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HOMOMORPHISM OBSTRUCTIONS FOR SATELLITE MAPS

ALLISON N. MILLER

Abstract. A knot in a solid torus defines a map on the set of (smooth or
topological) concordance classes of knots in S3. This set admits a group struc-
ture, but a conjecture of Hedden suggests that satellite maps never induce
interesting homomorphisms: we give new evidence for this conjecture in both
categories. First, we use Casson-Gordon signatures to give the first obstruction
to a slice pattern inducing a homomorphism on the topological concordance
group, constructing examples with every winding number besides ±1. We then
provide subtle examples of satellite maps which map arbitrarily deep into the
n-solvable filtration of Cochran, Orr, and Teichner [Ann. of Math. (2) 157
(2003), pp. 433–519], act like homomorphisms on arbitrary finite sets of knots,
and yet which still do not induce homomorphisms. Finally, we verify Hedden’s

conjecture in the smooth category for all small crossing number satellite oper-
ators but one.

1. Introduction

A knot P in the parametrized solid torus S1 × D2 defines a function on the
set of knots in S3 by the well-known satellite construction: given a knot K, let
iK : S1 ×D2 → ν(K) ⊆ S3 be an identification of the standard solid torus with a
0-framed tubular neighborhood of K and define P (K) to be iK(P ) as illustrated
in Figure 1. It is common to call P the pattern and K the companion knot of the
satellite knot P (K).

Figure 1. A pattern P (left) and companion knot K (center)
combine to give the satellite knot P (K) (right)

The map K �→ P (K) descends to a well-defined function on the collection of
(smooth or topological) concordance classes of knots. These satellite maps are es-
sential tools in the modern study of knot concordance and in 3- and 4-manifold
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topology more generally. To sample just a few results, the satellite construc-
tion features prominently in the first evidence for a fractal structure on concor-
dance [CHL11]; the first examples of non-smoothly concordant knots with homeo-
morphic 0-surgeries [Yas15]; and the first knots in homology spheres which do not
bound PL discs in any contractible 4-manifold [Lev16]. As a result, satellite opera-
tions have become an object of study in their own right, with recent work in the area
focusing on the existence of interesting bijective satellite maps [GM95,MP18], the
behavior of the 4-genera of knots under satelliting [CH18,Pic19,Mil19,FMPC22],
and on satellite maps with image of infinite rank [HPC21].

Nonetheless, a fundamental question remains almost entirely open. The collec-
tion of concordance classes of knots famously has the structure of an abelian group,
with addition induced by connected sum and the inverse operation induced by tak-
ing the mirror-reverse of a knot, and it is natural to ask how a satellite operator
interacts with this additional structure.

Question 1.1. When does a pattern induce a homomorphism of the concordance
group?

The following three standard patterns evidently induce homomorphisms in both
categories:

K �→ U , K �→ K, K �→ Kr.
Hedden conjectured that these are the only homomorphisms induced by the

satellite operation.

Conjecture 1.2 ([BIR16,MPI16]). Let P be a pattern which induces a homomor-
phism on the concordance group. Then P induces one of the three standard maps
on concordance, i.e. the action of P is given by one of [K] �→ [U ], [K] �→ [K], or
[K] �→ [Kr].

We call a pattern P slice if P (U) is a slice knot; this is an obvious prerequisite
for a pattern to induce a homomorphism. Perhaps surprisingly, any slice pattern
induces a homomorphism of Levine’s algebraic concordance group [Lit84], and so
‘looks like’ a homomorphism from the perspective of classical invariants like the
Tristram-Levine signatures and Alexander polynomial.

In this paper, we give new evidence for Conjecture 1.2 in both the smooth and
topological categories. First, we give the first obstruction to a slice pattern P
inducing a homomorphism on the topological concordance group.

Theorem A. Let P be a pattern described by an unknot η in the complement of
P (U). Suppose that there exists some prime p dividing the winding number of P
such that the lifts of η to the p-fold cyclic branched cover Σp(P (U)) generate the
nontrivial group H1(Σp(P (U))). Then P does not induce a homomorphism on the
topological concordance group.

In Section 3 we give examples of patterns of every winding number besides ±1
satisfying the conditions of Theorem A, as well as examples of patterns obstructed
from acting as homomorphisms by Proposition 2.2, a stronger but harder to state
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version of Theorem A. We remark that the outstanding case of winding number
±1 seems quite difficult: remarkably, there are no slice patterns of winding num-
ber 1 (respectively −1) that are known to not induce the identity (respectively
reversal) map on the topological concordance group! Moreover, (non)-existence of
such patterns is closely related to longstanding questions such as the topological
Akbulut-Kirby and homotopy ribbon conjectures (see [GM95,MP18]).

The n-solvable filtration of [COT03] plays a central role in the current under-
standing of the topological knot concordance group; while we omit a precise defi-
nition, knots that are n-solvable for large n ∈ N are ‘close’ to being topologically
slice. The Casson-Gordon style techniques of Theorem A cannot obstruct satellite
maps with image deep in the n-solvable filtration from inducing homomorphisms.
However, we apply results of [CHL11] to give many examples of patterns mapping
arbitrarily deep in the filtration which do not induce homomorphisms.

Theorem B. For any n ∈ N, there exist infinitely many slice patterns P that have
image contained within Fn, the collection of n-solvable knots and yet do not induce
homomorphisms on the topological concordance group.

We also consider the extent to which non-standard patterns can act like homo-
morphisms on subsets of the concordance group, proving the following.

Theorem C. Let {Ki}mi=1 be any finite collection of knots. Then there exists a
slice pattern P that does not induce a homomorphism on the topological concor-
dance group but which has the property that P (Ki#Kj) is smoothly concordant to
P (Ki)#P (Kj) for all 1 ≤ i, j ≤ m.

We remark that in particular one can choose {Ki}mi=1 to be any finite 2-torsion
subgroup of the concordance group, but it remains an interesting open question
whether any non-standard pattern acts as a homomorphism when restricted to the
subgroup {#nK}n∈Z when K represents an infinite order element of the concor-
dance group.

We conclude by switching to the smooth category, where we show that the Hee-
gaard Floer knot invariant τ must be scaled by the (absolute value of the) algebraic
winding number under the action of any pattern inducing a homomorphism on the
smooth concordance group.

Theorem D. If P is a pattern of winding number w(P ) that induces a homomor-
phism on the smooth concordance group, then for any knot K,

τ (P (K)) = |w(P )|τ (K).

We then consider the 19 patterns which are presented by two-component links
with at most 8 crossings, and almost completely verify Hedden’s conjecture in that
setting.

Theorem E. Let P be a pattern presented by a link P (U) ∪ η with at most 8
crossings. Then P does not induce a homomorphism on the smooth concordance
group, unless perhaps P (U)∪ η = L8a9, where it is unknown even if P acts by the
identity.

Note that previous work has used modern smooth technologies to show that
the simplest non-standard patterns–the Whitehead pattern [Gom86], the Mazur
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pattern,1 and the cable Cp,1 for p > 1 [Hed09]–do not induce homomorphisms on
the smooth concordance group.

Remark 1.3. It remains almost entirely open whether a pattern is determined up
to concordance in (S1 × D2) × I by its action on the concordance group. The
exception is the winding number 0 case in the topological category, where we know
for example that the Whitehead double pattern is not concordant to the trivial
pattern but does induce the zero map on topological concordance. One might
therefore hope to strengthen Conjecture 1.2 to the statement that any pattern
inducing a homomorphism must be concordant to a standard pattern, at least in
the smooth category.

Organization of the paper

In Section 2, we state some useful results on the behavior of Casson-Gordon
invariants under the satellite operation and derive Theorem A as a consequence
of a stronger obstruction, Proposition 2.2. In Section 3 we provide examples of
patterns satisfying the conditions of Theorem A and Proposition 2.2. In Section 4
we collect necessary background material on the n-solvable filtration and prove
Theorems B and C. Finally, in Section 5 we prove Theorems D and E.

Conventions and notation

All manifolds are assumed to be compact and oriented. Moreover, each pattern
P lives in a solid torus with a parametrization S1×D2 that inherits an orientation
from those on S1 and D2 in the usual way. This care is necessary in order to
specify the identification of S1 ×D2 with a 0-framed tubular neighborhood of K:
we identify an oriented copy of S1 × ∗ with a 0-framed longitude of K that is
oriented parallel to K.

We use Cs to denote the smooth concordance group, Ct the topological concor-
dance group, and C when our statements hold in either category. Unless otherwise
stated, all patterns are assumed to be slice in the appropriate category.

Given a pattern P : S1 → S1 × D2, the class of [P (S1)] equals m[S1 × {∗}]
in H1(S

1 × D2) for some m ∈ Z. We call m the algebraic winding number of P
and write w(P ) = m. Given a pattern P with w(P ) = m, the pattern P rev with
reversed orientation of P but the same identification and orientation of S1 × D2

has w(P rev) = −m and the property that P rev(K) is isotopic to P (K)rev for all
knots K. In particular, P induces a homomorphism of C if and only if P rev does.
For convenience, we therefore restrict to patterns of positive winding number.

2. A Casson-Gordon obstruction

Given a knot K and prime power n ∈ N, the first homology group H :=
H1(Σn(K)) of the n-fold cyclic branched cover comes with some additional struc-
ture. First, there is a nondegenerate symmetric form λ : H × H → Q /Z called
the torsion linking form. A metabolizer for (H,λ) is a subgroup M ≤ H such
that |M |2 = |H| and λ|M×M = 0. There is a Zn action on H induced by the
action of covering transformations on Σn(K), and a metabolizer is called invariant
if this subgroup is set-wise preserved by the Zn-action. We remark that classical

1This follows immediately from [Lev16], though we expect it was known to the experts for
some time before.
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arguments (see [CG86]) imply that if K is slice then (H1(Σn(K)), λ) must have an
invariant metabolizer.

Our first obstruction to a pattern inducing a homomorphism comes from Casson-
Gordon signature invariants. We will not fully define these, noting only that to any
knot K, prime powers p and q, and map χ : H1(Σp(K)) → Zq, there is an associated
Casson-Gordon signature σ(K,χ) ∈ Q defined in terms of the Witt class of the
twisted intersection form of some associated 4-manifold. Moreover, Casson-Gordon
signatures obstruct topological sliceness as follows.

Theorem 2.1 ([CG86]). Suppose K is a topologically slice knot. Then for every
prime power p there exists an invariant metabolizer M ≤ H1(Σp(K)) such that if
χ is a prime power order character with χ|M = 0 then σ(K,χ) = 0.

Theorem A is a consequence of the following more general obstruction.

Proposition 2.2. Let P be a pattern described by an unknot η in the complement of
P (U). Let p be a prime dividing the winding number of P , let H = H1(Σp(P (U))),
and denote the first homology classes represented by the p lifts of η to Σp(P (U)) by
z1, . . . , zp ∈ H.

Suppose that for every invariant subgroup M ≤ H⊕H⊕−H that is a metabolizer
for λ⊕λ⊕−λ there exists a character χ = (χ1, χ2, χ3) : H⊕H⊕−H → Zq with q a
prime power and χ|M = 0 such that {±χ1(zi)}pi=1, {±χ2(zi)}pi=1, and {±χ3(zi)}pi=1

are not identical when considered as sets with multiplicity. Then P does not induce
a homomorphism on Ct.

Proof of Theorem A, assuming Proposition 2.2. Let P and p be as in the statement
of Theorem A and let H := H1(Σp(P (U))). Write |H| = m2 for some m > 1, let q
be a prime dividing m, and let k ∈ N be maximal such that qk divides m.

For any subgroup S of G := H⊕H⊕−H, let Sq denote the q primary subgroup
of S and define the q-primary annihilator of S to be

Aq(S) := {χ : H ⊕H ⊕−H → Zq6k such that χ|S = 0}.
Note that |Aq(S)| = |(G/S)q| = |Gq|/|Sq|. Now let M ≤ H ⊕ H ⊕ −H be a
metabolizer for the linking form and observe that |Mq| = q3k = |Aq(M)|. Let

H1 := H ⊕ 0 ⊕ 0, and note that since |H(1)
q | = q2k, we have that |Aq(H

1)| = q4k.
Since Aq(H

1) and Aq(M) are both subgroups of Aq(0), which has order |Gq| = q6k,
they must have non-zero intersection .

Let χ = (χ1, χ2, χ3) be a non-zero element of Aq(H
1) ∩ Aq(M). Since χ|H1 =

0, we have that {±χ1(zi)}pi=1 = {0}pi=1. However, since χ is non-zero and by
assumption the lifts of η generate H1(Σp(P (U))), we must have either χ2(zi) �= 0 or
χ3(zi) �= 0 for some 1 ≤ i ≤ p. It follows that the sets {±χ1(zi)}pi=1, {±χ2(zi)}pi=1,
and {±χ3(zi)}pi=1 are not identical, and Proposition 2.2 applies to show that P
does not induce a homomorphism. �

While Theorem A is a particularly simple condition to verify, Proposition 2.2
applies in a much broader range of settings, for instance in Example 3.4, when
P (U) is a composite knot with H1(Σp(P (U))) a non-cyclic module.

To prove Proposition 2.2, we will also need the following special case of Lither-
land’s formula for the Casson-Gordon signatures of satellite knots.

Proposition 2.3 ([Lit84]). Let P be a pattern described by an unknot η in the
complement of P (U). Let p be a prime power dividing the winding number of
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P . Then for any knot K, there is a canonical isomorphism α : H1(Σp(P (K))) →
H1(Σp(P (U))) that preserves linking forms, satisfies α(tP (K) · x) = tP (U) · α(x)
for all x ∈ H1(Σp(P (K))), and such that for any prime power order character
χ : H1(Σp(P (U))) → Zq we have

σ(P (K), χ ◦ α) = σ(P (U), χ) +

p∑
i=1

σK(ωχ(ηi)
q ), where ωq = e2πi/q.

We remark that at first glance this result seems decidedly unhelpful in showing
that P does not induce a homomorphism. Since P is a slice pattern, many of
the σ(P (U), χ) terms must vanish, leaving us with the formula σ(P (K), α ◦ χ) =∑p

i=1 σK(ω
χ(ηi)
q ). Since the Tristram-Levine signatures are additive with respect to

connected sum of knots, we see that in many cases

σ(P (K1#K2), α ◦ χ) =
p∑

i=1

σK1
(ωχ(ηi)

q ) +

p∑
i=1

σK2
(ωχ(ηi)

q )

= σ(P (K1), α ◦ χ) + σ(P (K2), α ◦ χ)).

Nonetheless, we are able to prove Proposition 2.2 as follows.

Proof of Proposition 2.2. Let P and p be as in the statement of the proposition,
and define C to be the maximal value of |σ(P (U), χ)| ranging over all choices of
nontrivial map χ : H1(Σp(P (U))) → Zr for a prime power r. Inductively pick even
integersm1, . . . ,m�q/2� such thatm1 > 3C andmj > 3C+pmi−1 for j > 1 and even
integers n1, . . . , n�q/2� such that n1 > 3C+pm�q/2� and nj > 3C+pm�q/2�+pnj−1

for j > 1. Let J and K be knots such that σJ(ω
j
q) = mj and σK(ωj

q) = nj for
all 1 ≤ j ≤ q/2�. This is possible by the proof of Theorem 1 of Cha-Livingston
[CL04], see also [Mil19] for a similar argument.

Now let L = P (K)#P (J)#−P (K#J). In order to apply Theorem 2.1 to show
that L is not slice, let M be a metabolizer of H1(Σp(L)). By [Lit84], there is a
canonical, covering transformation invariant, linking form preserving identification

β : H1(Σp(L))
∼=−→ H1(Σp(P (U)))⊕H1(Σp(P (U)))⊕−H1(Σp(P (U))).

such that for any χ = (χ1, χ2, χ3) we have

σ(L, χ ◦ β) = σ(P (J), χ1) + σ(P (K), χ2)− σ(P (K#J), χ3).

Under this identification, β(M) is an invariant metabolizer for H ⊕ H ⊕ −H, so
by hypothesis we can let χ = (χ1, χ2, χ3) be a character to Zq vanishing on β(M)
such that the sets A1 = {±χ1(zi)}pi=1, A2 = {±χ2(zi)}pi=1, and A3 = {±χ3(zi)}pi=1

are not identical. For k = 1, 2, 3 and 1 ≤ j ≤ q/2�, define δk(j) to be the number
of lifts of η sent by χk to ±j. More formally,

δk(j) := #{1 ≤ i ≤ p : χk(zi) = ±j ∈ Zq}.
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By Proposition 2.3 and the above additivity of Casson-Gordon signatures with
respect to connected sum, we therefore have that

σ(L, χ ◦ β) = σ(P (J), χ1) + σ(P (K), χ2)− σ(P (K#J), χ3)

= Cχ +

p∑
i=1

σJ(ω
χ1(zi)
q ) +

p∑
i=1

σK(ωχ2(zi)
q )−

p∑
i=1

σJ#K(ωχ3(zi)
q ).

= Cχ +

�q/2�∑
j=1

(δ1(j)− δ3(j))mj +

�q/2�∑
j=1

(δ2(j)− δ3(j))nj,

where Cχ = σ(P (U), χ1) + σ(P (U), χ2)− σ(P (U), χ3). Note that |Cχ| ≤ 3C.
As we will now explain, the choices of nj and mj appearing earlier in the proof

ensure that the final non-vanishing term in the sum above is strictly larger in
absolute value than the sum of the preceding terms, ensuring that σ(L, χ ◦ β) �= 0.
We split our argument into cases.

Suppose first that A2 �= A3. Let j0 be the maximal j with δ2(j) �= δ3(j) and
assume for convenience that δ2(j0) > δ3(j0). (The argument for δ3(j0) > δ2(j0) is
exactly analogous). Then

σ(L, χ ◦ β)=Cχ+

�q/2�∑
j=1

(δ1(j)−δ3(j))mj+

j0−1∑
j=1

(δ2(j)−δ3(j))nj+(δ2(j0)− δ3(j0))nj0

≥ −3C − pm�q/2� − pnj0−1 + nj0 > 0, as desired.

Now suppose that A2 = A3 and hence that A1 �= A3. Let j0 be the maximal j
with δ1(j) �= δ3(j) and as before assume for convenience that δ1(j0) > δ3(j0). In
this case, we have that

σ(L, χ ◦ β) = Cχ +

j0−1∑
j=1

(δ1(j)− δ3(j))mj + (δ1(j0)− δ3(j0))mj0

≥ −3C − pmj0−1 +mj0 > 0, as desired. �

3. Examples of non-homomorphism satellite maps

An easy way to guarantee that the conditions of Theorem A are satisfied is to
choose a slice knot P (U) whose Alexander module is generated by the class of the
winding number 0 curve η. One can then modify η to get a pattern of any winding
number. More specifically, let Pn be the winding number n pattern of Figure 2,
described by an unknot η in the complement of Pn(U). Observe that Pn(U) = 61
is slice for all n ∈ N ∪ {0}.

Proposition 3.1. For any p dividing n, H1(Σp(Pn(U))) is a nontrivial group gen-
erated by the lifts of η to Σp(Pn(U)).

Proof. Let p divide n. The left of Figure 3 depicts Pn(U) in a nonstandard surgery
description for S3; this is simplified via isotopy to give the center picture. For p
dividing n, we obtain a surgery diagram for Σp(Pn(U)) with p+ 1 surgery curves,
as illustrated for p = 3 in Figure 3.

Since the blue curve (called α) has writhe −4 and framing +1 in the center
diagram and its p lifts α1, . . . , αp will have writhe 0, these lifts must be +5 framed.
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Figure 2. A winding number n pattern Pn in the solid torus S3 − ν(η)

Figure 3. A surgery description for Pn(U) (left) is isotoped to an
alternate description (center) which lifts to give a surgery diagram
for Σp(Pn(U)) for p dividing n (right, depicted for p = 3 and
n = 3k).

Also for i �= j we have

lk(αi, αj) =

⎧⎪⎨
⎪⎩
−2 if p > 2 and j ≡ i± 1 mod p

0 if p > 2 and j �≡ i± 1 mod p

−4 if p = 2.
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Note that the lifts η1, . . . , ηp of the red curve η satisfy lk(αi, ηj) = δi,j . Finally,
the single lift of the green curve β has framing −1/k, where k = n/p. Note that
β does not link any of the αi curves, so we can perform a Rolfsen twist along
β to obtain a new surgery description without changing the framing of the αi

curves or the linking of the αi curves with ηj curves (though while complicating
the diagram significantly!) After this we see that H1(Σp(Pn(U))) is generated as a
group by the meridians of α1, . . . , αp, which are cyclically permuted by the covering
transformation induced action. So H1(Σp(Pn(U))) is a cyclic Z[Zp]-module. Also,
observe that each ηi is homologous to the meridian of αi and hence is a Z[Zp]-
generator for H1(Σp(Pn(U))). In particular, the collection η1, . . . , ηp generates
H1(Σp(Pn(U))) as a group.

It only remains to show that |H1(Σp(Pn(U)))| = (2p−1)2 > 1. Observe that the
group H1(Σp(Pn(U))) is presented by the linking matrix of the surgery description.

For p = 2, this is

[
5 −4
−4 5

]
, which is of order 9 = (22 − 1)2. For p > 2, this is a

p×p matrix A(p) with 5’s on the main diagonal, −2’s immediately above and below
the main diagonal and in the upper right and lower left entries, and 0’s everywhere
else. More precisely,

A(p)i,j =

⎧⎪⎨
⎪⎩
5 if i = j

−2 if i ≡ j ± 1 mod p

0 else

.

We can check by hand that det(A(3)) = 49 = (23−1)2, det(A(4)) = 225 = (24−1)2,
and det(A(5)) = 961 = (25 − 1)2. For p ≥ 1 we define B(p) to be the p× p matrix
with

B(p)i,j =

⎧⎪⎨
⎪⎩
5 if i = j

−2 if i = j ± 1

0 else

.

For p ≥ 6, it then follows from two cofactor expansions that

det(A(p)) = 5bp−1 − 8bp−2 − 2p+1, where bp := det(B(p)).(1)

Observe that b1 = 5, b2 = 21, and that for p ≥ 3 we can perform two cofactor
expansions to show that bp = 5bp−1 − 4bp−2. Some work with generating functions
then shows that for p ≥ 1 we have bp = 1

3 (2
2p+2 − 1). Substituting this expression

into Equation 1 gives that

det(A(p)) =
5

3
(22p − 1)− 8

3
(22p−2 − 1)− 2p+1 = (2p − 1)2. �

Corollary 3.2. The map induced by Pn on C is not a homomorphism for |n| �= 1.

Proof. This follows immediately from Theorem A in light of Proposition 3.1. �

Note that P1 is geometric winding number 1, and hence acts by connected sum
with P1(U) = 61 ∼ U . However, P−1 is not geometric winding number ±1. While
P−1 is not topologically concordant to a core of S1×D2 in (S1×D2)×I and hence
does not obviously act trivially, as noted in the introduction there are no known
ways to show that a slice pattern of winding number ±1 does not induce a standard
map (i.e. identity or reversal) on Ct.
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Problem 3.3. Determine whether P−1 acts by the identity on Ct and, if not,
determine whether it acts by a homomorphism.

Example 3.4. Let P be the winding number 2 pattern given in Figure 4, and note
that P (U) = 31# − 31. It is straightforward to verify, for example by building a

Figure 4. A winding number 2 pattern P with P (U) = 31#− 31

surgery diagram for Σ2(P (U)) as in Proposition 3.1, that H = H1(Σ2(P (U))) ∼=
Z3 ⊕Z3, with generators x and y such that the linking form λ is given by the matrix

1
3

[
1 0
0 −1

]
. Moreover, the curve η lifts to η1 and η2 in Σ2(P (U)), where [η1] = x

and [η2] = −x in H. In particular, the lifts of η to Σ2(P (U)) certainly do not
generate H, and so we cannot apply Theorem A. Let x1, y1, x2, y2, x3, and y3 be
the natural generators for H = H ⊕H ⊕ −H, where Λ = λ ⊕ λ ⊕ −λ, the linking
form on H, is given with respect to our basis by

1

3

([
1 0
0 −1

]
⊕
[
1 0
0 −1

]
⊕
[
−1 0
0 1

])
.

A straightforward if tedious analysis of the order 27 subgroups of H gives us the
following list of 48 metabolizers for Λ, where ε = (ε1, ε2, ε3) ∈ (±1)3.

M ε
1 = 〈x1 + ε1y1, x2 + ε2y2, x3 + ε3y3〉, M ε

2 = 〈x1 + ε1y1, x2 + ε2x3, y2 + ε3y3〉,
M ε

3 = 〈x1 + ε1y2, x2 + ε2y1, x3 + ε3y3〉, M ε
4 = 〈x1 + ε1y2, x2 + ε2x3, y1 + ε3y3〉,

M ε
5 = 〈x1 + ε1x3, x2 + ε2y2, y1 + ε3y3〉, M ε

6 = 〈x1 + ε1x3, x2 + ε2y1, y2 + ε3y3〉.
We now construct characters to Z3 vanishing on each M ε

j satisfying the conditions
of Proposition 2.2.

(1) If M = M ε
1 or M = M ε

2 , let χ = (χ1, 0, 0), where χ1(x1) = −ε1 and
χ1(y1) = 1. Then our collections {χj(xj), χj(−xj)} for j = 1, 2, 3 are
{−ε1, ε1}, {0, 0} and {0, 0}.

(2) If M = M ε
3 or M = M ε

4 , let χ = (χ1, χ2, 0) where χ1 sends x1 to −ε1
and y1 to 0 and χ2 sends x2 to 0 and y2 to 1. Then our collections
{χj(xj), χj(−xj)} for j = 1, 2, 3 are {−ε1, ε1}, {0, 0} and {0, 0}.

(3) If M = M ε
5 or M = M ε

6 , let χ = (χ1, χ2, 0), where χ1 sends x1 to 0
and y1 to 1 and χ2 sends x2 to −ε2 and y2 to 0. Then our collections
{χj(xj), χj(−xj)} for j = 1, 2, 3 are {0, 0}, {−ε2, ε2}, and {0, 0}.

Note that in this example it is important that we only need to consider metab-
olizers rather than arbitrary subgroups of the appropriate order, since certainly
any character χ that vanishes on the order 27 subgroup 〈x1, x2, x3〉 will have
{χi(xj), χi(−xj)} = {0, 0} for all j = 1, 2, 3.
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Remark 3.5. Proposition 2.2 can never be applied to a pattern P when any of the
following conditions hold:

(1) The curve η is in the second derived subgroup of S3�P (U), and hence lifts
to a null-homologous curve in every cyclic branched cover of P (U).

(2) The knot P (U) has ΔP (U)(t) = 1.
(3) The winding number of P is ±1.

As discussed before Problem 3.3, the goal of obstructing a pattern from being a
homomorphism in Case (3) is quite ambitious. However, in the next section we
address Case (1) by giving examples of patterns for each n ∈ N which are described
by curves lying in the nth derived subgroup of S3 � P (U) and yet which do not
induce homomorphisms on Ct.

4. Other topological obstructions

We consider patterns RJ , which are described in Figure 5.

Figure 5. The pattern RJ (left) and the knot RJ (K) (right),
with two curves drawn on its genus 1 Seifert surface

Observe that RJ (U) and RJ (J) can both be seen to be smoothly slice as follows.
The knot RJ (K) always has a genus 1 Seifert surface with two 0-framed curves,
shown in blue and red on the right of Figure 5. When K = U , the blue curve is
an unknot and in particular is smoothly slice, so surgery of the pushed-in Seifert
surface gives a smooth slice disc in B4 for RJ (U). Similarly, when K = J , the
red curve has knot type −J#J , which again is smoothly slice and so which can be
surgered along to give a slice disc for RJ (J). We now prove that there are many
choices of knots {Ji} such that arbitrarily many compositions of RJi

maps still do
not induce homomorphisms, and as a result give examples of non-homomorphism
patterns which map deep into the n-solvable filtration of [COT03].

Remark 4.1. In fact, the pattern RJ never induces a homomorphism. We leave
the details of this argument to the interested reader, noting that the classes of
H1(Σ2(RJ(U))) represented by the lifts of η are independent of J . It is not hard
to verify as in Proposition 3.1 that H1(Σ2(RJ(U))) is isomorphic to H := Z3〈x〉 ⊕
Z3〈y〉, and has linking form λ given with respect to these generators by the matrix

1
3

[
0 −1
−1 0

]
. Moreover, the infection curve η lifts to curves representing x+ y and

−x − y in H1(Σ2(RJ(U))). An analysis of the metabolizers of (H,λ) ⊕ (H,λ) ⊕
(H,−λ) as in Example 3.4 now shows that the conditions of Proposition 2.2 hold.
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For appropriate choices of {Ji}i∈Z (e.g. with increasingly large values of
σJi

(e2πi/3)), it is not hard to prove that we get infinitely many winding num-
ber 0 patterns, distinct in their action on Ct, which are obstructed from acting as
homomorphisms by Proposition 2.2.

Theorem B follows immediately from Proposition 4.2.

Proposition 4.2. For any n ∈ N and any choices of knots K1, . . . ,Kn there exists
a winding number 0 pattern P such that

(1) P (K) is smoothly slice for each K = U,K1, . . . ,Kn.
(2) The image of P is contained in Fn+1, the (n + 1)th level of the solvable

filtration.
(3) There exists C > 0 such that if |ρ0(K)| =

∣∣∫
S1 σω(K)dω

∣∣ > C then P (K) /∈
Fn+2, and in particular is not topologically slice.

(4) P does not induce a homomorphism Ct → Ct (or even a homomorphism
Ct → Ct/Fn+2.)

In fact, the solvable filtration is indexed by half integers, and we remark to the
experts that Proposition 4.2 holds if (n + 2) is everywhere replaced by (n + 1.5).
We have chosen to prove this slightly weaker statement for ease of exposition.

We will construct the patterns of Proposition 4.2 by using compositition of pat-
terns.

Definition 4.3. Given patterns P : S1 → S1 × D2 and Q : S1 → S1 × D2, we
define the composite pattern P ◦Q as follows. Let iQ : S1 ×D2 → S1 ×D2 be an
embedding of a standard tubular neighborhood of Q(S1). Then P ◦Q is the pattern

P ◦Q : S1 P−→ S1 ×D2 iQ−→ S1 ×D2.

We remark that (P ◦Q)(K) is always isotopic to P (Q(K)).

The following special case of a result of Cochran-Harvey-Leidy [CHL11] implies
that any composition of RJ maps is highly nontrivial on concordance, even modulo
terms of the n-solvable filtration of [COT03]. It uses the Blanchfield pairing Bl
on the Alexander module of a knot, which takes values in Q(t)/Z[t±1]. We will
not work with the Blanchfield pairing in detail, and therefore omit its definition:
it suffices for our purposes to know that if the class of η generates the Alexander
module then Bl(η, η) must be non-zero.

Theorem 4.4 ([CHL11]). For each i = 1, . . . , n, let Ri be a slice knot and ηi be an
unknotted curve in the complement of Ri such that lk(Ri, ηi) = 0 and Bl(ηi, ηi) �= 0.
Let Pi be the pattern obtained by considering Ri in the solid torus S3 � ν(ηi), and
let P = Pn ◦ · · · ◦ P1.

For any k ∈ N, if K ∈ Fk then P (K) ∈ Fn+k. Also, there exists C > 0 such
that if K is a knot with |ρ0(K)| > C then P (K) /∈ Fn+1, and hence is not slice.

It is well-known that the pattern given by (R, η) in Figure 5 satisfies the Blanch-
field pairing condition as well as evidently having lk(R, η) = 0 [CHL11].

Corollary 4.5. Let P be a composition of n patterns Pi described by unknotted
curves ηi in the complement of Pi(U) such that [ηi] ∈ π1(S

3 � ν(Pi(U)))(1) and
Bl(ηi, ηi) �= 0 for all i = 1, . . . n. Suppose that there is some knot K with ρ0(K) �= 0
such that P (K) is slice. Then P does not induce a homomorphism on C, even
modulo Fn+1.
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Proof. Let C be as in the statement of Theorem 4.4. Since ρ0(nK) = nρ0(K) and
|ρ0(K)| > 0, by taking n sufficiently large we have that |ρ0(nK)| > C and hence,
by Theorem 4.4, that P (nK) �= 0 ∈ C/Fn+1 and in particular is not topologically
slice. Therefore P is not a homomorphism, since P (K) is smoothly slice. �

This corollary implies that any composition of RJi
patterns is not a homomor-

phism, as long as the ‘innermost pattern’ is based on a knot J1 with ρ0(J1) �= 0.
Proposition 4.2 now follows quickly.

Proof of Proposition 4.2. Let P0 = RT2,3
and Q0 = P0. Inductively for i = 1, . . . , n,

let Pi = RQi−1(Ki) and let Qi = Pi ◦Qi−1. Let P = Qn = Pn ◦ · · · ◦P1 ◦P0. Observe
that since Pi(U) ∼ U for all i = 0, . . . , n, we have that P (U) ∼ U . Also, for each
Ki we have that

P (Ki) = (Pn ◦ · · · ◦ Pi+1)(Pi(Qi−1(Ki)))

= (Pn ◦ · · · ◦ Pi+1)(RQi−1(Ki)(Qi−1(Ki))) ∼ (Pn ◦ · · · ◦ Pi+1)(U) ∼ U.

For any knot K, the knot P0(K) is genus 1 and algebraically slice, hence by
[DMOP19] is 1-solvable. Therefore, Theorem 4.4 implies that P (K) = (Pn ◦ · · · ◦
P1)(P0(K)) is (n+1)-solvable, and we have established condition (2). Theorem 4.4
also implies (3), and since P (T2,3) ∼ U and ρ0(T2,3) �= 0, Corollary 4.5 implies that
(4) holds as well. �

We can also use iterated satellite constructions to give the first examples of
non-standard patterns which behave like homomorphisms on arbitrary finite sets
of knots.

Proof of Theorem C. Let J1, . . . , Jn be any finite list of knots. Apply Proposi-
tion 4.2 to the collection {T2,3}∪{Ji}ni=1∪{Ji#Jj}ni,j=1 to obtain a pattern P such
that for any i and j

P (Ji#Jj) ∼ U ∼ U#U ∼ P (Ji)#P (Jj).(2)

Corollary 4.5 implies that P does not induce a homomorphism of Ct. �

We remark that the map induced by P is provably not even a homomorphism
on the subgroup generated by the {Ji}mi=1, so long as one of the Ji has ρ0(Ji) �= 0.
Forcing homomorphism-like behavior by sending many knots to the trivial class is
not particularly exciting, but the fact that these examples are the first of their type
should indicate the wide-open nature of Conjecture 1.2 and prompt Question 4.6.

Question 4.6. Does there exist a non-standard pattern P which acts by a homo-
morphism when restricted to some infinite subgroup of C?

We remark that in Example 5.11 we exhibit a non-standard pattern which pre-
serves amphichirality, thereby preserving all known examples of 2-torsion in C.
However, it does not seem likely that such a pattern P will have P (K1#K2) ∼
P (K1)#P (K2) for K1 and K2 non-concordant amphichiral knots, and so the above
question remains open.

We close by observing that all the obstructions discussed so far rely only on the
homotopy class of η in the complement of P (U). It is an interesting open question
whether the map P : Ct → Ct is determined by this homotopy class (see Problem
3.5 of [AIM19]). If this were so, it would imply that our failure to give examples
of patterns with P (U) unknotted which do not induce homomorphisms on Ct is
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unsurprising, at least when |w(P )| ≤ 1: when P (U) = U the linking number of P
with η determines the homotopy class.

On the other hand, we find it surprising that one cannot obstruct the (p, 1) cable
maps from inducing homomorphisms of Ct, and state that as a worthwhile problem.

Problem 4.7. Determine whether the cable Cp,1 induces a homomorphism of Ct

for p > 1.

5. Small patterns acting on Cs

We conclude by considering patterns of small crossing number. Since the first
nontrivial slice knot has 6 crossings (either the Stevedore’s knot 61 or the square
knot T2,3# − T2,3), it is perhaps unsurprising that all of the patterns we consider
have P (U) = U . As a consequence, none of our topological obstructions apply
and so in this section we work only in the smooth category, in particular letting ∼
denote the equivalence relation of smooth concordance.

We rely heavily on the τ -invariant of Heegaard-Floer homology [OS03b], which
vanishes on smoothly slice knots. We begin by reviewing the formula for the τ -
invariant of P (K) for certain prototypical patterns P of each winding number and
arbitrary knots K.

Theorem 5.1 ([Hom14]). Let p > 1. Then

τ (Cp,1(K)) =

{
pτ (K), ε(K) ∈ {0, 1}
pτ (K) + (p− 1), ε(K) = −1.

Note that this gives an easy proof that Cp,1 does not induce a homomorphism
on Cs as follows: Let K be any knot with ε(K) = +1 (e.g. K = T2,3). Then
ε(−K) = −1 and Cp,1(K)#Cp,1(−K) is not slice, since

τ (Cp,1(K)#Cp,1(−K)) = τ (Cp,1(K)) + τ (Cp,1(−K)) = pτ (K) + pτ (−K) + p− 1

= p− 1 �= 0.

We also have the following similar results, which give analogous simple proofs
that the Mazur and Whitehead patterns do not induce homomorphisms on Cs.

Theorem 5.2 ([Lev16]). Let M denote the positive Mazur pattern. Then

τ (M(K)) =

{
τ (K), τ (K) ≤ 0 and ε(K) ∈ {0, 1}
τ (K) + 1, else

.

Theorem 5.3 ([Hed07]). Let Wh denote the positive Whitehead double pattern.
Then

τ (Wh(K)) =

{
0, τ (K) ≤ 0

1, τ (K) > 0
.

Somewhat surprisingly, even though these ‘prototypical’ patterns do not induce
homomorphisms, we can still use these formulae for τ to prove Theorem D as
follows.

Proof of Theorem D. Let P be a pattern of winding number w(P ) and suppose
that P induces a homomorphism on Cs. Let p = |w(P )|, and let Q = Cp,1 (if
p ≥ 1) and Q = Wh (if p = 0). We give the argument for Q = Cp,1, but an exactly
analogous one works for Wh.
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Since P and Q have the same winding number, by [CH18] there exists a constant
c > 0 such that for all knots J ,

|τ (Q(J)#− P (J))| ≤ g4(Q(J)#− P (J)) ≤ c.

Suppose now that ε(K) = −1. It follows from the basic properties of ε that ε(nK) =
−1 for any n > 0. We therefore have the following, using in the first equality that
P is a homomorphism:

c ≥ |τ (Q(nK)#− P (nK))| = |pτ (nK) + (p− 1)− τ (nP (K))|
= |n[pτ (K)− τ (P (K))] + p− 1|.

Letting n → ∞, we see that we must have τ (P (K)) = pτ (K). The argument for
K with ε(K) = +1 or ε(K) = 0 is analogous. �

We remark that it is perhaps an interesting problem to show the same result for
Rasmussen’s s-invariant, which shares many but not all formal properties with τ .
Inspection of the proof shows that it would suffice to show that for each p there
exists a constant C(p) such that |s(Cp,1(K)) − ps(K)| ≤ C(p) for all knots K.
The work of Van Cott [VC10] gives bounds for s(Cp,q(K)) as q → ∞, which seem
ill-suited to the case of interest. Of course, if one believes Conjecture 1.2, then the
s-invariant analogue of Theorem D would be trivially true, independently of the
behavior of s under cabling.

It will be useful for us to have a much weaker notion of preserving group struc-
ture.

Definition 5.4. An pseudo-homomorphism of a group G is a map φ : G → G such
that φ(eG) = eG and φ(g−1) = φ(g)−1 for all g ∈ G.

We can rephrase this in our context in a somewhat surprising way. For any
pattern P and knot K, we have that −P (K) is isotopic to (−P )(−K). So P
induces a pseudo-homomorphism on C if and only if P (U) ∼ U and (−P )(K) =
−(P (−K)) ∼ P (K) for all K.

Corollary 5.5. Let P be a winding number p pattern. Suppose that

(p > 1) P can be changed to Cp,1 with any number of crossing changes (+) to (−)

and strictly fewer than p−1
2 crossing changes (−) to (+).

(p = 1) P can be changed to M with any number of crossing changes, all (+) to
(−).

(p = 0) P can be changed to Wh with any number of crossing changes, all (+) to
(−).

Then P does not induce a pseudo-homomorphism on Cs.

Proof. Any of the above conditions implies that τ (P (T2,3)#P (−T2,3)) > 0, since if
K+ and K− differ by changing a single crossing from (+) to (−) then

τ (K−) ≤ τ (K+) ≤ τ (K−) + 1. �

We remark that Theorem D along with the crossing change inequality for τ
implies that if P can be changed to Cp,1 with any number of crossing changes (+)
to (−) and strictly fewer than (p − 1) crossing changes (−) to (+), then P is not
a homomorphism. We will see in Example 5.11 that this weaker assumption does
not obstruct P from inducing a pseudo-homomorphism.
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The reference tables of LinkInfo [CL19] give 30 prime 2-component links which
have diagrams with no more than 8 crossings, considered independently of orienta-
tion and without considering mirror images. By picking an unknotted component
η of such a link, we obtain a pattern P in the solid torus S3 � ν(η). There are 19
choices which define a slice pattern, coming from 18 different links. The link L8a1
is asymmetric, as detected by the multivariable Alexander polynomial, and hence
defines two patterns which we call L8a1a and L8a1b.

Two of these patterns are standard, as depicted in Figure 6. (Note that in this

Figure 6. Small patterns concordant to a core: L2a1 (left) and
L7a5 (right)

section, for efficiency’s sake we depict patterns as living in D2 × I. An untwisted
identification of D2 × {0} with D2 × {1} gives the pattern in the solid torus.)

Corollary 5.5 immediately implies that 12 of the remaining 17 do not induce
pseudo-homomorphisms: the necessary crossing changes are illustrated in Figure 7.

This leaves us with 5 patterns to consider individually. We now give specific
arguments to show that L8a1b, L8a8, and L8a10, depicted in Figure 8, do not
induce pseudo-homomorphisms.

Example 5.6 (L8a1b does not induce a pseudo-homomorphism). The crossing
change inequality for τ generalizes to give the following result. (Note that one
obtains a (+) to (−) crossing change by doing a +1 twist along a small linking
number 0, geometric linking number 2 curve.)

Proposition 5.7 ([OS03a]). Let K be a knot in S3 and η be an unknot in the
complement of K such that lk(K, η) = 0. Let K+ be the knot obtained from K by
doing a +1-twist along η. Then τ (K+) ≤ τ (K) ≤ τ (K+) + 1.

Now, observe there is a +1-twist along a linking number 0 unknot that takes
the pattern L8a1b to the positive Whitehead pattern, as illustrated in Figure 9.
It follows that for any K, τ (L8a1b(K)) ≥ τ (Wh(K)), and so the arguments of
the proof of Corollary 5.5 apply to show that L8a1b does not induce a pseudo-
homomorphism

Example 5.8 (L8a8 does not induce a pseudo-homomorphism). Since a single
(+) to (-) crossing change takes P = L8a8 to a core, we immediately have that
τ (P (K)) ≥ τ (K) for all knots K. We will now show that this is not always equality,
and therefore that for some knot J

τ (P (J)#P (−J)) = τ (P (J)) + τ (P (−J)) ≥ τ (P (J)) + τ (−J) > τ (J) + τ (−J) = 0.
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L4a1 = C2,1 L5a1=Wh L6a1 L6a3 = C3,1

L7a4 L7a6 = M L8a1a L8a6

L8a11 L8a12 L8a13 L8a14=C4,1

Figure 7. Small patterns satisfying the hypotheses of Corollary 5.5

Figure 8. More small patterns: L8a1b (left), L8a8 (center), and
L8a10 (right)

Figure 9. Twisting L8a1b (left) to Wh (right)

Observe that L8a8 has a Legendrian diagram (on the left of Figure 10) with
Thurston-Bennequin number and rotation number equal to

tb(P) = writhe(P)−#(right cusps) = 4− 2 = 2.

rot(P) =
#(down cusps)−#(up cusps)

2
=

2− 2

2
= 0.
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There is also a Legendrian diagram for J = T2,3 with

tb(J ) = writhe(J )−#(right cusps) = 3− 3 = 0.

rot(J ) =
#(down cusps)−#(up cusps)

2
=

4− 2

2
= 1.

Figure 10. Legendrian diagrams of L8a8 (left) and a right-
handed trefoil J (right)

As shown by Ng-Traynor [NT04], since tb(J ) = 0, we obtain a Legendrian
diagram P(J ) for P (J) with

tb(P(J )) = w(P )2tb(J ) + tb(P) = (1)2 · 0 + 2 = 2

rot(P(J )) = w(P )rot(J ) + rot(P) = 1 · 1 + 0 = 1.

We now apply the following result of Plamenevskaya.

Theorem 5.9 ([Pla04]). Let K be a Legendrian representative of K. Then

tb(K) + |rot(K| ≤ 2τ (K)− 1.

So for J = T2,3 we have

τ (P (J)) ≥ (1/2)(tb(P(J )) + rot(P(J )) + 1) = (1/2)(2 + 1 + 1) = 2 > 1 = τ (J).

Example 5.10 (L8a10 does not induce a pseudo-homomorphism). Let K = T2,3.
We will use the alternate definition of pseudo-homomorphism and show that
L8a10(K) and (−L8a10)(K) are not concordant. Since a single (−) to (+) crossing
change takes L8a10 to L6a2, we have that

τ (L8a10(T2,3)) ≤ τ (L6a2(T2,3)) ≤ 3τ (T2,3)− 1 = 2,

where the rightmost inequality comes from Equation 3 in Example 5.11.
A single (+) to (−) crossing change takes −L8a10 to the pattern R, as depicted

in Figure 11. It follows that τ (−L8a10(K)) ≥ τ (R(K). We now argue as in Exam-

Figure 11. The patterns −L8a10 (left) and R (center), and a
Legendrian realization R of R with tb(R) = 2 and rot(R) = 0
(right)
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ple 5.8, using the Legendrian realization R of R on the right of Figure 11 to say
that there is a Legendrian diagram R(K) for R(K) with

tb(R(K)) = 32 · 0 + 2 = 2 and rot(R(K)) = 3 · 1 + 0 = 3.

It therefore follows by Theorem 5.9 that

τ (−L8a10(K)) ≥ τ (R(K)) ≥ 2 + 3 + 1

2
= 3.

So L8a10(K) and (−L8a10)(K) are not concordant and L8a10 does not induce a
pseudo-homomorphism.

The two remaining patterns, illustrated in Figure 12, are L6a2 and L8a9, both
of which can be easily seen to induce pseudo-homomorphisms, since each is slice
and amphichiral.

Figure 12. L6a2 (left) and L8a9 (right) induce pseudo-homomorphisms

Example 5.11 (L6a2 induces a pseudo-homomorphism but not a homomorphism).
L6a2 induces a pseudo-homomorphism since L6a2(U) is slice and the pattern L6a2
is isotopic to -L6a2. Since a single crossing change (+) to (−) takes L6a2 to C3,−1,
we have that we have that

τ (L6a2(T2,3)) ≤ τ (C3,−1(T2,3)) + 1 = (3τ (T2,3)− 2) + 1 = 3τ (T2,3)− 1 < 3τ (T2,3).

(3)

(This uses Theorem 5.1 and the facts that τ (−K) = −τ (K) for all K, C3,−1(T2,3) =
−C3,1(−T2,3), and ε(−T2,3) = −1.) So Theorem D implies that L6a2 does not
induce a homomorphism.

It is not hard to generalize L6a2 to produce patterns of each odd winding num-
ber which induce pseudo-homomorphisms yet not homomorphisms of Cs. This
leads us to the following question about the existence of ‘non-standard pseudo-
homomorphisms’. We remark that this question also relates to whether all torsion
elements of the concordance group are represented by negative amphichiral knots
(Question 1.94, [Kir78].)

Question 5.12. Let P be a pattern inducing a pseudo-homomorphism on the
concordance group. Must P be concordant in (S1 ×D2) × I to a pattern Q with
the property that Q(−K) is isotopic to −Q(K) for all K?

By work of Hartley [Har79], the winding number of a pattern with P isotopic to
−P must either be 0 or odd. Since winding number is preserved by concordance,
an affirmative answer to Question 5.12 would imply Conjecture 1.2 for patterns of
non-zero even winding number.
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Example 5.13 (The pattern induced by L8a9). We are left to consider P=L8a9.
Since P = −P we see that this pattern induces a pseudo-homomorphism. However,
P (K) and K are very difficult to distinguish: in particular, since either a (+) to (−)
or a (−) to (+) crossing change takes P to a core of the solid torus, we have that
τ (P (K)) = τ (K) for all knots K. One can also check that Rasmussen’s s-invariant
and many other smooth concordance invariants are similarly incapable of showing
that K and P (K) are not concordant. However, it is straightforward to verify that
P+1(U), the knot in S3 obtained by doing a +1 twist along the meridian of the solid
torus that P lies within, is not even topologically slice and so P is not concordant
to a core.

We are therefore left with the following questions: does L8a9 act by the identity
and, if not, does it induce a non-standard homomorphism of Cs?
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