𝑖𝑏𝑖 is a surjective map with kernel (𝑡𝐴 − 𝐴𝑇)(ℚ[𝑡±1])2g . Moreover, for 𝑥, 𝑦 ∈

ℚ[𝑡±1]2g the rational Blanchfield pairing is given by

𝓁(𝑝(𝑥), 𝑝(𝑦)) = (𝑡 − 1)𝑥𝑇(𝐴 − 𝑡𝐴𝑇)−1𝑦,

where ⋅̄ is the component-wise extension of the ℚ-linear involution on ℚ[𝑡±1] sending 𝑡𝑖 to 𝑡−𝑖 .

We will use the following elementary fact to verify that certain elements of ℚ(𝑡)∕ℚ[𝑡±1] are
nonzero.

Lemma 3.2. Let 𝑝, 𝑞 ∈ ℚ[𝑡±1] be coprime. Then 𝑎

𝑝
+ 𝑏

𝑞
∈ ℚ[𝑡±1] ⊆ ℚ(𝑡) if and only if both 𝑎

𝑝
and

𝑏

𝑞
belong to ℚ[𝑡±1].

Proof. The if direction is trivial. If 𝑎
𝑝
+ 𝑏

𝑞
∈ ℚ[𝑡±1] then 𝑎𝑞+𝑏𝑝

𝑝𝑞
∈ ℚ[𝑡±1], so 𝑝 ∣ 𝑎𝑞 + 𝑏𝑝, which

implies 𝑝 ∣ 𝑎𝑞. Asℚ[𝑡±1] is a PID and hence a UFD, the fact that 𝑝 and 𝑞 are coprime implies that
𝑝 ∣ 𝑎. Therefore, 𝑎

𝑝
∈ ℚ[𝑡±1]. By symmetry this suffices. □

Example 3.3 (The knot 946). The knot 946 is shown in Figure 4. Denote the depicted generators for
𝐻1(𝐹) by 𝛼1 and 𝛼2 and the depicted dual generating set for 𝐻1(𝑆3 ⧵ 𝐹) by 𝛽1 and 𝛽2. The Seifert
matrix for 𝐹 with respect to this basis is given by 𝐴 = (0 2

1 0). By Proposition 3.1, we therefore have
that

(𝐾) ≅ ℚ[𝑡±1]∕(𝑡 − 2) ⊕ ℚ[𝑡±1]∕(2𝑡 − 1),

 14697750, 2023, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12732 by Sw

arthm
ore C

ollege M
ccabe L

ibr, W
iley O

nline L
ibrary on [09/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2036 MILLER and POWELL

F IGURE 4 The knot 𝐾 = 946 with an axis of inversion and a Seifert surface.

where the first summand is generated by 𝑏1 and the second summand by 𝑏2. Observe that as 𝜏
fixes the illustrated basepoint for 𝐸𝐾 and 𝜏(𝛽1) = 𝛽2 and 𝜏(𝛽2) = 𝛽1, we have that 𝜏∗ ∶ (𝐾) →

(𝐾) sends 𝑏1 to 𝑏2 and 𝑏2 to 𝑏1. More precisely, for any 𝑝1(𝑡), 𝑝2(𝑡) ∈ ℚ[𝑡±1], we have
that

𝜏∗(𝑝1(𝑡)𝑏1 + 𝑝2(𝑡)𝑏2) = 𝑝2(𝑡
−1)𝑏1 + 𝑝1(𝑡

−1)𝑏2.

Note that every element𝑥 of(𝐾) can bewritten as𝑥 = 𝑐1𝑏1 + 𝑐2𝑏2 for some 𝑐1, 𝑐2 ∈ ℚ because
as abelian groups ℚ[𝑡±1]∕(𝑡 − 2) ≅ ℚ ≅ ℚ[𝑡±1]∕(2𝑡 − 1). We now compute 𝓁(𝑥, 𝜏∗(𝑥)) using
Proposition 3.1:

𝓁(𝑥, 𝜏∗(𝑥)) = 𝓁(𝑐1𝑏1 + 𝑐2𝑏2, 𝑐2𝑏1 + 𝑐1𝑏2)

= (𝑡 − 1)
(
𝑐1 𝑐2

)( 0 2 − 𝑡

1 − 2𝑡 0

)−1(
𝑐2
𝑐1

)

=
−(𝑡 − 1)

(2𝑡 − 1)(𝑡 − 2)

(
𝑐1 𝑐2

)( 0 𝑡 − 2

2𝑡 − 1 0

)(
𝑐2
𝑐1

)

= −(𝑡 − 1)

(
(𝑐1)

2

2𝑡 − 1
+
(𝑐2)

2

𝑡 − 2

)
.

Applying Lemma 3.2, we deduce that 𝓁(𝑥, 𝜏∗(𝑥)) = 0 if and only if 𝑐1 = 𝑐2 = 0, that is, 𝑥 = 0.

We can generalize Example 3.3 to the following result.

Proposition 3.4. Let𝐾 be a genus one algebraically slice knot with strong inversion 𝜏 and nontrivial
Alexander polynomial. For each 𝑛 ∈ ℕ, let (𝐾𝑛, 𝜏𝑛) ∶= #𝑛(𝐾, 𝜏). For every nonzero 𝑥 ∈ (𝐾𝑛), we
have that 𝓁(𝑥, (𝜏𝑛)∗(𝑥)) ≠ 0.

Proof. We begin by constraining the action of 𝜏∗ on (𝐾). As 𝐾 is algebraically slice and
genus one, it has some Seifert surface 𝐹 and a basis for 𝐻1(𝐹) with respect to which its Seifert
matrix is 𝐴 = (0 𝑚 + 1

𝑚 𝓁 ) for some 𝑚,𝓁 ∈ ℤ. By further change of basis of 𝐻1(𝐹), we can assume
that 𝓁 ≠ 0.
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STRONGLY INVERTIBLE KNOTS AND EQUIVARIANT SLICE GENERA 2037

Using 𝑡𝐴 − 𝐴𝑇 to present(𝐾) as in Proposition 3.1, we see that(𝐾) is generated as a ℚ[𝑡±1]
module by 𝑏1 and 𝑏2, subject to the relations

0 = (𝑚𝑡 − (𝑚 + 1))𝑏2 and

0 = ((𝑚 + 1)𝑡 − 𝑚)𝑏1 + 𝓁(𝑡 − 1)𝑏2.

Adding − 𝓁
𝑚
times the first equation to the second and solving for 𝑏2 gives us that

𝑏2 =
𝑚

𝓁
((𝑚 + 1)𝑡 − 𝑚))𝑏1,

and hence that (𝐾) is cyclic with generator 𝑏1. As the order of (𝐾) is exactly the Alexander
polynomial, which is given by det(𝑡𝐴 − 𝐴𝑇), we obtain that

(𝐾) ≅ ℚ[𝑡±1]∕(𝑚𝑡 − (𝑚 + 1))((𝑚 + 1)𝑡 − 𝑚),

with 𝑏1 as a generator. As 𝐾 has nontrivial Alexander polynomial we know that 𝑚, (𝑚 + 1) ≠ 0.
Let 𝑦1 ∶= ((𝑚 + 1)𝑡 − 𝑚)𝑏1 and 𝑦2 ∶= (𝑚𝑡 − (𝑚 + 1))𝑏1. One can now compute that 𝑡𝑦1 =

𝑚+1

𝑚
𝑦1

and 𝑡𝑦2 =
𝑚

𝑚+1
𝑦2.

Now recall that 𝜏∗ ∶ (𝐾) → (𝐾) is a ℚ-linear map satisfying 𝜏∗(𝑡𝑥) = 𝑡−1𝜏∗(𝑥) and
𝜏∗(𝜏∗(𝑥)) = 𝑥 for all 𝑥 ∈ (𝐾). As 𝑦1 and 𝑦2 generate(𝐾) as aℚ-module, we can write 𝜏∗(𝑦1) =
𝑐1𝑦1 + 𝑐2𝑦2 and 𝜏∗(𝑦2) = 𝑑1𝑦1 + 𝑑2𝑦2 for some 𝑐1, 𝑐2, 𝑑1, 𝑑2 ∈ ℚ. Observe that

𝜏∗(𝑡𝑦1) = 𝜏∗

(
𝑚 + 1

𝑚
𝑦1

)
=
𝑚 + 1

𝑚
𝜏∗(𝑦1) =

𝑐1(𝑚 + 1)

𝑚
𝑦1 +

𝑐2(𝑚 + 1)

𝑚
𝑦2

and

𝑡−1𝜏∗(𝑦1) = 𝑐1𝑡
−1𝑦1 + 𝑐2𝑡

−1𝑦2 =
𝑐1𝑚

𝑚 + 1
𝑦1 +

𝑐2(𝑚 + 1)

𝑚
𝑦2.

As 𝜏∗(𝑡𝑦1) = 𝑡−1𝜏∗(𝑦1), it follows that 𝑐1 = 0, and an analogous argument using 𝜏∗(𝑡𝑦2) =
𝑡−1𝜏∗(𝑦2) shows that 𝑑2 = 0 as well. As (𝜏∗)2 = Id, we can further conclude that 𝑐2𝑑1 = 1. So,
let 𝑐 ∶= 𝑐2, and observe that we have shown that 𝜏∗(𝑦1) = 𝑐𝑦2 and 𝜏∗(𝑦2) =

1

𝑐
𝑦1 for some nonzero

𝑐 ∈ ℚ.
We now compute 𝓁𝐾(𝑦1, 𝑦1), 𝓁𝐾(𝑦1, 𝑦2), 𝓁𝐾(𝑦2, 𝑦1), and 𝓁𝐾(𝑦2, 𝑦2), relying on Proposi-

tion 3.1. Observe that

(𝐴 − 𝑡𝐴𝑇)−1 =
−1

Δ𝐾(𝑡)

(
𝓁(1 − 𝑡) 𝑚𝑡 − (𝑚 + 1)

(𝑚 + 1)𝑡 − 𝑚 0

)
,

where Δ𝐾(𝑡) = (𝑚𝑡 − (𝑚 + 1))((𝑚 + 1)𝑡 − 𝑚). Therefore, 𝓁𝐾(𝑏1, 𝑏1) =
−𝓁(1−𝑡)2

Δ𝐾(𝑡)
. Using the fact

that 𝓁𝐾(𝑝(𝑡)𝑏1, 𝑞(𝑡)𝑏2) = 𝑝(𝑡)𝑞(𝑡−1)𝓁𝐾(𝑏1, 𝑏2) we therefore compute:

𝓁𝐾(𝑦1, 𝑦1) = ((𝑚 + 1)𝑡 − 𝑚)((𝑚 + 1)𝑡
−1 − 𝑚)

−𝓁(1 − 𝑡)2

Δ𝐾(𝑡)
= 0 ∈ ℚ(𝑡)∕ℚ[𝑡±1]

𝓁𝐾(𝑦1, 𝑦2) = −𝓁𝑡
−1(1 − 𝑡)2

(𝑚 + 1)𝑡 − 𝑚

𝑚𝑡 − (𝑚 + 1)
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2038 MILLER and POWELL

𝓁𝐾(𝑦2, 𝑦1) = −𝓁𝑡
−1(1 − 𝑡)2

𝑚𝑡 − (𝑚 + 1)

(𝑚 + 1)𝑡 − 𝑚

𝓁𝐾(𝑦2, 𝑦2) = 0.

Now, let 𝑣 = (𝑣1, … , 𝑣𝑛) be any element of(𝐾𝑛) = ⊕𝑛(𝐾). Each 𝑣𝑖 can be written as 𝜆𝑖𝑦1 +
𝜇𝑖𝑦2 for some 𝜆𝑖, 𝜇𝑖 ∈ ℚ. We can then compute

𝓁𝐾𝑛(𝑣, (𝜏𝑛)∗(𝑣)) =
𝑛∑
𝑖=1

𝓁𝐾(𝑣𝑖, 𝜏∗(𝑣𝑖))

=

𝑛∑
𝑖=1

𝓁𝐾
(
𝜆𝑖𝑦1 + 𝜇𝑖𝑦2,

𝜇𝑖
𝑐
𝑦1 + 𝜆𝑖𝑐𝑦2

)

=

𝑛∑
𝑖=1

[
𝓁𝐾(𝜆𝑖𝑦1, 𝜆𝑖𝑐𝑦2) + 𝓁𝐾

(
𝜇𝑖𝑦2,

𝜇𝑖
𝑐
𝑦1

)]

=

𝑛∑
𝑖=1

[
𝑐(𝜆𝑖)

2𝓁𝐾(𝑦1, 𝑦2) +
(𝜇𝑖)

2

𝑐
𝓁𝐾(𝑦2, 𝑦1)

]

= −𝓁𝑡−1(1 − 𝑡)2
[(
𝑐

𝑛∑
𝑖=1

(𝜆𝑖)
2

)
(𝑚 + 1)𝑡 − 𝑚

𝑚𝑡 − (𝑚 + 1)
+

(∑𝑛
𝑖=1(𝜇𝑖)

2

𝑐

)
𝑚𝑡 − (𝑚 + 1)

(𝑚 + 1)𝑡 − 𝑚

]
.

As𝑚(𝑚 + 1) ≠ 0, any multiple of either (𝑚+1)𝑡−𝑚
𝑚𝑡−(𝑚+1)

or 𝑚𝑡−(𝑚+1)
(𝑚+1)𝑡−𝑚

by a nonzero rational number rep-
resents a nonzero element of ℚ(𝑡)∕ℚ[𝑡±1]. Lemma 3.2 therefore implies that 𝓁𝐾𝑛(𝑣, (𝜏𝑛)∗(𝑣))
equals 0 in ℚ(𝑡)∕ℚ[𝑡±1] exactly when 𝑐

∑𝑛
𝑖=1(𝜆𝑖)

2 = 0 = 1

𝑐

∑𝑛
𝑖=1(𝜇𝑖)

2, which occurs exactly when
𝜆𝑖 = 0 = 𝜇𝑖 for all 𝑖 = 1, … , 𝑛, that is, exactly when 𝑣 = 0 ∈ (𝐾𝑛). □

4 EQUIVARIANT ALGEBRAIC CONCORDANCE

In this section, we define an equivariant algebraic concordance group 𝑆𝐼 , we define a homo-
morphismΨ∶ 𝑆𝐼 → 𝑆𝐼 , andwe use the equivariant algebraic concordance group to show that
the kernel of the forgetful map 𝐹∶ 𝑆𝐼 →  is infinite rank.

4.1 An equivariant slice obstruction

Webegin by proving the following obstruction to equivariant sliceness. This is presumably already
known to experts, but we could not find it in the literature. We remind the reader that a strongly
invertible knot (𝐾, 𝜏) is equivariantly slice if there exists a slice disc 𝐷 for 𝐾 and an extension of 𝜏
to a locally linear, order two homeomorphism 𝜏̂ of𝐷4 such that𝐷 = 𝜏̂(𝐷). Unlike in our definition
of concordance, we do not need to specify a direction on 𝐾.

Proposition 4.1. Let (𝐾, 𝜏) be a strongly invertible knot. If (𝐾, 𝜏) is equivariantly slice then there
exists a submodule 𝑃 ⩽ ℤ(𝐾) such that the following hold.
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STRONGLY INVERTIBLE KNOTS AND EQUIVARIANT SLICE GENERA 2039

(1) 𝑃 is a metabolizer for the integral Blanchfield pairing, that is,

𝑃 = 𝑃⟂ ∶= {𝑦 ∈ ℤ(𝐾) ∶ 𝓁(𝑥, 𝑦) = 0 for all 𝑥 ∈ 𝑃}.

(2) 𝑃 is 𝜏∗-invariant, that is, 𝜏∗(𝑃) = 𝑃.

The same holds with Λ coefficients, for(𝐾) and the rational Blanchfield pairing 𝓁𝐾 .

Proof. Let 𝐷 be a slice disc for 𝐾, and recall that 𝐸𝐷 ∶= 𝐷4 ⧵ 𝜈(𝐷) is a compact 4-manifold with
𝜕𝐸𝐷 = 𝑀𝐾 . Let 𝑃′ ∶= ker(𝐻1(𝑀𝐾;ℤ[𝑡±1]) → 𝐻1(𝐸𝐷; ℤ[𝑡

±1])), and let

𝑃 ∶= {𝑝 ∈ 𝐻1(𝑀𝐾;ℤ[𝑡
±1]) ∶ 𝑘𝑝 ∈ 𝑃′ for some 𝑘 ∈ ℤ ⧵ {0}}.

It is well-known [24, Theorem 2.1; 25, Theorem 2.4] that 𝑃 is a metabolizer for the Blanchfield
pairing, establishing item (1).
Now suppose that 𝜏 extends over 𝐷4 to 𝜏̂ with 𝐷 = 𝜏̂(𝐷). It follows that

𝑃′ = ker(𝐻1(𝑀𝐾;ℤ[𝑡
±1]) → 𝐻1(𝐸𝐷; ℤ[𝑡

±1])) = ker(𝐻1(𝑀𝐾;ℤ[𝑡
±1]) → 𝐻1(𝐸𝜏̂(𝐷); ℤ[𝑡

±1]))

= 𝜏∗(ker(𝐻1(𝑀𝐾;ℤ[𝑡
±1]) → 𝐻1(𝐸𝐷; ℤ[𝑡

±1]))) = 𝜏∗(𝑃
′).

As 𝜏∗ is ℤ-linear, 𝑝 ∈ 𝑃 if and only if 𝑘𝑝 ∈ 𝑃′ for some 𝑘 ∈ ℤ ⧵ {0}, if and only if 𝑘𝜏∗(𝑝) ∈ 𝑃′
(because 𝑘𝜏∗(𝑝) = 𝜏∗(𝑘𝑝) ∈ 𝜏∗(𝑃′) = 𝑃′), if and only if 𝜏∗(𝑝) ∈ 𝑃. We have therefore established
item (2), that 𝑃 is 𝜏∗-invariant.
The version with Λ coefficients is easier: we can simply take 𝑃 ∶= ker(𝐻1(𝑀𝐾;Λ) →

𝐻1(𝐸𝐷; Λ)). □

This is an effective obstruction to equivariant sliceness. For example, when combined with
Proposition 3.4 it shows the following, which proves Corollary 4.2 from the introduction. Inmany
individual cases, we expect this could also be proven using Sakuma’s 𝜂 invariant, although it is
not obvious how to apply that invariant to a general family of knots such as this.

Corollary 4.2. Let (𝐾, 𝜏) be a genus one strongly invertible knot with nontrivial Alexander
polynomial. Then (𝐾, 𝜏) is not equivariantly slice.

Proof. If 𝐾 is not algebraically slice then it is not even slice, so is certainly not equivariantly slice.
Suppose that𝐾 is algebraically slice with nontrivial Alexander polynomial. If (𝐾, 𝜏)were equivari-
antly slice, there would be an invariant metabolizer 𝑃 for the Blanchfield form, by Proposition 4.1.
As Δ𝐾 ≠ 1, ℤ(𝐾) is a nontrivial ℤ[𝑡±1]-module, so 𝑃 must be nontrivial as well. Moreover, for
every 𝑥 ∈ 𝑃wewould have𝓁𝐾(𝑥, 𝜏∗(𝑥)) = 0. But we computed in Proposition 3.4 that this holds
only for 𝑥 = 0. Thus, there is no such 𝑃. □

As noted in the introduction, the proof of Proposition 4.1 carries through identically under the
weaker hypothesis that𝐾 bounds a slice disc𝐷 such that for some extension 𝜏̂, one has that𝐷 and
𝜏̂(𝐷) are isotopic rel. boundary. So, Corollary 4.2 also shows that genus one knots with nontrivial
Alexander polynomials are not isotopy-equivariantly slice.
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2040 MILLER and POWELL

4.2 The equivariant algebraic concordance group

Proposition 4.1 motivates the following definition, which we use to formalize the results on
equivariant slicing.
Similarly to before, given a ℤ[𝑡±1]-module 𝑈, we write 𝑈 for the same abelian group as 𝑈

with the involuted ℤ[𝑡±1] action, that is, (𝑝, 𝑢) ↦ 𝑝 ⋅ 𝑢. Given a sesquilinear, Hermitian pair-
ing 𝐵∶ 𝑈 × 𝑈 → ℚ(𝑡)∕ℤ[𝑡±1], there is an involuted pairing 𝐵∶ 𝑈 × 𝑈 → ℚ(𝑡)∕ℤ[𝑡±1] given by
𝐵(𝑥, 𝑦) = 𝐵(𝑥, 𝑦). This is also Hermitian but has the opposite convention on the meaning of
sesquilinearity, that is 𝐵(𝑝𝑥, 𝑞𝑦) = 𝑝𝐵(𝑥, 𝑦)𝑞.

Definition 4.3. We introduce a set and an equivalence relation which will lead to a definition of
the equivariant algebraic concordance group.

(1) We consider the set of triples (𝐻,𝓁, 𝜏), consisting of the following data.
(i) A finitely generated ℤ[𝑡±1]-module 𝐻, that is ℤ[𝑡±1]-torsion, ℤ-torsion-free, and such

that𝑚1−𝑡 ∶ 𝐻 → 𝐻; 𝑥 ↦ (1 − 𝑡) ⋅ 𝑥 is in fact an isomorphism.†
(ii) A sesquilinear, Hermitian, nonsingular pairing 𝓁∶ 𝐻 × 𝐻 → ℚ(𝑡)∕ℤ[𝑡±1].
(iii) An anti-isometry 𝜏∶ 𝐻 → 𝐻 with 𝜏2 = Id. That is, 𝜏∶ 𝐻 → 𝐻 is an anti-automorphism,

or in other words a ℤ[𝑡±1]-module isomorphism 𝜏∶ 𝐻
≅
K→ 𝐻, that induces an isometry

between 𝓁∶ 𝐻 × 𝐻 → ℚ(𝑡)∕ℤ[𝑡±1] and 𝓁∶ 𝐻 × 𝐻 → ℚ(𝑡)∕ℤ[𝑡±1].
We call a triple (𝐻,𝓁, 𝜏) an abstract equivariant Blanchfield pairing, and remark that condi-
tions (i) and (ii) above are exactly those needed to imply that (𝐻,𝓁) arises as the (Alexander
module, Blanchfield pairing) of some knot in 𝑆3 [29].

(2) An isometry of abstract equivariant Blanchfield pairings 𝜃∶ (𝐻1,𝓁1, 𝜏1)
≅
K→ (𝐻2,𝓁2, 𝜏2) is

an isometry 𝜃∶ 𝐻1 → 𝐻2 of Blanchfield pairings such that 𝜃 ◦ 𝜏1 = 𝜏2 ◦ 𝜃.
(3) We say that (𝐻,𝓁, 𝜏) ismetabolic if there is aℤ[𝑡±1]-submodule 𝑃 ⊆ 𝐻, called ametabolizer,

such that
(a) 𝑃 = 𝑃⟂ ∶= {𝑦 ∈ 𝐻 ∶ 𝓁(𝑥, 𝑦) = 0 for all 𝑥 ∈ 𝑃};
(b) 𝑃 is 𝜏-invariant, that is, 𝜏(𝑃) = 𝑃.

(4) The sum of two abstract equivariant Blanchfield pairings (𝐻1,𝓁1, 𝜏1) and (𝐻2,𝓁2, 𝜏2) is

(𝐻1,𝓁1, 𝜏1) ⊕ (𝐻2,𝓁2, 𝜏2) ∶= (𝐻1 ⊕ 𝐻2,𝓁1 ⊕ 𝓁2, 𝜏1 ⊕ 𝜏2).

(5) We say that two abstract equivariant Blanchfield pairings (𝐻1,𝓁1, 𝜏1) and (𝐻2,𝓁2, 𝜏2) are
algebraically concordant if there are metabolic pairings (𝑈1, 𝐵1, 𝜎1) and (𝑈2, 𝐵2, 𝜎2) such that
there is an isometry

(𝐻1,𝓁1, 𝜏1) ⊕ (𝑈1, 𝐵1, 𝜎1) ≅ (𝐻2,𝓁2, 𝜏2) ⊕ (𝑈2, 𝐵2, 𝜎2).

It is immediate to see that algebraic concordance is an equivalence relation.

Remark 4.4. Does stably metabolic imply metabolic? If so, we could simplify the equivalence
relation to requiring that (𝐻1,𝓁1, 𝜏1) ⊕ (𝐻2, −𝓁2, 𝜏2) is metabolic.

†As observed by Levine [29, Corollary 1.3], in (1)(i) the property of being ℤ[𝑡±1]-torsion is redundant, as it follows from
the combination of finite generation and𝑚1−𝑡 being an isomorphism.

 14697750, 2023, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12732 by Sw

arthm
ore C

ollege M
ccabe L

ibr, W
iley O

nline L
ibrary on [09/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



STRONGLY INVERTIBLE KNOTS AND EQUIVARIANT SLICE GENERA 2041

Proposition 4.5. With respect to the given addition, the set of algebraic concordance classes of
abstract equivariant Blanchfield pairings forms a group. The inverse of (𝐻,𝓁, 𝜏) is (𝐻,−𝓁, 𝜏).

We call this group the equivariant algebraic concordance group, and denote it 𝑆𝐼 . If
(𝐻,𝓁, 𝜏) = 0 ∈ 𝑆𝐼 then we say that (𝐻,𝓁, 𝜏) is equivariantly algebraically slice. Similarly, if
a strongly invertible knot (𝐾, 𝜏) lies in kerΨ, then we say that (𝐾, 𝜏) is equivariantly algebraically
slice.

Proof of Proposition 4.5. It is straightforward to argue that the addition is well-defined on equiva-
lence classes, that it is associative, and that the equivalence class containing all metabolic abstract
equivariant Blanchfield pairings is the identity. We need to prove that the inverse of (𝐻,𝓁, 𝜏) is
(𝐻,−𝓁, 𝜏), or in other words that there is a metabolic pairing (𝑈, 𝐵, 𝜎) such that

(𝐻,𝓁, 𝜏) ⊕ (𝐻,−𝓁, 𝜏) ⊕ (𝑈, 𝐵, 𝜎)

is metabolic. In fact, we can take 𝑈 = 0, and define the diagonal submodule

𝑃 ∶= {(𝑥, 𝑥) ∈ 𝐻 ⊕𝐻 ∶ 𝑥 ∈ 𝐻}.

We now need to check that 𝑃 is an invariant metabolizer for 𝓁 ⊕−𝓁. We first check that
𝑃 = 𝑃⟂. Observe that (𝓁 ⊕−𝓁)((𝑥, 𝑥), (𝑦, 𝑦)) = 𝓁(𝑥, 𝑦) − 𝓁(𝑥, 𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝐻 and
therefore for every (𝑥, 𝑥) and (𝑦, 𝑦) in 𝑃. Therefore, 𝑃 ⊆ 𝑃⟂. Now, let (𝑥, 𝑦) ∈ 𝑃⟂. Observe that for
any 𝑧 ∈ 𝐻 we have (𝑧, 𝑧) ∈ 𝑃 and so

𝓁(𝑥 − 𝑦, 𝑧) = 𝓁(𝑥, 𝑧) − 𝓁(𝑦, 𝑧) = (𝓁 ⊕−𝓁)((𝑥, 𝑦), (𝑧, 𝑧)) = 0.

By the nonsingularity of 𝓁, we can therefore conclude that 𝑥 − 𝑦 = 0 and so 𝑥 = 𝑦 and
(𝑥, 𝑦) ∈ 𝑃. So, 𝑃⟂ ⊆ 𝑃 as well. To see that 𝜏(𝑃) = 𝑃, we compute that for any (𝑥, 𝑥) ∈ 𝑃 we have
(𝜏 ⊕ 𝜏)(𝑥, 𝑥) = (𝜏(𝑥), 𝜏(𝑥)) ∈ 𝑃. Therefore, 𝑃 is 𝜏-invariant. This completes the proof that 𝑃 is a
metabolizer, and therefore completes the proof that𝑆𝐼 is a group. □

Proposition 4.6. Taking the integral Blanchfield form of a strongly invertible knot (𝐾, 𝜏)
together with the involution-induced map on the integral Alexander module ℤ(𝐾) gives rise to a
homomorphism Ψ∶ 𝑆𝐼 → 𝑆𝐼 .

Proof. We showed in Proposition 2.8 that the involution-induced map 𝜏∗ ∶ ℤ(𝐾) → ℤ(𝐾) is
an anti-isometry of the Blanchfield pairing. Thus, we obtain an element of the codomain 𝑆𝐼 .
We know from the ordinary algebraic concordance group that Ψ(−𝐾, 𝜏) = (ℤ(𝐾), −𝓁ℤ

𝐾
, 𝜏∗) =

−Ψ(𝐾, 𝜏).
We check that Ψ is well-defined. The argument is at this stage standard and purely formal.

Suppose that (𝐾1, 𝜏1) and (𝐾2, 𝜏2) are equivariantly concordant. Then (𝐾1# − 𝐾2, 𝜏1# − 𝜏2) is
equivariantly slice, and therefore

(ℤ(𝐾1# − 𝐾2),𝓁
ℤ
𝐾1#−𝐾2

, 𝜏1# − 𝜏2) ≅ (
ℤ(𝐾1),𝓁

ℤ
𝐾1
, (𝜏1)∗) ⊕ (

ℤ(𝐾2), −𝓁
ℤ
𝐾2
, (−𝜏2)∗)

= Ψ(𝐾1, 𝜏1) ⊕ −Ψ(𝐾2, 𝜏2)
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2042 MILLER and POWELL

is a metabolic form (𝑈, 𝐵, 𝜎) by Proposition 4.1. We also used Proposition 2.14 here. AddΨ(𝐾2, 𝜏2)
to both sides to see that

Ψ(𝐾1, 𝜏1) ⊕ −Ψ(𝐾2, 𝜏2) ⊕ Ψ(𝐾2, 𝜏2) ≅ (𝑈, 𝐵, 𝜎) ⊕ Ψ(𝐾2, 𝜏2).

On the left-hand side, −Ψ(𝐾2, 𝜏2) ⊕ Ψ(𝐾2, 𝜏2) is metabolic, as we showed in the proof of
Proposition 4.5. As (𝑈, 𝐵, 𝜎) is also metabolic, it follows that Ψ(𝐾1, 𝜏1) = (ℤ(𝐾1),𝓁

ℤ
𝐾1
, (𝜏1)∗)

and Ψ(𝐾2, 𝜏2) = (ℤ(𝐾2),𝓁
ℤ
𝐾2
, (𝜏2)∗) are algebraically concordant. Thus, Ψ∶ 𝑆𝐼 → 𝑆𝐼 is a

well-defined map as desired.
Finally, we know by Proposition 2.14 and the observation in the first paragraph of the proof that

for every pair of strongly invertible knots (𝐾1, 𝜏1) and (𝐾2, 𝜏2), we have that

Ψ((𝐾1, 𝜏1)# − (𝐾2, 𝜏2)) = Ψ(𝐾1, 𝜏1) ⊕ Ψ(−𝐾2, −𝜏2) = Ψ(𝐾1, 𝜏1) ⊕ −Ψ(𝐾2, 𝜏2).

It follows that Ψ is indeed a homomorphism. □

4.3 The kernel of 𝑭

We consider the forgetful map 𝐹∶ 𝑆𝐼 → . Recall that Theorem 1.3 asserts that ker 𝐹 contains
a subgroup of infinite rank, which is detected by the equivariant algebraic concordance group.
Combining Propositions 3.4 and 4.1 implies the following.

Theorem 4.7. Let 𝐾1,… , 𝐾𝑛 be genus one algebraically slice knots with nontrivial and pairwise
distinct Alexander polynomials and strong inversions 𝜏𝑖 . Let 𝑎1, … , 𝑎𝑛 ∈ ℕ, and let (𝑎𝑖𝐾𝑖, 𝑎𝑖𝜏𝑖)
denote the 𝑎𝑖-fold equivariant connected sum of (𝐾𝑖, 𝜏𝑖). The knot (𝐾, 𝜏) = #𝑛𝑖=1(𝑎𝑖𝐾𝑖, 𝑎𝑖𝜏𝑖) is not
equivariantly algebraically slice and is therefore not equivariantly slice.

Proof. We work with Λ coefficients. Let 𝑥 = (𝑥1, … , 𝑥𝑛) be an element of (𝐾) = ⊕𝑛𝑖=1(𝑎𝑖𝐾𝑖).
As the Alexander polynomials of𝐾1,… , 𝐾𝑛 are distinct degree 2 symmetric polynomials satisfying|𝑝(1)| = 1, they are pairwise relatively prime. By the multiplicativity of Alexander polynomials
under connected sum, the Alexander polynomials of 𝑎1𝐾1, … , 𝑎𝑛𝐾𝑛 are also pairwise relatively
prime. By Lemma 3.2, it follows that

𝓁𝐾(𝑥, 𝜏∗(𝑥)) =
𝑛∑
𝑖=1

𝓁𝑎𝑖𝐾𝑖 (𝑥𝑖, (𝑎𝑖𝜏𝑖)∗(𝑥𝑖)) = 0

if and only if 𝐵𝑙𝑎𝑖𝐾𝑖 (𝑥, (𝑎𝑖𝜏𝑖)∗(𝑥𝑖)) = 0 for all 𝑖 = 1, … , 𝑛. By Proposition 3.4, for each 𝑖 = 1, … , 𝑛
we have that 𝓁𝑎𝑖𝐾𝑖 (𝑥𝑖, (𝑎𝑖𝜏𝑖)∗(𝑥𝑖)) = 0 if and only if 𝑥𝑖 = 0. Therefore, 𝓁𝐾(𝑥, 𝜏∗(𝑥)) = 0 if and
only if 𝑥 = 0, and because(𝐾) is nontrivial it immediately follows that there is no 𝜏∗ invariant
metabolizer for the Blanchfield pairing of 𝐾. Therefore, (𝐾, 𝜏) is not equivariantly algebraically
slice and by Proposition 4.1, 𝐾 is not equivariantly slice. □

It is now straightforward to prove Theorem 1.3 from the introduction, which follows from the
next corollary, for example, by taking the pretzel knots 𝐾𝑖 ∶= 𝑃(2𝑖 + 1, −2𝑖 − 1, 2𝑖 + 1).
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STRONGLY INVERTIBLE KNOTS AND EQUIVARIANT SLICE GENERA 2043

F IGURE 5 The knot 𝐾𝑎 for 𝑎 = 3 and the curve 𝛽1 ⊆ 𝑆3 ⧵ 𝐾.

Corollary 4.8. Let {𝐾𝑖}∞𝑖=1 be a collection of strongly invertible genus one slice knots with nontrivial
and pairwise distinct Alexander polynomials. Then the {𝐾𝑖}∞𝑖=1 generate an infinite rank subgroup of
ker(𝐹 ∶ 𝑆𝐼 → ) whose image in𝑆𝐼 is also infinite rank.

Proof. It suffices to check that for every linear combination of the 𝐾𝑖 , 𝐽 ∶= #𝑖𝑏𝑖𝐾𝑖 , with 𝑏𝑖 ≠ 0
for only finitely many 𝑖, we have Ψ(𝐽) ≠ 0, and therefore 𝐽 is not equivariantly slice. If 𝑏𝑖 ⩾ 0
then set 𝑎𝑖 ∶= 𝑏𝑖 and write 𝐾′𝑖 ∶= 𝐾𝑖 , while if 𝑏𝑖 < 0 then set 𝑎𝑖 = −𝑏𝑖 and 𝐾

′
𝑖
∶= −𝐾𝑖 . Then note

that 𝐽 = #𝑖𝑎𝑖𝐾′𝑖 . The 𝐾
′
𝑖
have nontrivial pairwise distinct Alexander polynomials, are genus one,

and are strongly invertible. Therefore, Theorem 4.7 applies to show that 𝐽 is not equivariantly
algebraically slice, and so 𝐽 is not equivariantly slice. This shows that {Ψ(𝐾𝑖)}∞𝑖=1 is an infinite
rank subgroup of𝑆𝐼 , and therefore that the {𝐾𝑖}∞𝑖=1 generate an infinite rank subgroup of ker 𝐹
as claimed. □

4.4 Some amphichiral examples

In this subsection, we show that many order two knots in  map to infinite order equivariant
Blanchfield pairings in𝑆𝐼 , and so are also infinite order in 𝑆𝐼 .
Let 𝐾 ∶= 𝐾𝑎 be a generalized twist 2-bridge knot corresponding to

4𝑎2+1

2𝑎
for some 𝑎 > 0 (i.e., 𝑎

full twists instead of 3 in each of the twist regions in Figure 5), with axis of strong inversion 𝛾 as
indicated in Figure 5. Note that𝐾1 is the figure eight knot and that𝐾𝑎 is amphichiral for all 𝑎 > 0.
Applying Seifert’s algorithm to the diagram of Figure 5, we see that 𝐾 has a genus one Seifert

surface𝐹 andbasis𝛼1, 𝛼2 for𝐻1(𝐹)with Seifertmatrix𝐴 = (
𝑎 0
1 −𝑎). Let𝛽1, 𝛽2 be the corresponding

dual generating set for 𝐻1(𝑆3 ⧵ 𝐹), and observe that 𝛽1 is represented by the curve illustrated
in Figure 5. Finally, note that 𝜏 preserves the given basepoint for 𝐸𝐾𝑎 and sends 𝛽1, considered
using the basing shown as an element of 𝜋1(𝑆3 ⧵ 𝐾), to 𝜇−1𝛽1𝜇, for a certain meridian 𝜇 of 𝐾. So,
𝜏∗[𝛽1] = 𝑡

−1𝜏∗[𝛽1] ∈ (𝐾).
Following the notation of Proposition 3.1, we have that (𝐾) is generated by 𝑏1, 𝑏2 and

has relations 𝑎(𝑡 − 1)𝑏1 + 𝑡𝑏2 = 0 and −𝑏1 − 𝑎(𝑡 − 1)𝑏2 = 0. Simplifying this gives that (𝐾) ≅
ℚ[𝑡±1]∕𝑝𝑎(𝑡), generated by 𝑏1, where 𝑝𝑎(𝑡) = Δ𝐾𝑎(𝑡) = 𝑎

2𝑡2 − (2𝑎2 − 1)𝑡 + 𝑎2. Additionally, we
have that 𝜏∗(𝑞(𝑡)𝑏1) = 𝑡−1𝑞(𝑡−1)𝑏1 for all 𝑞(𝑡) ∈ ℚ[𝑡±1].

Lemma 4.9. For every 𝑎 > 0, 𝑝𝑎(𝑡) is irreducible over ℚ[𝑡±1], and hence (𝐾) ≅ ℚ[𝑡±1]∕𝑝𝑎(𝑡) is
a field.
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2044 MILLER and POWELL

Proof. As 𝑝𝑎(𝑡) is a degree 2 symmetric polynomial with integer coefficients that evaluates to 1
at 𝑡 = 1, it suffices to show that 𝑝𝑎(𝑡) cannot be written as 𝑡2𝑞(𝑡)𝑞(𝑡−1) for any 𝑞(𝑡) ∈ ℤ[𝑡±1]. But
this follows from the fact that 𝑝𝑎(−1) = 4𝑎2 − 1 = (2𝑛)2 − 1 is never a square. □

Proposition 4.10. For every 𝑛 ∈ ℕ, the knot #𝑛(𝐾𝑎, 𝜏) is not equivariantly slice.

For 𝑎 = 1, 2 we already know using Sakuma’s computations of the 𝜂 invariant [41] that the
knots #𝑛(𝐾𝑎, 𝜏) are not equivariantly slice.

Proof. First, note that when 𝑛 is odd,#𝑛𝐾𝑎 is concordant to𝐾𝑎, which has an irreducible Alexan-
der polynomial by Lemma 4.9 and hence is not slice by the Fox–Milnor criterion [20]. So, we can
assume that 𝑛 = 2𝑚 is even.
Now let 𝐻 ⩽ (#𝑛𝐾𝑎) be a (𝜏∗)-invariant submodule of order 𝑝𝑎(𝑡)𝑚; that is, a potential (𝜏∗)-

invariant metabolizer for the Blanchfield pairing. As

(#𝑛𝐾𝑎) ≅

𝑛⨁
(𝐾𝑎) =

𝑛⨁
ℚ[𝑡±1]∕𝑝𝑎(𝑡),

we know that𝐻 ≅ (ℚ[𝑡±1]∕𝑝𝑎(𝑡))𝑚.
Furthermore, after rearranging our summands if necessary, the submodule 𝐻 ⩽ (𝐾𝑎) is

generated as a ℚ[𝑡±1]∕𝑝𝑎(𝑡)-module by

𝑥1 = (1, 0, … , 0, 𝑞
1
1, … , 𝑞

𝑚
1 )

𝑥2 = (0, 1, 0, … , 0, 𝑞
1
2, … , 𝑞

𝑚
2 )

⋮

𝑥𝑚 = (0, … , 0, 1, 𝑞
1
𝑚, … , 𝑞

𝑚
𝑚)

for some 𝑞𝑗
𝑖
∈ ℚ[𝑡±1]∕𝑝𝑎(𝑡), 1 ⩽ 𝑖, 𝑗 ⩽ 𝑚. This relies on the fact that as 𝑝𝑎(𝑡) is irreducible by

Lemma 4.9,ℚ[𝑡±1]∕𝑝𝑎(𝑡) is a field and so(#𝑛𝐾𝑎) ≅ (ℚ[𝑡±1]∕𝑝𝑎(𝑡))𝑛 is a vector space. Therefore,
the existence of a generating set of this form follows from some elementary linear algebra.
Write each 𝑞𝑗

1
= 𝑐𝑗 + 𝑑𝑗𝑡 for some 𝑐𝑗, 𝑑𝑗 ∈ ℚ. Observe that

(#𝑛𝜏)∗(𝑥1) = (𝜏∗(1), 𝜏∗(0), … , 𝜏∗(0), 𝜏∗(𝑞
1
1), … , 𝜏∗(𝑞

𝑚
1 ))

= (𝜏∗(1), 𝜏∗(0), … , 𝜏∗(0), 𝜏∗(𝑐1 + 𝑑1𝑡), … , 𝜏∗(𝑐𝑚 + 𝑑𝑚𝑡))

= (𝑡−1, 0, … , 0, 𝑐1𝑡
−1 + 𝑑1𝑡

−2, … , 𝑐𝑚𝑡
−1 + 𝑑𝑚𝑡

−2).

As (#𝑛𝜏)∗(𝑥1) ∈ 𝐻, we canwrite (#𝑛𝜏)∗(𝑥1) =
∑𝑛
𝑖=1 𝑟𝑖(𝑡)𝑥𝑖 for some 𝑟𝑖(𝑡) ∈ ℚ[𝑡

±1]∕𝑝𝑎(𝑡). Consid-
ering our expressions for 𝑥1, … , 𝑥𝑚 and for (#𝑛𝜏)∗(𝑥1) and looking at the first𝑚 coordinates, we
obtain that 𝑟1(𝑡) = 𝑡−1 and 𝑟2(𝑡) =⋯ = 𝑟𝑚(𝑡) = 0. Therefore, we have for each 𝑗 = 1,… ,𝑚 that
𝑐𝑗𝑡

−1 + 𝑑𝑗𝑡
−2 = 𝑡−1(𝑐𝑗 + 𝑑𝑗𝑡) in ℚ[𝑡±1]∕𝑝𝑎(𝑡). It follows that 𝑑1 = ⋯ = 𝑑𝑚 = 0.

So, 𝑥1 = (1, 0, … , 0, 𝑐1, 𝑐2, … , 𝑐𝑚) for some 𝑐𝑖 ∈ ℚ. But we can now show that 𝓁#𝑛𝐾𝑎 (𝑥1, 𝑥1) ≠
0, and hence that𝐻 is not a metabolizer:

𝓁#𝑛𝐾𝑎 (𝑥1, 𝑥1) = 𝓁𝐾𝑎(1, 1) +
𝑚∑
𝑖=1

𝓁𝐾𝑎(𝑐𝑖, 𝑐𝑖) =

(
1 +

𝑚∑
𝑖=1

𝑐2𝑖

)
𝓁𝐾𝑎(1, 1).
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STRONGLY INVERTIBLE KNOTS AND EQUIVARIANT SLICE GENERA 2045

As (𝐾) ≅ ℚ[𝑡±1]∕𝑝𝑎(𝑡) and 𝓁𝐾𝑎 is nondegenerate, we have that 𝓁𝐾𝑎(1, 1) is nonzero in
ℚ(𝑡)∕ℚ[𝑡±1]. (Of course, we could also directly compute this using the Seifert matrix and Propo-
sition 3.1.) Therefore, as 1 +

∑𝑚
𝑖=1 𝑐

2
𝑖
is a nonzero rational number, 𝓁#𝑛𝐾𝑎(𝑥1, 𝑥1) is nonzero in

ℚ(𝑡)∕ℚ[𝑡±1] as well. □

5 A LOWER BOUND ON THE EQUIVARIANT 4-GENUS

Now we switch our attention to proving the lower bound from Theorem 1.2, which will lead to
the proof of Theorem 1.1 when combined with the computation in Proposition 3.4.

5.1 Construction of the 4-manifold 𝒁 and its properties

As in the proof of Proposition 4.1, we extensively consider the kernel of the inclusion inducedmap
𝐻1(𝐸𝐾; Λ) → 𝐻1(𝐸𝐹; Λ), where 𝐹 is some locally flat surface in 𝐷4 with boundary 𝐾. However, it
will simplify our arguments to work with the closed 3-manifold𝑀𝐾 and an associated 4-manifold
𝑍 with 𝜕𝑍 = 𝑀𝐾 instead.

Proposition 5.1. Let (𝐾, 𝜏) be a strongly invertible knot in 𝑆3 bounding a genus g surface 𝐹 in 𝐷4.
There exists a 4-manifold 𝑍 with boundary𝑀𝐾 such that the following hold.

(1) The inclusion-induced map 𝑖∗ ∶ 𝐻1(𝑀𝐾;ℤ) → 𝐻1(𝑍; ℤ) is an isomorphism, and so we can
consider𝐻1(𝑍;Λ) and𝐻1(𝑍,𝑀𝐾;Λ) as usual.

(2) 𝐻1(𝑍,𝑀𝐾;Λ) and𝐻1(𝑍;Λ) are torsion.
(3) The free part of𝐻2(𝑍;Λ) has rank 2g .
(4) The inclusion-induced map 𝑖∗ ∶ 𝐻1(𝐸𝐾; Λ) → 𝐻1(𝑀𝐾;Λ) is an isomorphism under which

ker(𝐻1(𝐸𝐾; Λ) → 𝐻1(𝐸𝐹; Λ)) is mapped to ker(𝐻1(𝑀𝐾;Λ) → 𝐻1(𝑍;Λ)).
(5) If 𝜏 extends to an involution 𝜏̂ on 𝐷4 such that 𝐹 = 𝜏̂(𝐹), then 𝐻 ∶= ker(𝐻1(𝑀𝐾;Λ) →

𝐻1(𝑍;Λ)) is invariant, that is, 𝜏∗(𝐻) = 𝐻.

We remark that items (1), (2), and (3) of Proposition 5.1 are reasonably standard and have
appeared in the literature before; see, for example, [38, section 4; 10, Proposition 9.1]. We include
the proof of these items here for completeness.
For the proof of Proposition 5.1, we will need the following special case of [11, Proposi-

tions 2.9 and 2.11].

Proposition 5.2. Let 𝑋 be a space with the homotopy type of a finite CW complex, and let
𝜙∶ 𝜋1(𝑋) → ℤ be a nontrivial representation. Then 𝐻0(𝑋;ℚ(𝑡)) = 0 and dimℚ(𝑡) 𝐻1(𝑋;ℚ(𝑡)) ⩽
𝑏1(𝑋) − 1.

Proof of Proposition 5.1. Define

𝑍 ∶= (𝐷4 ⧵ 𝜈(𝐹))
⋃
𝑆1×𝐹

(𝑆1 × 𝐻),

where 𝐻 is a genus g handlebody with boundary 𝜕𝐻 = 𝐹 ∪ 𝐷2. To make this gluing we choose
a framing of the normal bundle of 𝐹 in 𝐷4 such that for each simple closed curve 𝛼 ⊆ 𝐹, the
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2046 MILLER and POWELL

curve 𝛼 × {1} ⊆ 𝑆1 × 𝐹 ⊆ 𝐷4 ⧵ 𝜈𝐹 is null-homologous. There is also a choice of precisely which
handlebody 𝐻 we choose to fill 𝐹 ∪ 𝐷2. We make an arbitrary choice here, as this does not affect
the homological properties of 𝑍 that we will use. A Mayer–Vietoris argument establishes item
(1), as well as the fact that 𝐻2(𝑍; ℤ) ≅ ℤ2g . We note for later use that item (1) also implies that
𝐻3(𝑍;ℚ) ≅ 𝐻

1(𝑍,𝑀𝐾;ℚ) ≅ Hom(𝐻1(𝑍,𝑀𝐾;ℚ), ℚ) ≅ 0, and so 𝜒(𝑍) = 1 − 1 + 2g + 0 + 0 = 2g .
To establish items (2) and (3), by the flatness of ℚ(𝑡) as a Λ-module it suffices to show that

𝐻1(𝑍,𝑀𝐾;ℚ(𝑡)) = 0 and 𝐻2(𝑍;ℚ(𝑡)) ≅ ℚ(𝑡)2g . By Proposition 5.2, we have that 𝐻𝑖(𝑀𝐾,ℚ(𝑡)) =
0 = 𝐻𝑖(𝑍; ℚ(𝑡)) for 𝑖 = 0, 1. It follows from the long exact sequence of (𝑍,𝑀𝐾) with ℚ(𝑡)

coefficients that 𝐻1(𝑍,𝑀𝐾;ℚ(𝑡)) = 0 as desired for item (2). Item (3) will now quickly fol-
low from an Euler characteristic computation for 𝑍 using ℚ(𝑡) coefficients. We already know
𝐻0(𝑍;ℚ(𝑡)) = 0 = 𝐻1(𝑍,ℚ(𝑡)). Additionally, for 𝑖 = 3, 4we have that𝐻𝑖(𝑍;ℚ(𝑡)) = 𝐻𝑖(𝑍; ℚ(𝑡)) =
𝐻4−𝑖(𝑍,𝑀𝐾;ℚ(𝑡)) = 0, where the first equality comes from universal coefficients and the second
from Poincaré duality. We now obtain item (3), as

2g = 𝑏ℚ(𝑡)
0
(𝑍) − 𝑏ℚ(𝑡)

1
(𝑍) + 𝑏ℚ(𝑡)

2
(𝑍) − 𝑏ℚ(𝑡)

3
(𝑍) + 𝑏ℚ(𝑡)

4
(𝑍)

= 0 − 0 + dim𝐻2(𝑍;ℚ(𝑡)) − 0 + 0.

We now wish to establish item (4). Recall that 𝑀𝐾 = 𝐸𝐾 ∪𝑇2 (𝑆1 × 𝐷2). A direct computation
gives us that 𝐻1(𝑆1 × 𝐷2; Λ) = 0 and 𝐻1(𝑇2; Λ) ≅ ℚ[𝑡±1]∕(𝑡 − 1), with generator given by a class
represented by a 0-framed longitude of 𝐾. As discussed in Definition 2.2, the 0-framed longi-
tude of 𝐾 is a double commutator in 𝜋1(𝐸𝐾), and hence maps to the zero element in 𝐻1(𝐸𝐾; Λ).
So, the inclusion induced map 𝐻1(𝑇2; Λ) → 𝐻1(𝐸𝐾; Λ) is the 0-map, and by considering the
Mayer–Vietoris sequence for 𝑀𝐾 we have that 𝑖∗ ∶ 𝐻1(𝐸𝐾; Λ) → 𝐻1(𝑀𝐾;Λ) is an isomorphism.
Now recall that 𝑍 = 𝐸𝐹 ∪𝑆1×𝐹 (𝑆1 × 𝐻), where 𝐻 is a genus g handlebody with 𝜕𝐻 = 𝐹 ∪ 𝐷2.
This decomposition is compatible with that of𝑀𝐾 , and so we obtain the following commutative
diagram, where all maps are induced by inclusion:

We wish to show that ker(g∗) = 𝑖∗(ker(𝑓∗)). One containment is immediate: for 𝑦 ∈ 𝑖∗(ker(𝑓∗))
write 𝑦 = 𝑖∗(𝑥) for 𝑥 ∈ ker(𝑓∗) and observe that g∗(𝑦) = g∗𝑖∗(𝑥) = 𝑗∗𝑓∗(𝑥) = 𝑗∗(0) = 0, that is
𝑦 ∈ ker(g∗).
Now let 𝑦 ∈ ker(g∗) and, recalling that 𝑖∗ is a isomorphism, let 𝑥 ∈ 𝐻1(𝐸𝐾; Λ) be such that

𝑖∗(𝑥) = 𝑦 in order to show that 𝑓∗(𝑥) = 0. As 𝑗∗𝑓∗(𝑥) = g∗𝑖∗(𝑥) = g∗(𝑦) = 0, we certainly have
that 𝑓∗(𝑥) is in ker(𝑗∗). Now consider the following portion of the Mayer–Vietoris sequence for
𝑍:

𝐻1(𝑆
1 × 𝐹;Λ) → 𝐻1(𝐸𝐹; Λ) ⊕ 𝐻1(𝑆

1 × 𝐻;Λ) → 𝐻1(𝑍;Λ).

Here we use the Λ coefficient systems on the subsets of 𝑍 that appear, namely 𝐸𝐹 , 𝑆1 × 𝐹, and
𝑆1 × 𝐻, induced from the Λ coefficient system on 𝑍 by the inclusions. As the sequence is exact
and 𝑓∗(𝑥)maps to 0 in 𝐻1(𝑍;Λ), we can conclude that 𝑓∗(𝑥) ∈ Im(𝐻1(𝑆1 × 𝐹;Λ) → 𝐻1(𝐸𝐹; Λ)).
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STRONGLY INVERTIBLE KNOTS AND EQUIVARIANT SLICE GENERA 2047

One can compute directly that

𝐻1(𝑆
1 × 𝐹;Λ) = 𝐻1(ℝ × 𝐹;ℚ) ≅ (𝜆∕(𝑡 − 1))

2g(𝐹),

and hence that 𝑓∗(𝑥) is annihilated by 𝑡 − 1. But as the order of 𝐻1(𝐸𝐾; Λ) is Δ𝐾(𝑡), it is also
true that 𝑓∗(𝑥) is annihilated by Δ𝐾(𝑡). We assert that Δ𝐾(𝑡) and 𝑡 − 1 are relatively prime. To
see this, note that, up to powers of 𝑡, any common divisor 𝑝 must be constant or linear. If 𝑝
is linear and divides (𝑡 − 1) then up to units 𝑝 = 𝑡 − 1, and so 𝑡 − 1 ∣ Δ𝐾(𝑡). Evaluating at 𝑡 = 1
yields a contradiction ±1 = Δ𝐾(1) = 0. So, 𝑝 cannot be linear, and 𝑝 is a nonzero constant 𝛼,
that is, a unit in Λ. Therefore, Δ𝐾(𝑡) and 𝑡 − 1 are relatively prime as asserted. Thus, as Λ is a
Euclidean domain, there are 𝑟, 𝑠 ∈ Λ such that 𝑟Δ𝐾(𝑡) + 𝑠(𝑡 − 1) = 1. We therefore have as desired
that

𝑓∗(𝑥) = (𝑟Δ𝐾(𝑡) + 𝑠(𝑡 − 1))𝑓∗(𝑥) = 𝑟(Δ𝐾(𝑡)𝑓∗(𝑥)) + 𝑠((𝑡 − 1)𝑓∗(𝑥)) = 0.

This completes the proof of item (4).
To prove item (5), suppose that 𝜏 extends to an involution 𝜏̂ on𝐷4 such that 𝐹 = 𝜏̂(𝐹). It follows

immediately that

ker(𝐻1(𝐸𝐾; Λ) → 𝐻1(𝐸𝐹; Λ)) = ker(𝐻1(𝐸𝐾; Λ) → 𝐻1(𝐸𝜏̂(𝐹); Λ)).

Note that for any surface 𝐺 in 𝐷4 with 𝜕𝐺 = 𝐾 we have

ker(𝐻1(𝐸𝐾; Λ) → 𝐻1(𝐸𝜏̂(𝐺); Λ)) = 𝜏∗(ker(𝐻1(𝐸𝐾; Λ) → 𝐻1(𝐸𝐺; Λ))).

Therefore, ker(𝐻1(𝐸𝐾; Λ) → 𝐻1(𝐸𝐹; Λ)) is 𝜏∗-invariant. However, by item (4) we know that
ker(𝐻1(𝐸𝐾; Λ) → 𝐻1(𝐸𝐹; Λ)) is identified with ker(𝐻1(𝑀𝐾;Λ) → 𝐻1(𝑍;Λ)) via the inclusion
induced map, which is compatible with 𝜏∗, and so we get our desired result. □

5.2 Blanchfield forms and generating rank

The proof of the next proposition is closely related to a standard argument, see, for example, [11,
Theorem 4.4], but as we need a slight variation we give the details.

Proposition 5.3. Let 𝐾 be a knot in 𝑆3 with zero surgery𝑀𝐾 , and suppose 𝑍 is a 4-manifold with
𝜕𝑍 = 𝑀𝐾 such that 𝑖∗ ∶ 𝐻1(𝑀𝐾;ℤ) → 𝐻1(𝑍; ℤ) is an isomorphism. Suppose that 𝐻1(𝑍;Λ) is Λ-
torsion. Then for every 𝑥 ∈ 𝑇𝐻2(𝑍,𝑀𝐾;Λ) and every 𝑦 ∈ ker(𝑖∗ ∶ 𝐻1(𝑀𝐾;Λ) → 𝐻1(𝑍;Λ))we have
𝓁(𝜕𝑥, 𝑦) = 0.

Proof. Let 𝜕∶ 𝐻2(𝑍,𝑀𝐾;Λ) → 𝐻1(𝑀𝐾;Λ) be the connectingmap in the long exact sequence of the
pair (𝑍,𝑀𝐾)with Λ-coefficients. Restricting this to the torsion submodule 𝑇𝐻2(𝑍,𝑀𝐾;Λ) gives a
map 𝜕|𝑇 ∶ 𝑇𝐻2(𝑍,𝑀𝐾;Λ) → 𝑇𝐻1(𝑀𝐾;Λ) = 𝐻1(𝑀𝐾;Λ), recalling that𝐻1(𝑀𝐾;Λ) (and𝐻1(𝑍;Λ),
for later reference) are Λ-torsion.
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2048 MILLER and POWELL

We therefore obtain the following commutative diagram:

The top row is not necessarily exact; we remark to the experts that this is a key difference between
our setting and that of [11]. However, we do have that Im(𝜕|𝑇) ⊆ ker(𝑖∗), as

𝐻2(𝑍,𝑀𝐾;Λ)
𝜕
K→ 𝐻1(𝑀𝐾;Λ)

𝑖∗
KK→ 𝐻1(𝑍;Λ)

is exact. Moreover, as all of the vertical maps are natural, the diagram commutes. This is straight-
forward for the Bockstein and universal coefficients, while [5, Theorem IV.9.2] shows that the top
square commutes.
Now let 𝑥 ∈ 𝑇𝐻2(𝑍,𝑀𝐾;Λ) and 𝑦 ∈ ker(𝑖∗ ∶ 𝐻1(𝑀𝐾;Λ) → 𝐻1(𝑍;Λ)). We therefore have that

𝓁(𝑦, 𝜕𝑥) = Θ(𝜕𝑥)(𝑦) = 𝑖∧∗ (𝛽(𝑥))(𝑦) = 𝛽(𝑥)(𝑖∗(𝑦)) = 𝛽(𝑥)(0) = 0.

The first equality comes from the definition of𝓁, the second equality from the commutativity of
the diagram, the third equality from the definitional relationship between 𝑖∧∗ and 𝑖∗, and the last
from our assumption on 𝑦. We are now done, as

𝓁(𝜕𝑥, 𝑦) = 𝓁(𝑦, 𝜕𝑥) = 0 = 0. □

To effectively apply Proposition 5.1, we will need to show that 𝜕(𝑇𝐻2(𝑍,𝑀𝐾;Λ)) has large gen-
erating rank. It will be useful to have the following facts about the generating rank of finitely
generated modules over PIDs, which follow from the fundamental theorem of finitely generated
modules over PIDs; see also [34, Lemma 4.1]. Recall that the generating rank of a finitely gen-
erated module 𝐴 over a PID 𝑆 is the minimal number of elements needed to generate 𝐴 as an
𝑆-module.

Proposition 5.4. Let 𝐴, 𝐵 be finitely generated modules over a PID 𝑆.

(1) If 𝐴 ⊆ 𝐵 then g−rk𝐴 ⩽ g−rk𝐵.
(2) If 𝑓∶ 𝐴 → 𝐵 is a map of 𝑆-modules, then

g−rk Im(𝑓) ⩽ g−rk𝐴 ⩽ g−rk Im(𝑓) + g−rk ker(𝑓).

The next proposition is one of the key technical facts on generating ranks.
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STRONGLY INVERTIBLE KNOTS AND EQUIVARIANT SLICE GENERA 2049

Proposition 5.5. Let 𝑍 be a compact, oriented 4-manifold with boundary 𝜕𝑍 = 𝑀𝐾 such that
𝑖∗ ∶ 𝐻1(𝑀𝐾;ℤ) → 𝐻1(𝑍; ℤ) is an isomorphism. Let 𝑛 be theΛ-rank of𝐻2(𝑍;Λ) that is, the free part
of 𝐻2(𝑍;Λ) is isomorphic to Λ𝑛. Assume that 𝐻1(𝑍,𝑀𝐾;Λ) is torsion. Then the generating rank of
𝜕(𝑇𝐻2(𝑍,𝑀𝐾;Λ)) is at least

1

2
g−rk(𝐾) − 𝑛.

For the proof of Proposition 5.5, we will need the following result from our article [10] with Jae
Choon Cha.

Lemma 5.6 [10, Lemma 7.5]. Let 𝑋 be a compact, oriented 4-manifold with boundary 𝜕𝑋 = 𝑌. Let
𝑆 be a PID, and suppose there is a representation Φ of the fundamental group of 𝑌 into Aut(𝑆) that
extends over 𝑋. Consider the long exact sequence of the pair (𝑋, 𝑌):

⋯→ 𝐻2(𝑋; 𝑆)
𝑗2
KK→ 𝐻2(𝑋, 𝑌; 𝑆)

𝜕
K→ 𝐻1(𝑌; 𝑆)

𝑖1
K→ 𝐻1(𝑋; 𝑆)

𝑗1
KK→ 𝐻1(𝑋, 𝑌; 𝑆) →⋯

If𝐻1(𝑋, 𝑌; 𝑆) is torsion, then ker(𝑗1|𝑇) and coker(𝑗2|𝑇) are isomorphic as 𝑆-modules.
Proof of Proposition 5.5. For the entirety of this proof, all homology is by default taken with coef-
ficients in Λ. As Λ is a PID, we can choose an isomorphism 𝐻2(𝑍) ≅ Λ𝑛 ⊕ 𝑇𝐻2(𝑍). Noting that
the free part of 𝐻2(𝑍,𝑀𝐾) must also have rank 𝑛 by duality and universal coefficients, we also
choose an isomorphism 𝐻2(𝑍,𝑀𝐾) ≅ Λ

𝑛 ⊕ 𝑇𝐻2(𝑍,𝑀𝐾). This allows us to decompose the long
exact sequence of the pair (𝑍,𝑀𝐾) as follows:

As 𝐻1(𝑀𝐾) and 𝐻1(𝑍,𝑀𝐾) are both Λ-torsion, the former because this holds for all knots, and
that latter by assumption, it follows that 𝐻1(𝑍) must be torsion as well. We will use this later to
conclude that ker(𝑗1|𝑇) = ker(𝑗1).
Now define 𝑘 ∶= g−rk Im(𝜕|𝑇), and let 𝑥1, … , 𝑥𝑘 ∈ 𝑇𝐻2(𝑍,𝑀𝐾) be elements whose images

𝜕|𝑇(𝑥1), … , 𝜕|𝑇(𝑥𝑘) under 𝜕|𝑇 generate Im(𝜕|𝑇). As g−rkΛ𝑛 = 𝑛, there exist 𝑦1, … , 𝑦𝑛 ∈
𝑇𝐻2(𝑍,𝑀𝐾) that generate Im(𝑗𝑏2 ) as a Λ-module. Let 𝑧1, … , 𝑧𝓁 ∈ 𝑇𝐻2(𝑍,𝑀𝐾) generate Im(𝑗2|𝑇)
as a Λ-module for some 𝓁 ∈ ℕ.
We claim that 𝑥1, … , 𝑥𝑘, 𝑦1, … , 𝑦𝑛, 𝑧1, … , 𝑧𝓁 generate 𝑇𝐻2(𝑍,𝑀𝐾). Let 𝑣 be an arbitrary element

of 𝑇𝐻2(𝑍,𝑀𝐾). As 𝜕|𝑇(𝑥1), … , 𝜕|𝑇(𝑥𝑘) generate Im(𝜕|𝑇), there exist 𝑝1, … , 𝑝𝑘 ∈ Λ such that
𝜕|𝑇(𝑣) = 𝑘∑

𝑖=1

𝑝𝑖𝜕|𝑇(𝑥𝑖) = 𝜕|𝑇
(

𝑘∑
𝑖=1

𝑝𝑖𝑥𝑖

)
.

Therefore, 𝑤 ∶= 𝑣 −
∑𝑘
𝑖=1 𝑝𝑖𝑥𝑖 is an element of ker(𝜕|𝑇). As 𝑤 ∈ 𝑇𝐻2(𝑍,𝑀𝐾), we have that

𝜕(𝑤) = 𝜕|𝑇(𝑤) = 0, and so 𝑤 is an element of

ker(𝜕) ∩ 𝑇𝐻2(𝑍,𝑀𝐾) = Im(𝑗2) ∩ 𝑇𝐻2(𝑍,𝑀𝐾).
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2050 MILLER and POWELL

Now we assert that Im(𝑗2) ∩ 𝑇𝐻2(𝑍,𝑀𝐾) ⊆ Im(𝑗𝑏2 ) + Im(𝑗2|𝑇). Assuming this, we can write 𝑤 =∑𝑛
𝑖=1 𝑞𝑖𝑦𝑖 +

∑𝓁
𝑖=1 𝑟𝑖𝑧𝑖 for some 𝑞𝑖, 𝑟𝑖 ∈ Λ, thereby establishing that 𝑥1, … , 𝑥𝑘, 𝑦1, … , 𝑦𝑛, 𝑧1, … , 𝑧𝓁

generate 𝑇𝐻2(𝑍,𝑀𝐾). To complete the proof of this claim we now argue that

Im(𝑗2) ∩ 𝑇𝐻2(𝑍,𝑀𝐾) ⊆ Im(𝑗
𝑏
2 ) + Im(𝑗2|𝑇)

as follows. Let 𝑢 ∈ Im 𝑗2, that is 𝑢 = 𝑗2(𝑠) = 𝑗2(𝑠𝑓, 𝑠𝑇) for 𝑠𝑓 ∈ Λ𝑛 and 𝑠𝑇 ∈ 𝑇𝐻2(𝑍). More pre-
cisely, 𝑢 = 𝑗2(𝑠𝑓, 𝑠𝑇) = 𝑗𝑎2 (𝑠𝑓) + 𝑗

𝑏
2
(𝑠𝑇) + 𝑗2|𝑇(𝑠𝑇). If in addition 𝑢 ∈ 𝑇𝐻2(𝑍,𝑀𝐾), then 𝑗𝑎2 (𝑠𝑓) = 0

and so indeed 𝑢 ∈ Im(𝑗𝑏
2
) + Im(𝑗2|𝑇).

It follows that the equivalence classes of 𝑥1, … , 𝑥𝑘, 𝑦1, … , 𝑦𝑛 generate 𝑇𝐻2(𝑍,𝑀𝐾)∕ Im(𝑗2|𝑇),
and hence that g−rk coker(𝑗2|𝑇) ⩽ 𝑛 + 𝑘. By Lemma 5.6, using the hypothesis that 𝐻1(𝑍,𝑀𝐾)
is torsion in order to apply the lemma, this implies that g−rk coker(𝑗2|𝑇) = g−rk ker(𝑗1|𝑇), and
therefore we have

g−rk ker(𝑗1) = g−rk ker(𝑗1|𝑇) = g−rk coker(𝑗2|𝑇) ⩽ 𝑛 + 𝑘.
For the first equality we used that𝐻1(𝑍) = 𝑇𝐻1(𝑍), as observed above. Also note that

ker(𝑖1) = Im(𝜕) = Im(𝜕
𝑎) + Im(𝜕|𝑇),

and so by recalling that 𝜕𝑎 has domain Λ𝑛 we obtain that

g−rk ker(𝑖1) ⩽ g−rk Im(𝜕
𝑎) + g−rk Im(𝜕|𝑇) ⩽ g−rkΛ𝑛 + g−rk Im(𝜕|𝑇) ⩽ 𝑛 + 𝑘.

Now combine Proposition 5.4(2), exactness, and the previous two inequalities (g−rk ker(𝑗1) ⩽ 𝑛 +
𝑘 and g−rk ker(𝑖1) ⩽ 𝑛 + 𝑘), to obtain

g−rk(𝐾) = g−rk𝐻1(𝑀𝐾) ⩽ g−rk ker(𝑖1) + g−rk Im(𝑖1) = g−rk ker(𝑖1) + g−rk ker(𝑗1)

⩽ (𝑛 + 𝑘) + (𝑛 + 𝑘) = 2𝑛 + 2𝑘.

We therefore have that

g−rk Im(𝜕|𝑇) = 𝑘 ⩾ (g−rk(𝐾) − 2𝑛)∕2 = 12 g−rk(𝐾) − 𝑛,
as desired. □

5.3 Proofs of Theorems 1.1 and 1.2

We are now ready to prove these two theorems.

Proof of Theorem 1.2. Recall that (𝐾, 𝜏) is a strongly invertible knot and 𝑘 is by definition the
maximal generating rank of any submodule 𝑃 of(𝐾) satisfying 𝓁𝐾(𝑥, 𝑦) = 0 = 𝓁𝐾(𝑥, 𝜏∗(𝑦))
for all 𝑥, 𝑦 ∈ 𝑃. Now suppose that 𝐾 bounds a genus g surface 𝐹 in 𝐷4 such that the involution 𝜏
on 𝑆3 extends to an involution 𝜏̂ on𝐷4 such that 𝜏̂(𝐹) = 𝐹. We wish to show that g ⩾ g−rk(𝐾)−2𝑘

4
.
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STRONGLY INVERTIBLE KNOTS AND EQUIVARIANT SLICE GENERA 2051

Let 𝑍 be as in Proposition 5.1, and consider the following portion of the long exact sequence of
(𝑍,𝑀𝐾) with Λ-coefficients:

⋯→ 𝐻2(𝑍,𝑀𝐾;Λ)
𝜕
K→ 𝐻1(𝑀𝐾;Λ)

𝑖∗
KK→ 𝐻1(𝑍;Λ) → ⋯ .

Define 𝑄 ∶= 𝜕(𝑇𝐻2(𝑍,𝑀𝐾;Λ)) ⊆ 𝐻1(𝑀𝐾;Λ).
Our first claim is that 𝓁𝐾(𝑥, 𝑦) = 0 = 𝓁𝐾(𝑥, 𝜏∗(𝑦)) for all 𝑥, 𝑦 ∈ 𝑄. So, let 𝑥, 𝑦 ∈ 𝑄 be

given. As 𝑄 ⊆ Im(𝜕|𝑇) ⊆ ker(𝑖∗), Proposition 5.3 implies that 𝓁𝐾(𝑥, 𝑦) = 0. Additionally, 𝑦 ∈
ker(𝑖∗) implies that 𝜏∗(𝑦) ∈ ker(𝑖∗) as well by Proposition 5.1(5). Thus, 𝓁𝐾(𝑥, 𝜏∗(𝑦)) = 0 too. We
conclude that g−rk𝑄 ⩽ 𝑘, by definition of 𝑘.
By Proposition 5.1(2) and (3), we have that𝐻1(𝑍,𝑀𝐾;Λ) is torsion and the free part of𝐻2(𝑍;Λ)

has rank 2g . Therefore, Proposition 5.5 implies that g−rk𝑄 ⩾ 1

2
g−rk(𝐾) − 2g . We therefore

have that

𝑘 ⩾ g−rk𝑄 ⩾
1

2
g−rk(𝐾) − 2g

or, rewriting,

g ⩾
g−rk(𝐾) − 2𝑘

4
. □

Finally, Theorem 1.1 is an immediate consequence of the following slightly stronger result.

Theorem 5.7. Let 𝐽1, … , 𝐽𝑛 denote genus one strongly invertible knots with pairwise distinct
and nontrivial Alexander polynomials. Pick a strong inversion 𝜏𝑖 on 𝐽𝑖 for each 𝑖 = 1, … , 𝑛 and
choose 𝑎1, … , 𝑎𝑛 ∈ ℕ. Letting #𝑎𝑖 (𝐽𝑖, 𝜏𝑖) denote the 𝑎𝑖-fold connected sum of (𝐽𝑖, 𝜏𝑖), define (𝐽, 𝜏) ∶=
#𝑛
𝑖=1
(#𝑎𝑖 (𝐽𝑖, 𝜏𝑖)). Then the equivariant 4-genus of (𝐽, 𝜏) is at least

1

4
max(𝑎1, … , 𝑎𝑛).

Proof. First, observe that

g−rk(𝐽) = g−rk

𝑛⨁
𝑖=1

(𝐽𝑖)
𝑎𝑖 = g−rk

𝑛⨁
𝑖=1

(
ℚ[𝑡±1]∕Δ𝐽𝑖 (𝑡)

)𝑎𝑖
= max{𝑎1, … , 𝑎𝑛},

where the last equality uses the fact that Δ𝐽1(𝑡), … , Δ𝐽𝑛 (𝑡) are pairwise distinct, degree 2, and
symmetric, hence pairwise relatively prime.
It remains to show that the only element 𝑥 ∈ (𝐽)with𝓁𝐽(𝑥, 𝜏∗(𝑥)) = 0 is the trivial element,

and our result will follow by Theorem 1.2. So, write 𝑥 = (𝑥𝑖)𝑛𝑖=1, where each 𝑥𝑖 ∈ (#𝑎𝑖 𝐽𝑖), and
observe that we canwrite𝓁#𝑎𝑖 𝐽𝑖 (𝑥𝑖, (𝜏𝑖)∗(𝑥𝑖)) =

𝑝𝑖(𝑡)

Δ𝐽𝑖
(𝑡)
for some𝑝𝑖(𝑡) ∈ ℚ[𝑡±1]. (This follows from

the general fact that 𝓁𝐾 takes values in
1

Δ𝐾(𝑡)
Λ∕Λ.) So,

𝓁𝐽(𝑥, 𝜏∗(𝑥)) =
𝑛∑
𝑖=1

𝓁#𝑎𝑖 𝐽𝑖 (𝑥𝑖, (𝜏𝑖)∗(𝑥𝑖)) =
𝑛∑
𝑖=1

𝑝𝑖(𝑡)

Δ𝐽𝑖 (𝑡)
.

As all the Δ𝐽𝑖 (𝑡) are relatively prime, by Lemma 3.2 this expression is trivial in ℚ(𝑡)∕ℚ[𝑡
±1] only

when 𝓁#𝑎𝑖 𝐽𝑖 (𝑥𝑖, (𝜏𝑖)∗(𝑥𝑖)) =
𝑝𝑖(𝑡)

Δ𝐽𝑖
(𝑡)

vanishes for all 𝑖 = 1, … , 𝑛. But by Proposition 3.4 applied to
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2052 MILLER and POWELL

each 𝐽𝑖 , this occurs only when 𝑥𝑖 = 0 for all 𝑖 = 1, … , 𝑛, that is when 𝑥 = 0. Therefore, 𝑘 = 0 in
Theorem 1.2, so

g̃4(𝐽) ⩾
g−rk(𝐽)

4
=
1

4
max(𝑎1, … , 𝑎𝑛),

as desired. □
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