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AMPHICHIRAL KNOTS WITH LARGE 4-GENUS

ALLISON N. MILLER

Abstract. For each g > 0 we give infinitely many knots that are strongly negative amphichiral,
hence rationally slice and representing 2-torsion in the smooth concordance group, yet which do
not bound any locally flatly embedded surface in the 4-ball with genus less than or equal to g. Our
examples also allow us to answer a question about the 4-dimensional clasp number of knots.

1. Introduction

A knot K in S3 is called strongly negative amphichiral if there exists an orientation revers-
ing involution ϕ : S3 → S3 such that ϕ(K) = K. Many concordance invariants vanish on such
knots, including the classical Tristram-Levine signature function [Lev69, Tri69] and more mod-
ern invariants coming from Heegaard Floer and Khovanov homology like the τ -invariant [OS03],
ν+-invariant [HW16], Υ-invariant [OSS17], s-invariant [Ras10], sn-invariants [Lob09, Wu09], s#-
invariant [KM13], and invariant-ג [LL19]. Notably, this list contains almost all known lower bounds
on the 4-genus, or minimal genus of a (smoothly or locally flatly) embedded orientable surface in B4

with boundary the given knot. However, we use Gilmer’s bound on the topological 4-genus [Gil82]
coming from Casson-Gordon signatures [CG86] to prove the following.

Theorem 1.1. For any g > 0, there exists a knot K with the following properties:

(1) K is strongly negative amphichiral.
(2) K can be transformed to a smoothly slice knot by either (a) changing some crossings (+) to

(−) or (b) changing some crossings (−) to (+).
(3) the topological 4-genus of Kis strictly larger than g.

In fact, something more is true, and proven in Proposition 2.7: for any g ∈ N there exists an infi-
nite family of knots {Kk}k∈N, generating a subgroup of the concordance group isomorphic to (Z2)

∞,
such that any nontrivial sum K = #m

j=1K
kj satisfies the conclusions of Theorem 1.1. Moreover,

each of the knots Kk is algebraically slice, so we incidentally reprove a result of Livingston [Liv99]
that there is a (Z2)

∞-subgroup of the concordance group consisting of algebraically slice knots.

Negative amphichiral knots, if not slice, represent 2-torsion elements of the smooth concordance
group; a still-open question of Gordon asks whether all 2-torsion elements have such representa-
tives [Hau78, Problem 16]. We therefore obtain the following corollary to Theorem 1.1, which
appears to be previously unknown.

Corollary 1.2. There exist 2-torsion knots with arbitrarily large 4-genera.

A knot K is called rationally slice if there exists a smooth 4-manifold W with boundary ∂W = S3

and H∗(W ;Q) = H∗(B
4;Q) such that K bounds a smoothly embedded null-homologous disc in

W . Every strongly negative amphichiral knot is rationally slice [Kaw09], and so Theorem 1.1 also
answers a question of [HKJPS20] in the affirmative.

Corollary 1.3. There exist rationally slice knots with arbitrarily large 4-genera.

2020 Mathematics Subject Classification. 57K10 .
Key words and phrases. Casson-Gordon signatures, clasp number, four genus, rationally slice, strongly negative

amphichiral.
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2 A. N. MILLER

The 4-dimensional clasp number c4(K) of a knot K is the minimal number of transverse double
points across all immersions of D2 in B4 with ∂D2 = K. Similarly, c+4 (K) (respectively c−4 (K))
is defined to be the minimal number of positive (resp. negative) transverse double points across
all immersions of D2 in B4 with ∂D2 = K. It follows immediately from the definitions that
c+4 + c−4 ≤ c4; the figure-eight knot 41 is the prototypical example of when this inequality is strict,
since c+4 (41) = c−4 (41) = 0 and yet c4(41) = 1. We answer a question of [JZ20] by giving the first
examples of knots for which c4(K) is arbitrarily larger than c+4 (K) + c−4 (K).

Corollary 1.4. The difference between c4(K) and c+4 (K) + c−4 (K) can be arbitrarily large.

Proof. For g ∈ N, let Kg be a knot satisfying the conclusions of Theorem 1.1. By (2), we have that
c+4 (Kg) + c−4 (Kg) = 0 + 0 = 0, and by (3) we have that

g < g4(Kg) ≤ gs4(Kg) ≤ c4(Kg),

noting that standard arguments show that for any knot K the smooth 4-genus gs4(K) is bounded
above by c4(K). �

Since Casson-Gordon signatures provide bounds on the topological 4-genus, it remains open
whether one can find examples for the smooth analogue of Theorem 1.1 as follows.

Question 1.5. For g ∈ N, does there exist a topologically slice knot K such that gs4(K) > g and

(1) K is order 2 in the smooth concordance group?
(2) K is smoothly rationally slice?
(3) c+4 (K) = c−4 (K) = 0?

Recent work of Hom-Kang-Park-Stoffregen [HKJPS20] has shown that {C2n+1,1(41)}n∈N gener-
ates a Z∞-subgroup of rationally slice knots in the smooth concordance group. By work of [FMPC19],
the topological 4-genus of C2n+1,1(41) equals 1 for all n ∈ N, but it remains open whether the smooth
4-genus of C2n+1,1(41) is large. Since 2n + 1 is relatively prime to 2, one can combine the work
of this paper with the formulas for Casson-Gordon signatures of satellite knots given in [Lit84]
and conclude that for our choice of Kg satisfying the conclusions of Theorem 1.1, we have that
g4(C2n+1,1(Kg)) > g for all n ∈ N. We therefore state the following as an interesting open problem
in either the smooth or topological categories.

Question 1.6. For any g ∈ N, let Kg be one of the knots given in Section 2 that satisfies the
conclusions of Theorem 1.1. For some or all n ∈ N, determine whether C2n+1,1(Kg) is infinite order
in the concordance group.

We note that it remains open even whether C2n,1(K) must always be slice for strongly negative
amphichiral K, though it is known that many such knots are not ribbon [Miy94].

Remark 1.7. The key feature of Casson-Gordon signatures that allows us to use Gilmer’s bound
to establish Theorem 1.1 when all other lower bounds on the 4-genus fail might initially seem like
a flaw: no single signature gives a 4-genus bound or even a sliceness obstruction. While we avoid
stating the precise definition of these invariants, we remind the reader that σ(K,χ) ∈ Q depends
on not just the knot K but a choice of map χ from the first homology of the double branched cover
of K to a cyclic group. The fact that K is negative amphichiral implies that there is an involution ι
on the set of such maps such that σ(K, ι(χ)) = −σ(K,χ). As long as this involution is non-trivial,
the negative amphichirality of K does not force σ(K,χ) to vanish and there is still the potential to
obtain a sliceness obstruction–and even a lower bound on the 4-genus–by considering the set of all
such signatures. This could be considered as philosophically similar to the fact that Casson-Gordon
signatures can obstruct knots from being concordant to their reverses [KL99], though that result
requires a careful analysis of additional structure that we are able to avoid.
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2. Proof of Main Result

Our examples are connected sums of certain satellites of the figure-eight knot.

Example 2.1. Let J be a reversible knot and define K(J) to be as in Figure 1, where J denotes
the mirror image of J , which since J is reversible equals the concordance inverse −J . The right

Figure 1. The knot K(J) from 2 perspectives.

side of Figure 1 demonstrates that K(J) is strongly negative amphichiral: rotation by 180 degrees
in the plane about the marked point followed by reflection in the plane of the page takes K(J) to
itself. Also observe that the disc-with-bands Seifert surface for K(J) visible on the left of Figure 1
demonstrates that K(J) shares a Seifert form with the figure-eight knot K0.

Proposition 2.2. If J is a reversible knot, then K(J) has c+4 (KJ) = c−4 (KJ) = 0.

Proof. Consider the knots K± as depicted in Figure 2, shown with genus one Seifert surfaces F±
in disc-with-bands position. Observe that K+ (respectively K−) is obtained from KJ by changing
a single negative (resp. positive) crossing to a positive (resp. negative) crossing. Figure 2 also

Figure 2. K+, obtained by changing a crossing from − to + (left) and K−, obtained by
changing a crossing from + to − (right).

depicts a curve γ± on F±. Note that each of γ± represents a nontrivial element of H1(F±) and is
0-framed by F±; i.e. is an derivative curve. Considered as a knot, γ+ is J#J ; since J is reversible
this is isotopic to J#−J and hence is slice. Similarly, the knot type of γ− is the slice knot J#−J .
Therefore, surgering the Seifert surface F± along the derivative curve γ± yields a smooth slice disc
for K±. We can convert this single crossing change from K(J) to K± into an immersed annulus in
S3 × I from K(J) to K±. Capping each of these annuli with a smooth slice disc for K± yields the
desired immersed discs bounded by K(J), each with a single singularity of different sign. �
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2.1. Background results. For n ∈ N and a knot K, we let Σn(K) denote the nth cyclic branched
cover of S3 along K. To a knot K and a map χ : H1(Σn(K))→ Zq one can associate the Casson-
Gordon signature σ(K,χ) ∈ Q [CG86]. We avoid giving the technical definition of these invariants,
noting only that they are defined in terms of the twisted intersection form of some 4-manifold and
are notoriously difficult to compute precisely. We remark for those familiar with Casson-Gordon
signatures that in the literature what we call σ(K,χ) is just σ1τ(K,χ) instead.

Our lower bound on the topological 4-genus of a knot comes from the following result of Gilmer.

Theorem 2.3 ([Gil82]). Suppose that K is a knot with g4(K) ≤ g. Then there is a decomposition
H1(Σ2(K)) = A1 ⊕A2 such that:

(1) A1 has a presentation with at most 2g generators.
(2) There is some B ≤ A2 with |B|2 = |A2| such that for any prime power order χ : H1(Σ(K))→

Zq, we have

|σ(K,χ) + σ(K)| ≤ 4g.

We remark for later that in our applications of Theorem 2.3 K will always be negative amphichi-
ral and hence have σ(K) = 0.

Litherland proved a much more general formula for the Casson-Gordon invariants of satellite
knots, but we will only need the following special case.

Theorem 2.4 ([Lit84]). Suppose P is a pattern of winding number 0 described by an unknot η in
the complement of P (U). Let x denote the homology class of one of the lifts of η to Σ2(P (U)).
For any knot J , there is an isomorphism α : H1(Σ2(P (J))) → H1(Σ2(P (U))) such that for any
χ : H1(Σ2(P (U)))→ Zq we have

σ(P (J), χ ◦ α) = σ(P (U), χ) + 2σJ(ωχ(x)q ),

where ωq = e2πi/q and σJ denotes the Tristram-Levine signature function.

As well as the knot invariant σ(K,χ), Casson-Gordon introduced a signature invariant σ(M,φ)
associated to a 3-manifold M and a character φ : H1(M) → Zq. We will need a formula due to
Cimasoni-Florens for the Casson-Gordon signature of a 3-manifold in terms of the colored signature
function of a surgery link. Although this result is proved in much more generality, we state it only
for the case of interest: when M is obtained by surgery on a Hopf link. We thereby avoid going into
the technical details of the definition of the colored signature function, noting only for the experts
that the cell complex consisting of 2 discs meeting in a single arc and bounded by the Hopf link
is a C-complex in the sense of [CF08], and the contractibility of this complex immediately implies
that the colored signature function of the Hopf link is identically zero.

Theorem 2.5. [CF08, Theorem 6.7] Suppose that a 3-manifold M is obtained by surgery on a

Hopf link L with linking matrix Λ =

[
a 1
1 b

]
. Let q be prime and χ : H1(M)→ Zq be a character

such that the two meridians µ1, µ2 of L are sent to nonzero elements of Zq. For i = 1, 2 let
ni ∈ {1, . . . , q − 1} be the unique value satisfying ni ≡ χ(µi) mod q. Then

σ(M,χ) = −1− sign(Λ) +
2

q2

[
n1
n2

]T
·
[
a 1
1 b

]
·
[
q − n1
q − n2

]
2.2. Proof of Theorem 1.1. We now apply Theorems 2.4 and 2.5 to obtain a formula for the
Casson-Gordon signatures of KJ in terms of the Tristram-Levine signatures of J .

Example 2.6. Let K0 denote the figure-eight knot. Note that K(J) is obtained from K0 by two
infections along curves η1 and η2, as depicted in Figure 3.
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Figure 3. The knot K(J) is an iterated satellite of the figure-eight knot.

By twice applying Theorem 2.4, we see that for any knot J there is an isomorphism α : H1(Σ2(K(J)))→
H1(Σ2(K0)) such that for any character χ : H1(Σ2(K0))→ Zq we have

σ(K(J), α ◦ χ) = σ(K0, χ) + 2σJ(ωχ(η̃1)q ) + 2σJ(ωχ(η̃2)q ) = σ(K0, χ) + 2σJ(ωχ(η̃1)q )− 2σJ(ωχ(η̃2)q )

Since both ηi curves are disjoint from the usual genus one Seifert surface for K0, we can apply
Akbulut-Kirby’s algorithm of [AK80] to obtain the following surgery diagram for Σ2(K0), with lifts
of η1 and η2 as indicated. (Note that we have only depicted one lift of each curve, since that is all
we need to apply Theorem 2.5.) The first homology of Σ2(K0) is generated by the meridians of

Figure 4. A surgery diagram L for Σ2(K0).

the components of L, which are isotopic to η̃1 and η̃2. The relations are given by the rows of the
linking-framing matrix, and are

−2[η̃2] + [η̃1] = 0 and [η̃2] + 2[η̃1] = 0.

Some quick simplifications give us that H1(Σ2(K0)) ∼= Z5, generated by a := [η̃2] and such that
[η̃1] = 2[η̃2]. Therefore, for any character χ : H1(Σ2(K0))→ Z5 we have that

σ(KJ , χ ◦ α) = σ(K0, χ) + σJ(ω
2χ(a)
5 )− σJ(ω

χ(a)
5 ).(1)

We can also use the surgery diagram of Figure 4 to bound |σ(K0, χ)|. For j ∈ Z5, define
χj : H1(Σ2(K0))→ Z5 to be the map with χj(x) = j. Observe that χ1([η̃1]) = 2 and χ2([η̃1]) = 4.
Therefore, Theorem 2.5 gives us that

σ(Σ2(K0), χ1) = −1− 0 +
2

25

[
1 2

] [ −2 1
1 2

] [
4
3

]
= −1 +

30

25
= 1/5

and

σ(Σ2(K0), χ2) = −1− 0 +
2

25

[
2 4

] [ −2 1
1 2

] [
3
1

]
= −1 +

20

25
= −1/5.

Moreover, basic properties of Casson-Gordon signatures (or reapplying Theorem 2.5) imply that
σ(Σ2(K0), χ3) = σ(Σ2(K0), χ2), σ(Σ2(K0), χ4) = σ(Σ2(K0), χ1), and σ(Σ2(K0), χ0) = 0.

Since H1(Σ2(K0)) ∼= Z5 is cyclic, for any character χ : H1(Σ2(K0)) → Z5 we have by [CG86,
Lemma 3 and Theorem 4] that

|σ(K0, χ)− σ(Σ2(K0), χ)| ≤ 1.

Therefore, we conclude that for any χ : H1(Σ2(K0))→ Z5 we have |σ(K0, χ)| < 2.
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We are now ready to prove the following and obtain Theorem 1.1 as a consequence.

Proposition 2.7. Fix g ∈ N. For i ∈ N define Ji = #miT2,5, where mi = 22i+1g. Now, for k ∈ N
define Kk := #2g+2

i=1 K(Jk(2g+2)+i). Then S = {Kk}k∈N is a collection of algebraically slice knots

such that any nontrivial sum K = #n
j=1K

kj satisfies the conclusions of Theorem 1.1.

Proof. Observe that for any choice of J , the knot K(J) shares a Seifert form with K0. Therefore,

each Kk shares a Seifert form with the slice knot #2g+2
i=1 K0, and hence is algebraically slice.

Now let K = #n
j=1K

kj be a nontrivial sum of elements of S. We can and do assume that

k1 < k2 < · · · < kn. Since conditions (1) and (2) of Theorem 1.1 are preserved under connected
sum, it only remains to verify condition (3).

So suppose for a contradiction that g4(K) ≤ g and hence that there exists a decomposition
H1(Σ2(K)) ∼= A1 ⊕A2 and a subgroup B ≤ A2 satisfying the conclusions of Theorem 2.3. Let

β : H1(Σ2(K))→
n⊕
j=1

(
2g+2⊕
i=1

H1(Σ2(K(Jk(2g+2)+i)))

)
→

n⊕
j=1

(
2g+2⊕
i=1

H1(Σ2(K0))

)

denote the isomorphism (coming from Theorem 2.4 together with the additivity of Casson-Gordon
signatures with respect to connected sum [Lit84]) satisfying

σ

(
K,β ◦

(
(χji )

2g+2
i=1

)n
j=1

)
=

m∑
j=1

σ(Kkj , (χji )
2g+2
i=1 )

=

n∑
j=1

(
2g+2∑
i=1

σ(K(Jkj(2g+2)+i), χ
j
i )

)

=
n∑
j=1

(
2g+2∑
i=1

σ(K0, χ
j
i ) + 2σJkj(2g+2)+i

(ω
2χj

i (a)
5 )− 2σJkj(2g+2)+i

(ω
χj
i (a)

5 )

)
,

where in the last equality we use Equation 1 of Example 2.6.

Since H1(Σ2(K)) ∼= Zm(2g+2)
5 and A1 has a presentation with at most 2g generators, we have

that A1 is isomorphic to Zj5 for some j ≤ 2g. Therefore A2 is isomorphic to Zn(2g+2)−j
5 and B is

isomorphic to Zn(g+1)−j/2
5 . So A1 ⊕B ∼= Zj

′

5 for

j′ = n(g + 1) + j/2 ≤ n(g + 1) + g < n(2g + 2)

and there exists a nonzero character χ : H1(Σ2(K))→ Z5 that vanishes on A1 ⊕B.
The rest of the proof consists of showing that |σ(K,χ)| > 4g, using only our definition of K and

the hypothesis that χ is not identically zero. Let(
(χji )

2g+2
i=1

)n
j=1

:= χ ◦ β−1 :

n⊕
j=1

(
2g+2⊕
i=1

H1(Σ2(K0))

)
→ Z5.

Since χ is nontrivial, there exists some j such that (χji )
2g+1
i=1 is not identically zero. Let j0 be the

maximal such j and i0 be the maximal i such that χj0i is nonzero. Let ` = kj0(2g + 2) + i0. The

following algebraic manipulations show that σ(K(J`), χ
j0
i0

) so dominates the other terms that could
contribute to σ(K,χ) that we have as desired that |σ(K,χ)| > 4g.

Recalling that Ji = #miT2,5, where mi = 22i+1g, we have by the additivity of Tristram-Levine
signatures under connected sum that σJi(ω5) = σJi(ω

4
5) = −22i+2g and σJi(ω

2
5) = σJi(ω

3
5) =

−22i+3g (see KnotInfo [LM20] for the Tristram-Levine signature function of T (2, 5).) Applying
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Equation 1 from Example 2.6, we see that for any i and any nonzero character ρ : H1(Σ2(K(Ji)))→
Z5 we have that

22i+3g − 2 ≤ |σ(K(Ji), ρ)| = |σ(K0, ρ)± (2σJi(ω5)− 2σJi(ω
2
5))| ≤ 22i+3g + 2(2)

Note that here and in the rest of the proof, we suppress the identification of each H1(Σ2(K(Ji)))
with H1(Σ2(K0)).

Observe that the set of natural numbers

{kj0(2g + 2) + i : 1 ≤ i ≤ i0 − 1} ∪
j0−1⋃
j=1

{kj(2g + 2) + i) : 1 ≤ i ≤ 2g + 2}(3)

is a subset of {1, . . . , `− 1}, recalling that ` = kj0(2g + 2) + i0. We therefore have that

|σ(K,χ)| =

∣∣∣∣∣∣
n∑
j=1

2g+2∑
i=1

σ(K(Jkj(2g+2)+i), χ
j
i )

∣∣∣∣∣∣
=

∣∣∣∣∣∣σ(K(J`), χ
j0
i0

) +

i0−1∑
i=1

σ(K(Jkj0 (2g+2)+i), χ
j0
i ) +

j0−1∑
j=1

2g+2∑
i=1

σ(K(Jkj(2g+2)+i), χ
j
i )

∣∣∣∣∣∣
≥
∣∣∣σ(K(J`), χ

j0
i0

)
∣∣∣− i0−1∑

i=1

∣∣∣σ(K(Jkj0 (2g+2)+i), χ
j0
i )
∣∣∣− j0−1∑

j=1

2g+2∑
i=1

∣∣∣σ(K(Jkj(2g+2)+i), χ
j
i )
∣∣∣

≥ (22`+3g − 2)−
`−1∑
k=1

(22k+3g + 2) =: (∗)

where in the last inequality we use our observation from Equation 3 together with Equation 2.
Some algebraic simplification yields that

(∗) = 8g

(
22` −

`−1∑
k=1

22k

)
− 2` = (g/3)(22`+3 − 32)− 2`.

Now, note that since ` > 2g+2 ≥ 4 we have that 2`+3 > 11 and so certainly 22`+3−32 > 22`+2.
Therefore

|σ(K,χ)| ≥ (∗) > (g/3)22`+2 − 2` > 22` − 2`.

Finally, we observe that for any x > 2 we have 22x − 2x > 2x, since letting f(x) = 22x − 4x we see
that f ′(x) = ln(4)22x − 4 is positive for all x ≥ 1 and f(2) = 8. Therefore

|σ(K,χ)| > 2` > 4g + 4 > 4g,

as desired. �

Remark 2.8. The examples of Proposition 2.7 are far from the only knots satisfying the conclusions
of Theorem 1.1. One could vary the base knot, for example by choosing {ai}i≥0 to be natural
numbers such that {4a2i + 1}i∈N consists of pairwise relatively prime numbers. (This is easily

accomplished by e.g. letting a0 = 1 and ak =
∏k−1
i=1 (4a2i + 1) for k ≥ 1. ) Now, let Ki be the

2-bridge knot corresponding to the rational number
4a2i+1
2ai

, noting that indeed K0 is the figure-eight

knot. Choose {pi}i≥0 to be primes dividing 4a2i + 1, noting that by our choice of ai we have that
pi divides 4a2j + 1 if and only if j = i. By taking connected sums of Kai analogously infected with
large connected sums of T2,pi and −T2,pi , we can essentially repeat the arguments of Proposition 2.7
and obtain many more linearly independent knots satisfying the conclusions of Theorem 1.1.



8 A. N. MILLER

References

[AK80] Selman Akbulut and Robion Kirby. Branched covers of surfaces in 4-manifolds. Math. Ann., 252(2):111–
131, 1979/80.

[CF08] David Cimasoni and Vincent Florens. Generalized Seifert surfaces and signatures of colored links. Trans.
Amer. Math. Soc., 360(3):1223–1264, 2008.

[CG86] Andrew Casson and Cameron Gordon. Cobordism of classical knots. In À la recherche de la topologie
perdue, volume 62 of Progr. Math., pages 181–199. Birkhäuser Boston, Boston, MA, 1986. With an
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invariant. J. Symplectic Geom., 14(1):305–323, 2016.
[JZ20] András Juhász and Ian Zemke. New Heegaard Floer slice genus and clasp number bounds. preprint

arXiv:2007.07106, 2020.
[Kaw09] Akio Kawauchi. Rational-slice knots via strongly negative-amphicheiral knots. Commun. Math. Res.,

25(2):177–192, 2009.
[KL99] Paul Kirk and Charles Livingston. Twisted knot polynomials: inversion, mutation and concordance.

Topology, 38(3):663–671, 1999.
[KM13] P. B. Kronheimer and T. S. Mrowka. Gauge theory and Rasmussen’s invariant. J. Topol., 6(3):659–674,

2013.
[Lev69] J. Levine. Knot cobordism groups in codimension two. Comment. Math. Helv., 44:229–244, 1969.
[Lit84] Richard Litherland. Cobordism of satellite knots. In Four-manifold theory (Durham, N.H., 1982), vol-

ume 35 of Contemp. Math., pages 327–362. Amer. Math. Soc., Providence, RI, 1984.
[Liv99] Charles Livingston. Order 2 algebraically slice knots. In Proceedings of the Kirbyfest (Berkeley, CA,

1998), volume 2 of Geom. Topol. Monogr., pages 335–342. Geom. Topol. Publ., Coventry, 1999.
[LL19] Lukas Lewark and Andrew Lobb. Upsilon-like concordance invariants from sln knot cohomology. Geom.

Topol., 23(2):745–780, 2019.
[LM20] Charles Livingston and Allison H. Moore. KnotInfo: Table of Knot Invariants.

http://www.indiana.edu/ knotinfo, November 16, 2020.
[Lob09] Andrew Lobb. A slice genus lower bound from sl(n) Khovanov-Rozansky homology. Adv. Math.,

222(4):1220–1276, 2009.
[Miy94] Katura Miyazaki. Nonsimple, ribbon fibered knots. Trans. Amer. Math. Soc., 341(1):1–44, 1994.
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