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Chapter 8 Decision-making in Forensic Identification
Tasks

sctyner.github.io/OpenForSciR/decision-making.html

Amanda Luby

8.1 Introduction

Although forensic measurement and analysis tools are increasingly accurate and objective,
many final decisions are largely left to individual examiners (PCAST 2016). Human decision-
makers will continue to play a central role in forensic science for the foreseeable future, and
it is unrealistic to assume that, within the United States’ current criminal justice system,

there are no differences in the decision-making process between examiners,
day-to-day forensic decision-making tasks are equally difficult, or
human decision-making can be removed from the process entirely.

The role of human decisions in forensic science is perhaps most studied in the fingerprint
domain, which will be the focus of this chapter. High-profile examples of misidentification
have inspired studies showing that fingerprint examiners, like all humans, may be

https://sctyner.github.io/OpenForSciR/decision-making.html
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susceptible to biased instructions and unreliable in final decisions (Dror and Rosenthal 2008)
or influenced by external factors or contextual information (Dror, Charlton, and Péron 2006;
Dror and Cole 2010). These studies contradict common perceptions of the accuracy of
fingerprint examination, and demonstrate that fingerprint analysis is far from error-free.

Although fingerprint examination is the focus of this chapter, it is not the only forensic domain
that relies on human decision-making. Firearms examination (see, e.g., NRC (2009b) pg.
150-155) is similar to latent print examination in many ways, particularly in that examiners
rely on pattern evidence to determine whether two cartridges originated from the same
source. Handwriting comparison (see National Research Council (2009b) pg. 163-167 on
“Questioned Document Examination” and Stoel et al. (2010) for discussion) consists of
examiners determining whether two samples of handwriting were authored by the same
person, taking potential forgery or disguise into account. A third example is interpreting
mixtures of DNA evidence (see PCAST (2016) Section 5.2). A DNA mixture is a biological
sample that contains DNA from two or more donors and requires analysts to make subjective
decisions to determine how many individuals contributed to the DNA profile. Due to these
currently unavoidable human factors, the President’s Council of Advisors on Science and
Technology (2016) recommended increased “black box” error rate studies for these and
other subjective forensic science methods.

The FBI “Black Box” study (Bradford T. Ulery et al. 2011) was the first large-scale study
performed to assess the accuracy and reliability of latent print examiners’ decisions. The
questions included a range of attributes and quality seen in casework, and were
representative of searches from an automated fingerprint identification system. The overall
false positive rate in the study was 0.1% and the overall false negative rate was 7.5%. These
computed quantities, however, have excluded all “inconclusive” responses (i.e. neither
identifications nor exclusions). This is noteworthy, as nearly a third of all responses were
inconclusive and respondents varied on how often they reported inconclusives. Respondents
who report a large number of inconclusives, and only make identification or exclusion
decisions for the most pristine prints, will likely make far fewer false positive and false
negative decisions than respondents who reported fewer inconclusives. The authors of the
study also note that it is difficult to compare the error rates and inconclusive rates of
individual examiners because each examiner saw a different set of fingerprint images (see
Appendix 3 of Bradford T. Ulery et al. (2011)). In other words, it would be unfair to compare
the error rate of someone who was given a set of “easy” questions to the error rate of
someone who was given a set of “difficult” questions. A better measure of examiner skill
would account for both error rates and difficulty of prints that were examined.

Accurately measuring proficiency, or examiner skill, is valuable not only for determining
whether a forensic examiner has met baseline competency requirements, but for training
purposes as well. Personalized feedback after participating in a study could lead to targeted
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training for examiners in order to improve their proficiency. Additionally, if proficiency is not
accounted for among a group of study participants, which often include trainees or non-
experts as well as experienced examiners, the overall results from the study may be biased.

There also exist substantial differences in the difficulty of forensic evaluation tasks.
Properties of the evidence, such as the quality, quantity, concentration, or rarity of
characteristics may make it easier or harder to evaluate. Some evidence, regardless of how
skilled the examiner is, will not have enough information to result in an identification or
exclusion in a comparison task. An inconclusive response, in this case, should be treated as
the “correct” response. Inconclusive responses on more straightforward identification tasks,
on the other hand, may be treated as mistakes.

Methods for analyzing forensic decision-making data should thus provide estimates for both
participant proficiency and evidence difficulty. Item response models, a class of statistical
methods used prominently in educational testing, have been proposed for use in forensic
science for these reasons (Kerkhoff et al. 2015). Luby and Kadane (2018) provided the first
item response analysis for forensic proficiency test data, and we improve and extend upon
that work by - analyzing a different fingerprint identification study that includes richer data on
decision-making, and - extending the range of models considered.

The remainder of the chapter is organized as follows: Section 8.1.1 gives a brief overview of
Item Response Models, Section 8.2 provides an overview on how decision-making data is
collected in forensic science, and Section 8.3 describes an R package that can be used to fit
these models. Section 8.4 describes how conclusions are drawn from an Item Response
analysis, and Section 8.5 gives an example IRT analysis of the FBI “Black Box” study.

8.1.1 A Brief Overview of Item Response Models

For PP individuals responding to II test items, we can express the binary responses
(i.e. correct/incorrect) as a P×IP×I matrix, YY. Item Response Theory (IRT) is based on the
idea that the probability of a correct response depends on individual proficiency,
θp,p=1,…,Pθp,p=1,…,P, and item difficulty, bi,i=1,…Ibi,i=1,…I.

8.1.1.1 Rasch Model

The Rasch Model (Rasch 1960; Fischer and Molenaar 2012) is a relatively simple yet
powerful item response model, and serves as the basis for extensions introduced later. The
probability of a correct response is modeled as a logistic function of the difference between
the participant proficiency, θpθp (p=1,…,Pp=1,…,P), and the item difficulty, bibi
(i=1,…,Ii=1,…,I):

P(Ypi=1)=11−exp(−(θp−bi)).(8.1)
P(Ypi=1)=11−exp (−(θp−bi)).

https://sctyner.github.io/decision-making.html#irt
https://sctyner.github.io/decision-making.html#humans-data
https://sctyner.github.io/decision-making.html#rpackages
https://sctyner.github.io/decision-making.html#humans-conclusions
https://sctyner.github.io/decision-making.html#casestudy
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To identify the model, we shall use the convention of constraining the mean of the participant
parameters (μθμθ) to be equal to zero. This allows for a nice interpretation of both participant
and item parameters relative to the “average participant”. If θp>0θp>0, participant pp is of
“above average” proficiency and if θp<0θp<0, participant pp is of “below average”
proficiency. Similarly, if bi<0bi<0 question ii is an “easier” question and the average
participant is more likely to correctly answer question ii. If bi>0bi>0 then question ii is a more
“difficult” question and the average participant is less likely to correctly answer question ii.
Other common conventions for identifying the model include setting a particular bibi or the
mean of the bibis equal to zero.

The item characteristic curve (ICC) describes the relationship between proficiency and
performance on a particular item (see Figure 8.1 for examples). For item parameters
estimated under a Rasch model, all ICCs are standard logistic curves with different locations
on the latent difficulty/proficiency scale.

Note that Equation (8.1) also describes a generalized linear model (GLM), where θp−biθp−bi
is the linear component, with a logit link function. By formulating the Rasch Model as a
hierarchical GLM with prior distributions on both θpθp and bibi, the identifiability problem is
solved. We assign θp∼N(0,σ2θ)θp∼N(0,σθ2) and bi∼N(μb,σ2b)bi∼N(μb,σb2), although
more complicated prior distributions are certainly possible.

The two-parameter logistic model (2PL) and three-parameter logistic model (3PL) are
additional popular item response models (Lord 1980). They are both similar to the Rasch
model in that the probability of a correct response depends on participant proficiency and
item difficulty, but additional item parameters are also included. We omit a full discussion of
these models here, but further reading may be found in van der Linden and Hambleton
(2013) and Boeck and Wilson (2004).

https://sctyner.github.io/decision-making.html#fig:hf-extensionsexample
https://sctyner.github.io/decision-making.html#eq:rasch
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Figure 8.1: Item Characteristic Curve (ICC) examples for the Rasch, 2PL, and 3PL models.

8.1.1.2 Partial Credit Model

The partial credit model (PCM) (Masters 1982) is distinct from the models discussed above
because it allows for the response variable, YpiYpi, to take additional values beyond zero
(incorrect) and one (correct). This is especially useful for modeling partially correct
responses, although may be applied in other contexts where the responses can be ordered.
When YpiYpi is binary, the partial credit model is equivalent to the Rasch model. Under the
PCM, the probability of response YpiYpi depends on θpθp, the proficiency of participant pp
as in the above models; mimi, the maximum score for item ii (and the number of step
parameters); and βilβil, the lthlth step parameter for item ii (l=0,…,mil=0,…,mi):

P(Ypi=0)=11+∑mik=1exp∑kl=1(θp−βil)
P(Ypi=0)=11+∑k=1miexp ∑l=1k(θp−βil)

P(Ypi=y,y>0)=exp∑yl=1(θp−βil)1+∑mik=1exp∑kl=1(θp−βil).(8.2)
P(Ypi=y,y>0)=exp ∑l=1y(θp−βil)1+∑k=1miexp ∑l=1k(θp−βil).
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An example PCM is shown in Figure 8.2 by plotting the probabilities of observing each of
three categories as a function of θpθp (analogous to the ICC curves above).

Figure 8.2: Category response functions for the PCM.

8.2 Data

The vast majority of forensic decision-making occurs in casework, information about which is
not often made available to researchers due to privacy concerns. Outside of casework, data
on forensic science decision-making is collected through proficiency test results and in error
rate studies. Proficiency tests are periodic competency exams that must be completed for
forensic laboratories to maintain their accreditation. Error rate studies are independent
research studies designed to measure casework error rates. As their names suggest, these
two data collection scenarios serve completely different purposes. Proficiency tests are
designed to assess basic competency of individuals, and mistakes are rare. Error rate
studies are designed to mimic the difficulty of evidence in casework and estimate the overall
error rate, aggregating over many individuals, and mistakes are more common by design.

https://sctyner.github.io/decision-making.html#fig:hf-pcmexample
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Proficiency exams consist of a large number of participants (often >400>400) responding to
a small set of questions (often <20<20). Since every participant answers every question, we
can assess participant proficiency and question difficulty using the observed scores. As
proficiency exams are designed to assess basic competency, most questions are relatively
easy and the vast majority of participants score 100%. Error rate studies, on the other hand,
consist of a smaller number of participants (fewer than 200200) and a larger pool of
questions (more than 500500). The questions are designed to be difficult, and every
participant does not answer every question, which makes determining participant proficiency
and question difficulty a more complicated task.

Results from both proficiency tests and error rate studies can be represented as a set of
individuals responding to several items, in which responses can be scored as correct or
incorrect. This is not unlike an educational testing scenario where students (individuals)
answer questions (items) either correctly or incorrectly. There is a rich body of statistical
methods for estimating student proficiency and item difficulty from test responses. Item
Response Theory (IRT) is used extensively in educational testing to study the relationship
between an individual’s (unobserved) proficiency and their performance on varying tasks.
IRT is an especially useful tool to estimate participant proficiencies and question difficulties
when participants do not necessarily answer the same set of questions.

8.3 R Packages

The case study makes use of the blackboxstudyR R package (Luby 2019), which provides
functions for working with the FBI black box data, implementations of basic IRT models in
Stan (Guo, Gabry, and Goodrich 2018), and plotting functions for results.

The primary functions of blackboxstudyR include:

score_bb_data(): Scores the FBI “Black Box” data under one of five scoring schemes.
irt_data_bb(): Formats the FBI “Black Box” data into a form appropriate for fitting a
Stan model.
fit_irt(): Wrapper for Stan to fit standard IRT models to data (does not be the FBI
data). Models currently available are:

Rasch Model (Section 8.1.1.1)
2PL Model (Section 8.1.1.1)
Partial Credit Model (Section 8.1.1.2)

plot_difficulty_posteriors and plot_proficiency_posteriors: Plot posterior
intervals for difficulty and proficiency estimates, respectively.

8.4 Drawing Conclusions

https://github.com/aluby/blackboxstudyR
https://sctyner.github.io/decision-making.html#rasch-model
https://sctyner.github.io/decision-making.html#rasch-model
https://sctyner.github.io/decision-making.html#partial-credit-model
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An IRT analysis produces estimates of both participant proficiency and item difficulty. As
mentioned previously, this property is especially useful for settings where participants
respond to different subsets of items, as it allows all participants to be compared on the
same scale.

By comparing the estimated proficiency to more traditional measures of participant
performance (e.g. false positive rate or false negative rate), we can see whether there are
aspects captured by proficiency that are not captured in other measures. For instance, the
false positive rate and the false negative rate contain no information about the inconclusive
rate, while IRT does implicitly, as it accounts for the number of question answered by each
participant.

In the forensic science setting, completing an IRT analysis will often include an additional
step of choosing how the data should be scored. For example, should inconclusive
responses be scored as incorrect or treated as missing? An additional question we may wish
to answer is, “Which scoring scheme is most appropriate for the setting at hand?” In some
cases, the optimal scoring scheme may be determined using expert knowledge, or by
specifying the expected answers to each item beforehand. In other cases, it may not be
possible to determine the optimal scoring scheme before fitting an IRT model. In those
cases, multiple scoring methods should be used to fit an IRT model, and the results from
each model should be compared and contrasted.

8.5 Case Study

We use the FBI “black box” data (blackboxstudyR::TestResponses) for our case study.
TestResponses is a data frame in which each row corresponds to an examiner, each column
represents the item, and the value in each unique combination of row and column is the
examiner’s response to that item. In addition to the examiner ID (Examiner_ID) and item ID
(Pair_ID), the data contains:

Mating: whether the pair of prints were “Mates” (same source) or “Non-mates”
(different source)
Latent_Value: the examiner’s assessment of the value of the print (NV = No Value,
VEO = Value for Exclusion Only, VID = Value for Individualization)
Compare_Value: the examiner’s assessment of whether the pair of prints is an
“Exclusion”, “Inconclusive” or “Individualization”
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Inconclusive_Reason: If inconclusive, the reason for the inconclusive
“Close”: The correspondence of features is supportive of the conclusion that the
two impressions originated from the same source, but not the extent sufficient for
individualization.
“Insufficient”: Potentially corresponding areas are present, but there is insufficient
information present. Participants were told to select this reason if the reference
print was not of value.
“No Overlap”: No overlapping area between the latent and reference

Exclusion_Reason: If exclusion, the reason for the exclusion
“Minutiae”
“Pattern”

Difficulty: Reported difficulty ranging from “A_Obvious” to “E_VeryDifficult”

In order to fit an IRT model, we must first score the data. Responses are scored as correct if
they are true identifications (Mating == Mates and Compare_Value == Individualization)
or exclusions (Mating == Non-mates and Compare_Value == Exclusion). Similarly,
responses are scored as incorrect if they are false identifications (Mating == Non-mates and
Compare_Value == Individualization) or false exclusions (Mating == Mates and
Compare_Value == Exclusion).

Inconclusive responses, which are never keyed as correct responses, complicate the scoring
of the exam due to both their ambiguity and prevalence. There are a large number of
inconclusive answers (4907 of 17121 responses), and examiners vary on which latent print
pairs are inconclusive.

The blackboxstudyR package includes five methods to score inconclusive responses:

1. Score all inconclusive responses as incorrect (inconclusive_incorrect). This may
penalize participants who were shown more vague or harder questions and therefore
reported more inconclusives.

2. Treat inconclusive responses as missing completely at random (inconclusive_mcar).
This decreases the amount of data included in the analysis, and does not explicitly
penalize examiners who report many inconclusives. This is the scoring method most
similar to the method used in Bradford T. Ulery et al. (2011) to compute false positive
and false negative rates.

3. Score inconclusive as correct if the reason given for an inconclusive is “correct”. Since
the ground truth “correct” inconclusive reason is unknown, the consensus reason from
other inconclusive responses for that question is used. If no consensus reason exists,
the inconclusive response was scored in one of two ways:

1. Treat inconclusive responses as incorrect if no consensus reason exists
(no_consensus_incorrect).

2. Treat inconclusive responses as missing completely at random if no consensus
reason exists (no_consensus_mcar).
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4. Score inconclusive responses as “partial credit” (partial_credit).

In the remainder of the case study we will 1. demonstrate how to fit an IRT model in R, 2.
illustrate how IRT analysis complements an error rate analysis by accounting for participants
seeing different sets of questions, and 3. show how different scoring methods can change
results from an IRT analysis.

8.5.1 Fitting the IRT model

We’ll proceed with an IRT analysis of the data under the inconclusive_mcar scoring
scheme, which is analogous to how the data were scored under Bradford T. Ulery et al.
(2011).

im_scored <- score_bb_data(TestResponses, "inconclusive_mcar")

Scoring the black box data as above gives us the response variable (yy). The irt_data_bb
function takes the original black box data, along with the scored variable produced by
score_bb_data, and produces a list object in the form needed by Stan to fit the IRT models.
If you wish to fit the models on a different set of data, you can do so if the dataset has been
formatted as a list object with the same attributes as the irt_data_bb function output (see
package documentation for additional details).

im_data <- irt_data_bb(TestResponses, im_scored)

We can now use fit_irt to fit the Rasch models.

im_model <- fit_rasch(im_data, iterations = 600, n_chains = 4)

In practice, it is necessary to ensure that the MCMC sampler has converged using a variety
of diagnostics. We omit these steps here for brevity, but the blackboxstudyR package will
include a vignette detailing this process, or see e.g. Gelman et al. (2013).

After the model has been fit, we can plot the posterior distributions of difficulties and
proficiencies:

p1 <- plot_proficiency_posteriors(im_samples) + my_theme 
p2 <- plot_difficulty_posteriors(im_samples) + my_theme 
ggarrange(p1, p2, ncol = 2)
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The lighter gray interval represents the 95% posterior interval and the black interval
represents the 50% posterior interval. If we examine the posterior intervals for the difficulty
estimates (bb), we can see groups which have noticeably larger intervals, and thus more
uncertainty regarding the estimate: 1. those on the bottom left 2. those on the upper right,
and 3. those in the middle.

These three groups of uncertain estimates correspond to: 1. the questions that every
participant answered correctly, 2. the questions that every participant answered incorrectly,
and 3. the questions that every participant reported as an “inconclusive” or “no value”.

8.5.2 IRT complements an error rate analysis

The original analysis of the FBI “Black Box” Study (see Bradford T. Ulery et al. 2011) did not
include analysis of participant error rates, because each participant saw a different question
set. Since proficiency accounts for the difficulty of question sets, however, we can directly
compare participant proficiencies to each other, and also see how error rates and proficiency
are related.

First, we compute the observed person scores.

obs_p_score <- bb_person_score(TestResponses, im_scored)
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In order to use the error_rate_analysis function, we need to extract the median question
difficulties from MCMC results.

q_diff <- apply(im_samples, 3, median)[grep("b\\[", names(apply(im_samples,  
   3, median)))] 
ex_error_rates <- error_rate_analysis(TestResponses, q_diff)

Now, we can plot the proficiency estimates (with 95% posterior intervals) against the results
from a traditional error rate analysis.

p1 <- person_mcmc_intervals(im_samples) %>% right_join(., obs_p_score, by = "exID") 
%>%  
   full_join(., ex_error_rates, by = "exID") %>% dplyr::select(., score, m,  
   ll, hh, exID, avg_diff, fpr, fnr) %>% ggplot(., aes(x = fpr, y = m, ymin = ll,  
   ymax = hh)) + geom_pointrange(size = 0.3) + labs(x = "False Positive Rate",  
   y = "Proficiency Estimate") + my_theme 

p2 <- person_mcmc_intervals(im_samples) %>% right_join(., obs_p_score, by = "exID") 
%>%  
   full_join(., ex_error_rates, by = "exID") %>% dplyr::select(., score, m,  
   ll, hh, exID, avg_diff, fpr, fnr) %>% ggplot(., aes(x = fnr, y = m, ymin = ll,  
   ymax = hh, color = fpr > 0)) + geom_pointrange(size = 0.3) + labs(x = "False 
Negative Rate",  
   y = "Proficiency Estimate") + scale_colour_manual(values = c("black", 
"steelblue")) +  
   my_theme + theme(legend.position = "none") 

ggarrange(p1, p2, ncol = 2)

Figure 8.3: Proficiency vs False Positive Rate (left) and False Negative Rate (right)
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Figure 8.3 shows proficiency against the false positive rate (left) and false negative rate
(right). Those participants who made at least one false positive error are colored in blue on
the right side plot. We see that one of the participants who made a false positive error still
received a relatively large proficiency estimate due to having such a small false negative
rate.

If, instead of looking error rates for each participant, we examine observed scores, the
estimated proficiencies correlate with the observed score (Figure 8.4. That is, participants
with a higher observed score are generally given larger proficiency estimates than
participants with lower scores. There are, however, cases where participants scored roughly
the same on the study but are given vastly different proficiency estimates. For example, the
highlighted participants in the right plot above all scored between 94% and 96%, but their
estimated proficiencies range from −1.25−1.25 to 2.52.5.

p1 <- person_mcmc_intervals(im_samples) %>% right_join(obs_p_score, by = "exID") %>%  
   ggplot(aes(x = score, y = m, ymin = ll, ymax = hh)) + geom_pointrange(size = 0.3) 
+ 
   labs(x = "Observed Score", y = "Proficiency Estimate") + my_theme 

p2 <- person_mcmc_intervals(im_samples) %>% right_join(obs_p_score, by = "exID") %>%  
   ggplot(aes(x = score, y = m, ymin = ll, ymax = hh)) + geom_pointrange(size = 0.3) 
+ 
   gghighlight(score < 0.96 & score > 0.94) + labs(x = "Observed Score", y = 
"Proficiency Estimate") +  
   my_theme 

ggarrange(p1, p2, ncol = 2)

Figure 8.4: Proficiency vs Observed Score

https://sctyner.github.io/decision-making.html#fig:hf-error-rate-plots
https://sctyner.github.io/decision-making.html#fig:hf-prof-observed
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If we examine those participants who scored between 94% and 96% more closely, we can
see that the discrepancies in their proficiencies are largely explained by the difficulty of the
specific question set they saw. This is evidenced by the positive trend in Figure 8.5. In
addition to the observed score and difficulty of the question set, the number of questions the
participant answers conclusively (i.e. individualization or exclusion) also plays a role in the
proficiency estimate. Participants who are conclusive more often generally receive higher
estimates of proficiency than participants who are conclusive less often.

person_mcmc_intervals(im_samples) %>% right_join(obs_p_score, by = "exID") %>%  
   full_join(ex_error_rates, by = "exID") %>% dplyr::select(score, m, ll, hh,  
   exID, avg_diff, pct_skipped) %>% filter(score < 0.96 & score > 0.94) %>%  
   ggplot(aes(x = avg_diff, y = m, ymin = ll, ymax = hh, col = 1 - pct_skipped)) +  
   geom_pointrange(size = 0.3) + labs(x = "Avg Q Difficulty", y = "Proficiency 
Estimate",  
   color = "% Conclusive") + my_theme

Figure 8.5: Proficiency vs Average Question Difficulty, for participants with observed score
between 94 and 96 percent correct.

8.5.3 Scoring method affects proficiency estimates

To illustrate the difference in results between different scoring methods, we’ll now score the
data and fit models in two more ways: no_consensus_incorrect and partial_credit.

nci_scored <- score_bb_data(TestResponses, "no_consensus_incorrect") 
nci_data <- irt_data_bb(TestResponses, nci_scored) 
pc_scored <- score_bb_data(TestResponses, "partial_credit") 
pc_data <- irt_data_bb(TestResponses, pc_scored)

https://sctyner.github.io/decision-making.html#fig:hf-prof-by-diff
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We use fit_rasch to fit the Rasch model to the no_consensus_incorrect data, and since
the partial_credit data has three outcomes (correct, inconclusive, or incorrect) instead of
only two (correct/incorrect), we use fit_pcm to fit a partial credit model to the data.

nci_model <- fit_rasch(nci_data, iterations = 1000, n_chains = 4) 
pc_model <- fit_pcm(pc_data, iterations = 1000, n_chains = 4)

We can examine the proficiency estimates and observed scores for each participant under
each of the three scoring schemes, similar to Figure 8.4 above. Under the partial credit
scoring scheme, a correct identification/exclusion is scored as a “2”, an inconclusive
response is scored as a “1” and an incorrect identification/exclusion is scored as a “0”. The
observed score is then computed by (#Correct+#Inconclusive)/(2×#Responses)
(#Correct+#Inconclusive)/(2×#Responses) to scale the score to be between 0 and 1.

p_score_im <- bb_person_score(TestResponses, im_scored)
p_score_im <- person_mcmc_intervals(blackboxstudyR::im_samples) %>% 
right_join(p_score_im,  
   by = "exID") %>% mutate(scoring = rep("im", nrow(p_score_im))) 

p_score_nci <- bb_person_score(TestResponses, nci_scored) 
p_score_nci <- person_mcmc_intervals(blackboxstudyR::nci_samples) %>% 
right_join(p_score_nci,  
   by = "exID") %>% mutate(scoring = rep("nci", nrow(p_score_nci))) 

p_score_pc <- bb_person_score(TestResponses, pc_scored)
p_score_pc <- person_mcmc_intervals(blackboxstudyR::pc_samples) %>% 
right_join(p_score_pc,  
   by = "exID") %>% mutate(scoring = rep("pc", nrow(p_score_pc))) 

p1 <- p_score_im %>% bind_rows(p_score_nci) %>% bind_rows(p_score_pc) %>% 
ggplot(aes(x = score,  
   y = m, ymin = ll, ymax = hh, col = scoring)) + geom_pointrange(size = 0.3,  
   alpha = 0.5) + labs(x = "Observed Score", y = "Estimated Proficiency") +  
   my_theme 

p2 <- p_score_im %>% bind_rows(p_score_nci) %>% bind_rows(p_score_pc) %>% 
group_by(exID) %>%  
   ggplot(aes(x = score, y = m, ymin = ll, ymax = hh, col = scoring, group = exID)) 
+ 
   geom_pointrange() + gghighlight(hh < -0.5, use_group_by = FALSE) + geom_line(col 
= "black",  
   linetype = "dotted") + labs(x = "Observed Score", y = "Estimated Proficiency") +  
   geom_hline(yintercept = -0.5, col = "darkred", linetype = "dashed") + my_theme 

ggarrange(p1, p2, ncol = 2, common.legend = TRUE, legend = "bottom")

https://sctyner.github.io/decision-making.html#fig:hf-prof-observed
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Figure 8.6: Proficiency vs Observed Score for each of three scoring schemes

Treating the inconclusives as missing (“im”), leads to both the smallest range of observed
scores and largest range of estimated proficiencies. Harsher scoring methods (e.g. no
consensus incorrect (“nci”)) do not necessarily lead to lower estimated proficiencies. For
instance, the participants who scored around 45% under the “nci” scoring method (in green)
are given higher proficiency estimates than the participant who scored 70% under the “im”
scoring method. The scoring method thus affects the proficiency estimates in a somewhat
non-intuitive way, as larger ranges of observed scores do not necessarily correspond to
larger ranges of proficiency estimates.

Also note that the uncertainty intervals under the “im” scoring scheme are noticeably larger
than under the other scoring schemes. This is because the inconclusive_mcar scheme
treats all of the inconclusives, nearly a third of the data, as missing. This missingness is
completely uninformative when estimating the difficulty and proficiency estimates. Under the
other scoring schemes (no consensus incorrect and partial credit) the inconclusive
responses are never treated as missing, leading to a larger number of observations per
participant and therefore a smaller amount of uncertainty in the proficiency estimate.

The range of proficiencies under different scoring schemes and the uncertainty intervals for
the proficiency estimates both have substantial implications if we consider setting a “mastery
level” for participants. As an example, let’s consider setting the mastery threshold at
−0.5−0.5. We will then say examiners have not demonstrated mastery if the upper end of
their proficiency uncertainty estimate is below −0.5−0.5, illustrated in the right plot of Figure
8.6.

The number of examiners that have not demonstrated mastery varies based on the scoring
method used (11 for “nci”, 8 for “pc” and 11 for “im”) due to the variation in range of
proficiency estimates. Additionally, for each of the scoring schemes, there are a number of

https://sctyner.github.io/decision-making.html#fig:hf-prof-three-scores
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examiners that did achieve mastery with the same observed score as those that did not
demonstrate mastery. This is due to a main feature of item response models discussed
earlier: participants that answered more difficult questions are given higher proficiency
estimates than participants that answered the same number of easier questions.

We’ve also drawn dotted lines between proficiency estimates that correspond to the same
person. Note that many of the participants who do not achieve mastery under one scoring
scheme do achieve mastery under the other scoring schemes, since not all of the points are
connected by dotted lines. There are also a few participants who do not achieve mastery
under any of the scoring schemes. This raises the question of how much the proficiency
estimates change for each participant under the different scoring schemes.

The plot on the left in Figure 8.7 shows both a change in examiner proficiencies across
scoring schemes (the lines connecting the proficiencies are not horizontal) as well as a
change in the ordering of examiner proficiencies (the lines cross one another). That is,
different scoring schemes affect examiner proficiencies in different ways.

The plot on the right illustrates participants that see substantial differences in their
proficiency estimates under different scoring schemes. Examiners 105 and 3 benefit from the
leniency in scoring when inconclusives are treated as missing (“im”). When inconclusives are
scored as incorrect (“nci”) or partial credit (“pc”), they see a substantial decrease in their
proficiency due to reporting a high number of inconclusives and differing from other
examiners in their reasoning for reporting inconclusives. Examiners 142, 60 and 110, on the
other hand, are hurt by the leniency in scoring when inconclusives are treated as missing
(“im”). Their proficiency estimates increase when inconclusives are scored as correct when
they match the consensus reason (“nci”) or are worth partial credit (“pc”).

p1 <- p_score_im %>% bind_rows(p_score_nci) %>% bind_rows(p_score_pc) %>% 
arrange(parameter) %>%  
   mutate(id = rep(1:169, each = 3)) %>% dplyr::select(id, m, scoring) %>%  
   spread(scoring, m) %>% mutate(max.diff = apply(cbind(abs(im - nci), abs(nci -  
   pc), abs(im - pc)), 1, max)) %>% gather("model", "median", -c(id, max.diff)) %>%  
   ggplot(aes(x = model, y = median, group = id, col = id)) + geom_point() +  
   geom_line() + labs(x = "Scoring Method", y = "Estimated Proficiency") +  
   my_theme 

p2 <- p_score_im %>% bind_rows(p_score_nci) %>% bind_rows(p_score_pc) %>% 
arrange(parameter) %>%  
   mutate(id = rep(1:169, each = 3)) %>% dplyr::select(id, m, scoring) %>%  
   spread(scoring, m) %>% mutate(max.diff = apply(cbind(abs(im - nci), abs(nci -  
   pc), abs(im - pc)), 1, max)) %>% gather("model", "median", -c(id, max.diff)) %>%  
   ggplot(aes(x = model, y = median, group = id, col = id)) + geom_point() +  
   geom_line() + labs(x = "Scoring Method", y = "Estimated Proficiency") +  
   gghighlight(max.diff > 1.95, label_key = id, use_group_by = FALSE) + my_theme 

ggarrange(p1, p2, ncol = 2, common.legend = TRUE, legend = "bottom")

https://sctyner.github.io/decision-making.html#fig:hf-prof-by-id
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Figure 8.7: Change in proficiency for each examiner under the three scoring schemes. The
right side plot has highlighted five examiners whose proficiency estimates change the most
across schemes.

8.5.4 Discussion

We have provided an overview of human decision-making in forensic analyses, through the
lens of latent print comparisons and the FBI “black box” study (Bradford T. Ulery et al. 2011).
A brief overview of Item Response Theory (IRT), a class of models used extensively in
educational testing, was introduced in Section 8.1.1. A case study is provided of an IRT
analysis on the FBI black box’’ study in 8.5.

Results from an IRT analysis are largely consistent with conclusions from an error rate
analysis. However, IRT provides substantially more information than a more traditional
analysis, specifically through accounting for the difficulty of questions seen. Additionally, IRT
implicitly accounts for the inconclusive rate of different participants and provides estimates of
uncertainty for both participant proficiency and item difficulty. If IRT were to be adopted on a
large scale, participants would be able to be directly compared even if they took different
exams (for instance, proficiency exams in different years).

Three scoring schemes were presented in the case study, each of which leads to
substantially different proficiency estimates across participants. Although IRT is a powerful
tool for better understanding examiner performance on forensic identification tasks, we must
be careful when choosing a scoring scheme. This is especially important for analyzing
ambiguous responses, such as the inconclusive responses in the “black box” study.

https://sctyner.github.io/decision-making.html#irt
https://sctyner.github.io/decision-making.html#casestudy
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
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