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Abstract
Forensic science often involves the comparison of crime-scene evidence to a known-
source sample to determine if the evidence and the reference sample came from 
the same source. Even as forensic analysis tools become increasingly objective and 
automated, final source identifications are often left to individual examiners’ inter-
pretation of the evidence. Each source identification relies on judgements about the 
features and quality of the crime-scene evidence that may vary from one examiner to 
the next. The current approach to characterizing uncertainty in examiners’ decision-
making has largely centered around the calculation of error rates aggregated across 
examiners and identification tasks, without taking into account these variations in 
behavior. We propose a new approach using IRT and IRT-like models to account 
for differences among examiners and additionally account for the varying difficulty 
among source identification tasks. In particular, we survey some recent advances 
(Luby 2019a) in the application of Bayesian psychometric models, including simple 
Rasch models as well as more elaborate decision tree models, to fingerprint exam-
iner behavior.

Keywords Forensic science · Proficiency testing · Diagnostic assessment · Item 
response theory · Item response trees · Cultural consensus theory
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1 Introduction

Validity and reliability of the evaluation of forensic science evidence are power-
ful and crucial to the fact-finding mission of the courts and criminal justice sys-
tem (President’s Council of Advisors on Science and Technology 2016). Common 
types of evidence include DNA taken from blood or tissue samples, glass fragments, 
shoe impressions, firearm bullets or casings, fingerprints, handwriting, and traces of 
online/digital behavior. Evaluating these types of evidence often involves compar-
ing a crime scene sample, referred to in this field as a latent sample,1 with a sample 
from one or more persons of interest, referred to as reference samples; forensic sci-
entists refer to this as an identification task. Ideally, the result of an identification 
task is what is referred to as an individualization, i.e. an assessment by the examiner 
that the latent and reference samples come from the same source, or an exclusion, 
i.e. an assessment that the sources for the two samples are different. For a variety of 
reasons, the assessments in identification tasks for some kinds of evidence can be 
much more accurate and precise than for others.

The evaluation and interpretation of forensic evidence often involve at least 
two steps: (a) comparing a latent sample to a reference sample and (b) assessing 
the meaning of that reported match or non-match (Saks and Koehler 2008). There 
are often additional steps taken, for example, to assess whether the latent sample is 
of sufficient quality for comparison. Many kinds of identification tasks, e.g. those 
involving fingerprint, firearms and handwriting data, require human examiners to 
subjectively select features to compare in the latent and reference samples. The 
response provided by a forensic examiner is thus more nuanced than a dichotomous 
match or no-match decision. Further, each of these steps introduces potential for 
variability and uncertainty by the forensic science examiner. Finally, the latent sam-
ples can be of varying quality, contributing further to variability and uncertainty in 
completing identification tasks. Forensic examination is thus ripe for the application 
of item response theory (IRT) and related psychometric models, in which examiners 
play the role of respondents or participants, and identification tasks play the role of 
items (Kerkhoff et al. 2015; Luby and Kadane 2018).

In this paper, we survey recent advances in the psychometric analysis of foren-
sic examiner behavior (Luby 2019a). In particular, we will apply IRT and related 
models, including Rasch models (Rasch 1960; Fischer and Molenaar 2012), mod-
els for collateral or covarying responses (similar to Thissen 1983), item response 
trees (IRTrees, De Boeck and Partchev 2012) and cultural consensus theory models 
(CCT, Batchelder and Romney 1988), to better understand the operating character-
istics of identification tasks performed by human forensic examiners. We will focus 
on fingerprint analysis, but the same techniques can be used to understand identi-
fication tasks for other types of forensic evidence. Understanding examiners’ per-
formance is obviously of interest to legal decision-makers, for whom the frequency 

1 This usage should not be confused with the usage of “latent” in psychometrics, meaning a variable 
related to individual differences that is unobservable. We will use the word in both senses in this paper, 
the meaning being clear from context.



357

1 3

Behaviormetrika (2020) 47:355–384 

and types of errors in forensic testimony is important (Garrett and Mitchell 2017; 
Max et al. 2019), but it can also lead to better pre-service and in-service training for 
examiners, to reduce erroneous or misleading testimony.

1.1  Fingerprint analysis

Fingerprint identification tasks in which an examiner compares a latent print to one 
or more reference prints involve many sources of variation and uncertainty. The 
latent print may be smudged or otherwise degraded to varying degrees, making 
comparison with the reference print difficult or impossible. The areas of the print 
available in the latent image may be difficult to locate in the reference print of inter-
est. Even if the latent print is clear and complete, the degree of similarity between 
the latent and reference prints varies considerably across identification tasks. See, 
e.g. Bécue et al. (2019) for a comprehensive review of fingerprint comparison.

Examiners also contribute variability and uncertainty to the process. Different 
examiners may be differentially inclined in their determinations of whether print 
quality is sufficient to make a comparison. They may choose different features, or 
minutiae, on which to base a comparison, and they may have different personal 
thresholds for similarity of individual minutiae, or for the number of minutiae that 
must match (respectively, fail to match) to declare an individualization (respectively, 
exclusion); see for example Ulery et al. (2014).

1.2  Empirical work to date

Proficiency tests do exist for examiners (President’s Council of Advisors on Science 
and Technology 2016), but they are typically scored with number-right or percent-
correct scoring (Gardner et al. 2019). This approach does not account for differing 
difficulty of identification tasks across different editions of the same proficiency test, 
nor across tasks within a single proficiency test. Thus, the same score may indicate 
very different levels of examiner proficiency, depending on the difficulty of the tasks 
on a particular edition of the test, or even on the difficulty of the particular items 
answered correctly and incorrectly by different examiners with the same number-
correct score on the same edition of the test.

Error rate studies, that aggregate true-positive, true-negative, false-positive and 
false-negative rates across many examiners and identification tasks, contain unmeas-
ured biases due to the above variations in task difficulty and examiner practice and 
proficiency; see for example Luby and Kadane (2018). Furthermore, if a latent var-
iable model in which monotonicity and local independence hold (such as an IRT 
model) applies, responses from the same participant will be positively associated in 
the resulting marginal model (Holland and Rosenbaum 1986). Consequently, stand-
ard errors for error rates and other quantities of interest, which are a function of 
the marginal model, will be understated unless this positive association is taken into 
account.
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1.3  Preview

In this paper, we review some recent advances (Luby 2019a) in the application of 
Bayesian IRT and IRT-like models to fingerprint examiner proficiency testing and 
error rate data. We show the additional information that can be obtained from appli-
cation of even a simple IRT model (e.g., Rasch 1960; Fischer and Molenaar 2012) 
to proficiency data, and compare that information with examiners’ perceived diffi-
culty of identification tasks. We also explore models for staged decision-making and 
polytomous responses when there is no ground truth (answer key). In this latter situ-
ation, even though there is no answer key, we are able to extract useful diagnostic 
information about examiners’ decision processes, relative to a widely recommended 
decision process (known as ACE-V: Analysis, Comparison, Evaluation, Verifica-
tion, Taylor et  al. 2012), using the IRTrees framework of De Boeck and Partchev 
(2012). Interestingly, the latent traits or person parameters in these models no longer 
represent proficiencies in performing identification tasks but rather tendencies of 
examiners toward one decision or another. This leads to a better understanding of 
variation among examiners at different points in the analysis process. Finally we 
compare the characteristics of IRT-like models for generating answer keys with the 
characteristics of social consensus models (Batchelder and Romney 1988; Anders 
and Batchelder 2015) applied to the same problem.

2  Available forensic data

The vast majority of forensic decision-making occurs in casework, which is not 
often made available to researchers due to privacy concerns or active investigation 
policies. Besides real-world casework, data on forensic decision-making are col-
lected through proficiency testing and error rate studies. Proficiency tests are peri-
odic competency exams that must be completed for forensic laboratories to maintain 
their accreditation, while error rate studies are research studies designed to measure 
casework error rates.

2.1  Proficiency tests

Proficiency tests usually involve a large number of participants (often > 400 ), across 
multiple laboratories, responding to a small set of identification task items (often 
< 20 ). Since every participant responds to every item, we can assess participant 
proficiency and item difficulty largely using the observed scores. Since proficiency 
exams are designed to assess basic competency, most items are relatively easy and 
the vast majority of participants score 100% on each test.

In the US, forensic proficiency testing companies include Collaborative Testing 
Services (CTS), Ron Smith and Associates (RSA), Forensic Testing Services (FTS), 
and Forensic Assurance (FA). Both CTS and RSA provide two tests per year in fin-
gerprint examination, consisting of 10–12 items, and make reports of the results 
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available. FA also provides two tests per year, but does not provide reports of results. 
FTS does not offer proficiency tests for fingerprint examiners but instead focuses on 
other forensic domains.

In a typical CTS exam, for example, 300–500 participants respond to eleven or 
twelve items. In a typical item, a latent print is presented (e.g. Fig.  1a), and par-
ticipants are asked to determine the source of the print from a pool of four known 
donors (e.g. Fig. 1b), if any.

Proficiency tests may be used for training, known or blind proficiency testing, 
research and development of new techniques, etc. Even non-forensic examiners can 
participate in CTS exams (Max et al. 2019) and distinguishing between experts and 
non-experts from the response data alone is generally not feasible since most partici-
pants correctly answer every question (Luby and Kadane 2018). Moreover, since the 
test environment is not controlled, it is impossible to determine whether responses 
correspond to an individual examiner’s decision, to the consensus answer of a group 
of examiners working together on the exam, or some other response process.

2.2  Error rate studies

Error rate studies typically consist of a smaller number of participants (fewer than 
200 ), but use a larger pool of items (often 100 or more). In general, the items are 
designed to be difficult, and every participant does not respond to every item.

A recent report published by the American Association for the Advancement of 
Science (AAAS 2017) identified twelve existing error rate studies in the fingerprint 
domain, and a summary of those studies is provided here. The number of partici-
pants (N), number of items (J), false-positive rate, false-negative rate, and report-
ing strategy vary widely across the studies and are summarized in Table 1 below. 
For example, Evett and Williams (1996) did not report the number of inconclusive 
responses, making results difficult to evaluate relative to the other studies. And 

Fig. 1  Examples of latent and reference samples provided in CTS proficiency exams
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Tangen et al. (2011) and Kellman et al. (2014) required examiners to make a deter-
mination about the source of a latent print in only 3 min, likely leading to larger 
error rates. Ulery et al. (2011) is generally regarded as the most well-designed error 
rate study for fingerprint examiners (AAAS 2017; President’s Council of Advisors 
on Science and Technology 2016). Ulery et  al. (2012) tested the same examiners 
on 25 of the same items they were shown 7 months earlier, and found that 90% of 
decisions for same-source pairs were repeated, and 85.9% of decisions for differ-
ent-source pairs were repeated. For additional information on all twelve studies, see 
Luby (2019a) or AAAS (2017).

2.3  FBI Black Box Study

All analyses in this paper use results from the FBI Black Box Study and are based 
on practices and procedures of fingerprint examiners in the United States. The 
FBI Black Box study (Ulery et  al. 2011, dataset available freely from the FBI2), 
was the first large-scale study performed to assess the accuracy and reliability of 
fingerprint examiners’ decisions. 169 fingerprint examiners were recruited for the 
study, and each participant was assigned roughly 100 items from a pool of 744. The 
items (fingerprint images) were designed to include ranges of features (e.g. minu-
tiae, smudges, and patterns) and quality similar to those seen in casework, and to 
be representative of searches from an automated fingerprint identification system. 
The overall false-positive rate in the study was 0.1% and the overall false-negative 
rate was 7.5%. These computed quantities, however, excluded all “inconclusive” 
responses (i.e. neither individualizations nor exclusions).

Each row in the data file corresponds to an examiner × task response. In addition 
to the Examiner ID and item Pair ID (corresponding to the latent-reference pair), 

Table 1  Summary of existing studies that estimate error rates in fingerprint examination

N J False Pos False Neg Inconclusive

Evett and Williams (1996) 130 10 0 0.007% Not reported
Wertheim et al. (2006) 108 10 1.5%
Langenburg et al. (2009) 15 (43) 6 2.3% 7%
Langenberg (2009) 6 120 0 0.7%/ 2.2%
Tangen et al. (2011) 37 (74) 36 0.0037 Not allowed
Ulery et al. (2011) 169 744 (100) 0.17% 7.5%
Ulery et al. (2012) 72 744 (25) 0 30% of previous
Langenburg et al. (2012) 159 12 2.4%
Kellman et al. (2014) 56 200 (40) 3% 14% Not allowed
Pacheco et al. (2014) 109 40 4.2% 8.7%
Liu et al. (2015) 40 5 0.11%

2 https ://www.fbi.gov/servi ces/labor atory /scien tific -analy sis/count erter roris m-foren sic-scien ce-resea rch/
black -box-study -resul ts.

https://www.fbi.gov/services/laboratory/scientific-analysis/counterterrorism-forensic-science-research/black-box-study-results
https://www.fbi.gov/services/laboratory/scientific-analysis/counterterrorism-forensic-science-research/black-box-study-results
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additional information is provided for each examinee × task interaction, as shown in 
Table 2.

Examiners thus made three distinct decisions when they were evaluating the 
latent and reference prints in each item: (1) whether or not the latent print has value 
for a further decision, (2) whether the latent print was determined to come from the 
same source as the reference print, different sources, or inconclusive, and (3) their 
reasoning for making an inconclusive or exclusion decision. While the main purpose 
of the study was to calculate casework error rates (and thus focused on the Com-
pare_Value decision), important trends in examiner behavior are also present in 
the other decisions, to which we return in Sect. 3.3.

3  Proficiency and process modelling for fingerprint examiners

3.1  Applying the Rasch model

The Rasch model (Rasch 1960; Fischer and Molenaar 2012) is a relatively simple, 
yet powerful, item response model, that allows us to separate examiner proficiency 
from task difficulty. The probability of a correct response is modeled as a logistic 
function of the difference between the participant proficiency, �i ( i = 1,… ,N ), and 
the item difficulty, bj ( j = 1,… , J),

(1)P(Yij = 1) =
1

1 + exp(−(�i − bj))
.

Table 2  Additional information provided for each examiner × task interaction in the FBI Black Box data 
(Ulery et al. 2011)

∙ Mating: whether the pair of prints were “Mates” (a match) or “Non-mates” (a non-match)
∙ Latent_Value: the examiner’s assessment of the value of the print (NV = No Value, VEO = 

Value for Exclusion Only, VID = Value for Individualization)
∙ Compare_Value: the examiner’s evaluation of whether the pair of prints is an “Exclusion”, “Incon-

clusive” or “Individualization”
∙ Inconclusive_Reason: If inconclusive, the reason for the inconclusive

      − “Close”: The correspondence of features is supportive of the conclusion that the two impres-
sions originated from the same source, but not to the extent sufficient for individualization.

      − “Insufficient”: Potentially corresponding areas are present, but there is insufficient information 
present. Examiners were told to select this reason if the reference print was not of value.

      − “No Overlap”: No overlapping area between the latent and reference prints
∙ Exclusion_Reason: If exclusion, the reason for the exclusion

      −“Minutiae”: The exclusion determination required the use of minutiae
      − “Pattern”: The exclusion determination could be made on fingerprint pattern class and did not 

require the use of minutiae
∙ Difficulty: Reported difficulty on a five point scale: ‘A-Obvious’, ‘B-Easy’, ‘C-Medium’, 

‘D-Difficult’, ‘E-Very Difficult’.



362 Behaviormetrika (2020) 47:355–384

1 3

To fit an IRT model to the Black Box Study, we will score responses as correct if 
they are true identifications or exclusions and as incorrect if they are false identifica-
tions or exclusions.

For the purpose of illustration, we will consider “inconclusive” responses as 
missing completely at random (MCAR), following the scoring method in the origi-
nal study (Ulery et al. 2011), who treated inconclusive responses as missing instead 
of scoring them as false positives or false negatives. However, there are a large num-
ber of inconclusive answers (4907 of 17,121 responses), which can be scored in a 
variety of ways (see Luby 2019b, for examples), and we will return to the inconclu-
sives in Sect. 3.4.

The Rasch model was fitted in a Bayesian framework, with 
�i ∼ N(0, �2

�
) , bj ∼ N(�b, �

2
b
) , �b ∼ N(0, 10) , �� ∼ Half-Cauchy(0, 2.5) and 

�b ∼ Half-Cauchy(0, 2.5) , using Stan (Stan Development Team 2018a, b). Item dif-
ficulties and examiner proficiencies were estimated together from a single fitting of 
the Rasch model to the Black Box data. Posterior predictive checks indicated that the 
overall fit of the Rasch model was adequate, though some tendency to over-predict 
examiners’ total scores suggested room for improvement with more detailed models. 
Figure 2 shows estimated proficiencies of examiners when responses are scored as 
described above, with 95% posterior intervals, plotted against the raw false-positive 
rate (left panel) and against the raw false-negative rate (right panel). Those examin-
ers who made at least one false-positive error are colored in purple in the right panel 
of Fig. 2. One of the examiners who made a false-positive error still received a rela-
tively high proficiency estimate due to having a small false-negative rate.

In the left panel of Fig. 3, we see as expected a positive correlation between pro-
ficiency estimates and observed score (% correct); variation in proficiency at each 
observed score is due to the fact that different examiners saw subsets of items of 
differing difficulty. The highlighted examiners in the left panel in Fig. 3 all had raw 
percent-correct (observed scores) between 94 and 96%, and are re-plotted in the 
right panel showing average question difficulty, and percent of items with conclusive 
responses, illustrating substantial variation in both Rasch proficiency and relative 
frequency of conclusive responses, for these examiners with similar, high observed 
scores.
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Fig. 2  Estimated IRT proficiency by observed false-positive rate (left panel) and false-negative rate (right 
panel). Examiners who made at least one false-positive error, i.e. the nonzero cases in the left-hand plot, 
are colored in purple on the right-hand plot
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Luby (2019b) explores other scoring schemes as well as partial credit models 
for these data. Treating the inconclusives as MCAR leads to both a small range of 
observed scores and a relatively large range of estimated proficiencies; harsher scor-
ing methods, such as treating inconclusives as incorrect, generally also lead to a 
higher distribution of estimated proficiencies, since more items are estimated to be 
difficult. For example, it is easy to construct examples in which a higher number-
correct score on five easy Rasch items produces a lower proficiency estimate than a 
lower number-correct score on five harder items.

Results from an IRT analysis are largely consistent with conclusions from an 
error rate analysis (Luby 2019b). However, IRT provides substantially more infor-
mation than a more traditional analysis, specifically through accounting for the dif-
ficulty of items seen. Additionally, IRT implicitly accounts for the inconclusive rates 
of different examiners in its estimates of uncertainty for both examiner proficiency 
and item difficulty.

3.2  Covarying responses: self‑reported difficulty

As shown in Table 2, the FBI Black Box study also asked examiners to report the 
difficulty of each item they evaluated on a five-point scale. These reported difficul-
ties are not the purpose of the test, but are secondary responses for each item col-
lected at the same time as the responses and can, therefore, be thought of as ‘col-
lateral information’.

When the additional variables are covariates describing either the items or the 
examiners—for instance, image quality, number of minutiae, examiner’s experience, 
type of training—it would be natural to incorporate them as predictors for profi-
ciency or difficulty in the IRT model (de Boeck and Wilson 2004). However, since 
reported difficulty is, in effect, a secondary response in the Black Box study, we take 
an approach analogous to response time modeling in IRT: in our case, we have a 
scored task response, and a difficulty rating rather than a response time, for each per-
son × item pair. Thissen (1983) provides an early example of this type of modeling, 
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where the logarithm of response time is modeled as a linear function of the log-odds 
�i − bj of a correct response, and additional latent variables for both items and par-
ticipants. Ferrando and Lorenzo-Seva (2007) and van der Linden (2006) each pro-
pose various other models for modeling response time jointly with the traditional 
correct/incorrect IRT response. Modeling collateral information alongside responses 
in this way has been shown generally to improve estimates of IRT parameters 
through the sharing of information (van der Linden et al. 2010).

3.2.1  Model

Recall from Sect.  2.3 (Table  2) that examiners rate the difficulty of each item on 
a five-point scale: ‘A-Obvious’, ‘B-Easy’, ‘C-Medium’, ‘D-Difficult’, ‘E-Very Dif-
ficult’. Let Yij be the scored response of participant i to item j, and let Xij be the dif-
ficulty reported by participant i to item j. Yij thus takes the values 0 (incorrect) or 1 
(correct), and Xij is an ordered categorical variable with five levels (A-Obvious to 
E-Very Difficult). Following Thissen (1983), we combine a Rasch model,

with a cumulative-logits ordered logistic model for the reported difficulties

where

The additional variables hi and fj in Eq. (3) allow for the possibilities that examiners 
over-report ( hi > 0 ) or under-report ( hi < 0 ) item difficulty, and that item difficulty 
tends to be over-reported ( fj > 0 ) or under-reported ( fj < 0 ), relative to the Rasch 
logit (�i − �j) and the reporting tendencies of other examiners. These parameters will 
be discussed further in Sect. 3.2.2.

We assume that each participant’s responses are independent of other par-
ticipants’ responses, Yi⋅ ⟂ Yi′⋅ ; that within-participant responses and reports are 
conditionally independent of one another given the latent trait(s), Yij ⟂ Yij′ |�i and 
Xij ⟂ Xij′ |�i, hi ; and that responses are conditionally independent of reported diffi-
culty given all latent variables, Xij ⟂ Yij|�i, bj, g, hi, fj . Then the likelihood is

and

(2)logit (P(Yij = 1)) = �i − bj

(3)X∗

ij
= logit −1(g × (�i − bj) + hi + fj),

(4)Xij =

⎧⎪⎪⎨⎪⎪⎩

A-Obvious X∗
ij
≤ 𝛾1

B-Easy 𝛾1 < X∗
ij
≤ 𝛾2

C-Medium 𝛾2 < X∗
ij
≤ 𝛾3

D-Difficult 𝛾3 < X∗
ij
≤ 𝛾4

E-Very Difficult X∗
ij
> 𝛾4.

(5)L(Y ,X|�, b, g, hi, fj) =
∏
i

∏
j

P(Yij = 1)Yij (1 − P(Yij = 1))1−YijP(Xij = xij)
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where �0 = −∞ and �5 = ∞.
We chose a cumulative-logits approach because it is directly implemented in 

Stan and, therefore, runs slightly faster than adjacent-category logits and other 
approaches. We have no reason to believe this choice has a practical effect on mod-
eling outcomes, but if desired other formulations could certainly be used. Luby 
(2019a) compares the predictive performance and prediction error of the above 
model with fits of other models for Xij and finds the above model to best fit the Black 
Box data.

3.2.2  Results

For each examiner in the dataset, their observed score, 1
ni

∑
j∈Ji

yij , and their pre-
dicted score under the model, 1

ni

∑
j∈Ji

ŷij , were calculated. Similarly, predicted and 
observed average reported difficulty were calculated, where the observed average 
reported difficulty is 1

ni

∑
j∈Ji

xij and the predicted average reported difficulty is 
1

ni

∑
j∈Ji

x̂ij . If the model is performing well, the predicted scores should be very sim-
ilar to the observed scores.

Figure 4 shows the predicted scores compared to the observed scores (left panel), 
and the predicted average difficulty compared to the observed average reported diffi-
culty (right panel). Reported difficulties for inconclusive responses were also treated 
as MCAR under this scoring scheme. While the joint model tends to over-predict 
percent correct, it predicts average reported difficulty quite well.

(6)
P(Xij = c) =P

(
logit −1(g ⋅ (�i − bj) + hi + fj) ≤ �c

)

− P
(
logit −1(g ⋅ (�i − bj) + hi + fj) ≤ �c−1

)
,
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Fig. 4  Posterior predictive performance of % correct (left) and average predicted difficulty (right) for the 
joint model. The model slightly over-predicts % correct, but performs quite well for average reported dif-
ficulty
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Figure 5 (left panel) plots the proficiency estimates from the joint model against 
the Rasch proficiency estimates (i.e. the model for correctness from Sect. 3.1 with-
out modeling reported difficulty). The proficiency estimates from the joint model 
do not differ substantially from the Rasch proficiency estimates, although there is 
a slight shrinkage towards zero of the joint model proficiency estimates. Figure 5 
(right panel) plots the item difficulty estimates from the joint model against the item 
difficulty estimates from the Rasch model. Like proficiency estimates, the difficul-
ties under the joint model do not differ substantially from the Rasch difficulties. This 
is due to the inclusion of the hi and fj parameters for the reported difficulty part 
of the model, which sufficiently explains the variation in reported difficulty without 
impacting the IRT parameters.

Recall that the joint model predicts reported difficulty as g × (�i − bj) + hi + fj . 
In addition to proficiency and difficulty, “reporting bias” parameters for examiners 

Fig. 5  Proficiency (left) and difficulty (right) estimates under the joint model (with 95% posterior inter-
vals) are very similar to Rasch proficiency point estimates from the previous section
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Fig. 6  Person reporting bias ( hi , left) and item reporting bias ( fj , right) with 95% posterior intervals from 
the joint model compared to proficiency estimate ( �i ) and difficulty estimate ( bj ), respectively. Points 
with intervals that overlap with zero are colored in gray. There is substantial variation in hi not explained 
by �i . Items with estimated difficulties near zero are most likely to have over-reported difficulty
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( hi ) and items ( fj ) are also included. Positive hi and fj thus increase the expected 
reported difficulty while negative hi and fj decrease the expected reported difficulty.

Thus, hi can be interpreted as examiner i’s tendency to over or under-report dif-
ficulty, after accounting for the other parameters. The left panel of Fig. 6 shows the 
hi estimates and 95% posterior intervals compared to the proficiency (point) esti-
mates. Since there are many examiners whose 95% posterior intervals do not overlap 
with zero, Fig. 6 provides evidence that there exist differences among examiners in 
the way they report difficulty. This reporting bias does not appear to have any rela-
tionship with the model-based proficiency estimates. That is, examiners who report 
items to be more difficult (positive hi ) do not perform worse than examiners who 
report items to be easier (negative hi).

Similarly, fj can be interpreted as item j’s tendency to be over or under-reported, 
after accounting for other parameters. The right panel of Fig. 6 shows the fj esti-
mates and 95% posterior intervals compared to the point estimates for difficulty ( bj ). 
There are a substantial number of items whose posterior intervals do not overlap 
with zero; these are items that are consistently reported as more or less difficult than 
the number of incorrect responses for that item suggests. Additionally, there is a 
mild arc-shaped relationship between fj and bj : items with estimated difficulties near 
zero are most likely to have over-reported difficulty, and items with very negative or 
very positive estimated difficulties (corresponding to items that examiners did very 
poorly or very well on, respectively) tend to have under-reported difficulty.

Reported difficulty may provide additional information about the items beyond 
standard IRT estimates. For example, consider two items with identical response 
patterns (i.e. the same examiners answered each question correctly and incorrectly) 
but one item was reported to be more difficult than the other by all examiners. It is 
plausible that at least some examiners struggled with that item, but eventually came 
to the correct conclusion. Standard IRT will not detect the additional effort required 
for that item, compared to the less effortful item with the same response pattern.

3.3  Sequential responses

Although the purpose of the Black Box study was to estimate false-positive and 
false-negative error rates, the recorded data also contains additional information 
about examiners’ decision-making process. Recall from Sect. 2.3 that each recorded 
response to an item consists of three decisions: 

1. Value assessment for the latent print only (No Value, Value for Exclusion Only, 
or Value for Individualization).

2. Source evaluation of the latent/reference print pair (i.e. Individualization [match], 
Exclusion [non-match], or Inconclusive).

3. (If Inconclusive) Reason for inconclusive.

For our analysis, we do not distinguish between ‘value for individualization’ 
and ‘value for exclusion only’, and instead treat the value assessment as a binary 
response (‘Has value’ vs ‘No value’). As Haber and Haber (2014) note, only 17% 
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of examiners reported that they used ‘value for exclusion only’ in their normal case-
work on a post-experiment questionnaire, and examiners in the Black Box study may 
have interpreted this decision in different ways. For example, there were 32 examin-
ers (of 169) who reported that a latent print had ‘value for exclusion only’ and then 
proceeded to make an individualization for the second decision. These discrepancies 
led us to treat the value evaluation as a binary response—either ‘has value’ or ‘no 
value’.

The Item Response Trees (IRTrees, De Boeck and Partchev 2012) framework 
provides a solution for modeling the sequential decisions above explicitly. IRTrees 
represent responses with decision trees where branch splits represent hypothesized 
internal decisions, conditional on the previous decisions in the tree structure, and 
leaves are observed outcomes. Sequential decisions can be represented explicitly in 
the IRTree framework, and node splits need not represent scored decisions.

Fingerprint examiners have been found to vary in their tendencies to make ‘no-
value’ and ‘inconclusive’ decisions (Ulery et al. 2011). Figure 7 shows the distribu-
tion of the number of inconclusive and no value decisions reported by each exam-
iner. Although most examiners report 20–40 inconclusives and 15–35 ‘no value’ 
responses, some examiners report as much as 60 or as few as 5. By modeling these 
responses explicitly within the IRTree framework, individual differences in profi-
ciency among examiners be assessed alongside differences in tendency towards 
value assessments (vs no-value assessments) and inconclusive responses (vs conclu-
sive responses).

3.3.1  Model

Figure 8 depicts an IRTree based on one possible internal decision process, motivated 
by the ACE-V decision process (Taylor et al. 2012). Each internal node Y∗

1
,… , Y∗

5
 rep-

resents a possible binary (0/1) decision that each examiner could makes on each item; 
these decisions will be modeled with IRT models. The first node, Y∗

1
 , represents the 

examiner’s assessment of whether the latent print is “of value” or “no value”. The sec-
ond node, Y∗

2
 , represents whether the examiner found sufficient information in the (ref-

erence, latent) print pair to make a further decision. Y∗
3
 represents whether the pair of 

prints is more likely to be a match or a non-match, and Y∗
4
 and Y∗

5
 represent whether 
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Fig. 7  Number of inconclusive (left) and no value (right) responses reported by each examiner
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this determination is conclusive (individualization and exclusion, respectively) or 
inconclusive (close and no overlap, respectively). This binary decision process tree thus 
separates examiners’ decisions into both (a) distinguishing between matches and non-
matches ( Y∗

3
 ) and (b) examiner “willingness to respond with certainty” ( Y∗

1
, Y∗

2
, Y∗

4
, Y∗

5
).

Since each internal node in the IRTree in Fig. 8 is a binary split, we use a Rasch 
model to parameterize each branch in the tree. That is,

where i indexes examiners, j indexes items, and k indexes internal nodes (sequential 
binary decisions). Thus, we account for examiner tendencies to choose one branch 
vs. the other at decision k with �ki , and features of the task that encourage choice of 
one branch vs. the other at decision k with bkj . Clearly other IRT models could be 
chosen as well; see Luby (2019a) for further discussion. The full IRTree model is

(7)P(Y∗

kij
= 1) = logit−1(�ki − bkj),

(8)P(Yij = No Value) = P(Y∗

1ij
= 1)

(9)P(Yij = Individ.) = P(Y∗

1ij
= 0) × P(Y∗

2ij
= 0) × P(Y∗

3ij
= 1) × P(Y∗

4ij
= 1)

(10)P(Yij = Close) = P(Y∗

1ij
= 0) × P(Y∗

2ij
= 0) × P(Y∗

3ij
= 1) × P(Y∗

4ij
= 0)

(11)P(Yij = Insufficient) = P(Y∗

1ij
= 0) × P(Y∗

2ij
= 1)

(12)P(Yij = No Ov.) = P(Y∗

1ij
= 0) × P(Y∗

2ij
= 0) × P(Y∗

3ij
= 0) × P(Y∗

5ij
= 0)

(13)P(Yij = Excl.) = P(Y∗

1ij
= 0) × P(Y∗

2ij
= 0) × P(Y∗

3ij
= 0) × P(Y∗

5ij
= 1).

Y ∗
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Fig. 8  The binary decision process tree
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Furthermore, an item-explanatory variable ( Xj ) for each item was included at all k 
nodes, where Xj = 1 if the latent and reference print came from the same source (i.e. 
a true match) and Xj = 0 if the latent and reference print came from different sources 
(i.e. a true non-match). Then

where bkj are the item parameters and �0k, �1k are linear regression coefficients at 
node k. This is an instance of the Linear Logistic Test Model (Fischer 1973) with 
random item effects (Janssen et al. 2004); see also de Boeck and Wilson (2004) for 
more elaborate models along these lines. This allows for the means of item parame-
ters to differ depending on whether the pair of prints is a true match or not. The ran-
dom effects �kj ∼ N(0, �2

kb
) , as specified in the second line of (15) below, allow for 

the possibility that print pairs in an identification task may have other characteristics 
that impact task difficulty (e.g. image quality, number of features present), beyond 
whether the pair of prints is a same-source or different-source pair.

We fit this model under the Bayesian framework with Stan in R (Stan Develop-
ment Team 2018a; Core Team 2013), using the following prior distributions,

Here Xj is the column vector (1,Xj)
� , � = (�1,… , �5) is the 5 × 2 matrix whose kth 

row is (�0k, �1k) , and �
b
 is a 5 × 5 diagonal matrix with �1b,… , �5b as the diagonal 

entries; �� in the previous line is defined similarly. Multivariate normal distribu-
tions for �i and bj were chosen to estimate covariance between sequential decisions 
explicitly. The Stan modeling language does not rely on conjugacy, so the Cholesky 
factorizations ( L� and Lb ) are modeled instead of the covariance matrices for com-
putational efficiency. The recommended priors (Stan Development Team 2018b) for 
L and � were used: an LKJ prior (Lewandowski et al. 2009, LKJ = last initials of 
authors) with shape parameter 4, which results in correlation matrices that mildly 
concentrate around the identity matrix (LKJ(1) results in uniformly sampled correla-
tion matrices), and half-Cauchy priors on �kb and �k� to weakly inform the correla-
tions. N(0, 5) priors were assigned to the linear regression coefficients ( �k).

There are, of course, alternative prior structures, and indeed alternate tree for-
mulations, that could reasonably model these data. For example Luby (2019a) con-
structs a novel bipolar scale, shown in Fig.  9, from the possible responses, and a 
corresponding IRTree model. This not only provides an ordering for the responses 
within each sub-decision (i.e. source decision and reason for inconclusive), but 

(14)bkj = �0k + �1kXj + �jk k = 1,… , 5,

(15)

�i

iid
∼MVN5(0,��L�L

�
�
��)

bj

iid
∼MVN5(�Xj,�b

LbL
�
b
�
b
)

L� ∼ LKJ(4)

Lb ∼ LKJ(4)

�k�
iid
∼Half-Cauchy(0, 2.5) k = 1, ..., 5

�kb
iid
∼Half-Cauchy(0, 2.5) k = 1,… , 5

�0k
iid
∼N(0, 5) k = 1,… , 5

�1k
iid
∼N(0, 5) k = 1,… , 5.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
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allows the sub-decisions to be combined in a logical way. This scale is also consist-
ent with other hypothetical models for forensic decision-making (Dror and Langen-
burg 2019). Based on the description of each option for an inconclusive response, 
the ‘Close’ inconclusives are more similar to an individualization than the other 
inconclusive reasons. The ‘No overlap’ inconclusives are more similar to exclu-
sions than the other inconclusive reasons, under the assumption that the reference 
prints are relatively complete. That is, if there are no overlapping areas between a 
latent print and a complete reference print, the two prints likely came from different 
sources. The ‘insufficient’ inconclusives are treated as the center of the constructed 
match/no-match scale. For more details, and comparisons among multiple tree struc-
tures, see Luby (2019a).

3.3.2  Results

Our discussion of results will focus on estimated parameters from the fitted 
IRTree model. For brevity, we will write �k = (�k1,… , �kN) and bk = (bk1,… , bkJ) , 
k = 1,… , 5 , in Eq. (7) and Fig. 8.

The posterior medians for each examiner and item were calculated, and the distri-
bution of examiner parameters (Fig. 10) and item parameters (Fig. 11) are displayed 
as a whole. The item parameters are generally more extreme than the person param-
eters corresponding to the same decision (e.g. �1 ranges from ≈ −6 to 6, while b1 
ranges from ≈ −10 to 20). This suggests that many of the responses are governed by 
item effects, rather than examiner tendencies.

The greatest variation in person parameters occurs in �1 (‘no value’ tendency), 
�4 (conclusive tendency in matches) and �5 (conclusive tendency in non-matches). 
Item parameters are most extreme in b1 (tendency towards has value) and b4 

Individualization

Match

Close Insufficient

Inconclusive

No Overlap

Non-match

Exclusion

Fig. 9  FBI black box responses as a bipolar scale

θ1 (No Value Tend) θ2 (Insuff Tend) θ3 (Match Tend) θ4 (Individ Tend) θ5 (Excl Tend)
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Fig. 10  Distribution of � point estimates under the binary decision process model. Greatest variation 
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tively
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(inconclusive tendency in matches). For example, b1,368 = −8.99 and indeed all 
examiners agreed that item 368 has no value; similarly b4,166 = 10.01 and all 
examiners indeed agree that no individualization determination can be made for 
item 166.

Using probabilities calculated from the IRTree model estimates provides a 
way to assess the observed decisions in each examiner × item pair in light of 
other decisions that examiner made, and how other examiners evaluated that 
item. Inconclusives that are ‘expected’ under the model can then be determined, 
along with which examiners often come to conclusions that are consistent with 
the model-based predictions. For example, an examiner whose responses often 
match the model-based predictions may be more proficient in recognizing when 
there is sufficient evidence to make a conclusive decision than an examiner whose 
responses do not match the model-based predictions.

As one example, Examiner 55 decided Item 556 was a ‘Close’ inconclusive, 
but Item 556 is a true non-match. Using posterior median estimates for �k,55 and 
bk,556 under the binary decision process model (where k = 1,… , 5 and indexes 
each split in the tree), the probability of observing each response for this obser-
vation can be calculated: P(No Value) < 0.005 , P(Individualization) < 0.005 , 
P(Close) = 0.20 , P(Insufficient) < 0.005 , P(No Overlap) = 0.01 and P(Exclusion) 
= 0.78 . According to the model, the most likely outcome for this response is an 
exclusion. Since an inconclusive was observed instead, this response might be 
flagged as being due to examiner indecision. This process suggests a method for 
determining “expected answers” for each item using an IRTree approach, which 
we further discuss in Sect. 3.4.

The estimated �0k and �1k , with 90% posterior intervals, are displayed in 
Table 3. Since the estimated �1k s all have posterior intervals that are entirely neg-
ative ( k = 1, 2, 3 ) or overlap zero ( k = 4, 5 ), we can infer that the identification 
tasks for true matches (e.g. Xj = 1 in Eq.  14) tend to have lower bjk parameters 
than the true non-matches ( Xj = 0 ), leading to matching pairs being more likely 
fall along the left branches of the tree in Fig. 8.

We also note that the IRTrees approach is compatible with the joint models 
for correctness and reported difficulty introduced in Sect. 3.2.1. By replacing the 
Rasch model for correctness with an IRTree model, Luby (2019a) demonstrates 
that reported difficulty is related to IRTree branch propensities ( �ik − bjk ), with 

b1 (Value Tend) b2 (Suff Tend) b3 (Non−Match) b4 (Close Tend) b5 (No Ov Tend)
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Fig. 11  Distribution of b point estimates under the binary decision process model. Greatest variation 
occurs in b

1
 , b

4
 , corresponding to Value and Close tendencies, respectively. Also note that b values are 

more extreme than � values
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items tending to be rated as more difficult when the IRTree branch propensities 
are near zero.

Moreover, examiners are likely to use different thresholds for reporting difficulty, 
just as they do for coming to source evaluations (AAAS 2017; Ulery et al. 2017); the 
IRTrees analysis above has been helpful in making these differing thresholds more 
explicit. In the same way, the IRTrees analysis of reported difficulty may lead to 
insights into how examiners decide how difficult an identification task is.

3.4  Generating answer keys from unscored responses

Generating evidence to construct test questions is both time-consuming and difficult. 
The methods introduced in this section provide a way to use evidence collected in 
non-controlled settings, for which ground truth is unknown, for testing purposes. 
Furthermore, examiners should receive feedback not only when they make false 
identifications or exclusions, but also if they make ‘no value’ or ‘inconclusive’ deci-
sions when most examiners are able to come to a conclusive determination (or vice 
versa). It is, therefore, important to distinguish when no value, inconclusive, indi-
vidualization, and exclusion responses are expected in a forensic analysis.

There are also existing methods for ‘IRT without an answer key’, for example the 
cultural consensus theory (CCT) approach (Batchelder and Romney 1988; Oravecz 
et al. 2014). CCT was designed for situations in which a group of respondents shares 
some knowledge or beliefs in a domain area which is unknown to the researcher or 
administrator (similar approaches have been applied to ratings of extended response 
test items, e.g. Casabianca et al. 2016). CCT then estimates the expected answers to 
the items provided to the group. We primarily focus on comparing the Latent Truth 
Rater Model (LTRM), a CCT model for ordinal categorical responses (Anders and 
Batchelder 2015), to an IRTree-based approach.

Although the individualization/exclusion scale in Fig. 9 could be used to generate 
an answer key for the source evaluations (i.e. individualization, exclusion, or incon-
clusive), it would not be possible to determine an answer key for the latent print 
value assessments (i.e. no value vs has value). Instead, a ‘conclusiveness’ scale, 
Fig. 12, can be used. This scale does not distinguish between same source and differ-
ent source prints, but does allow for the inclusion of no value responses on the scale. 
Using an answer key from this scale, alongside the same-source/different-source 

No Value

Lack of informa-

tion in latent print

Inconclusive

Increasing information present in item

Lack of information in

latent/reference print pair

Exclusion and

Individualization

Enough information

for conclusive decision

Fig. 12  FBI Black Box responses on a ‘conclusiveness’ scale
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information provided by the FBI, provides a complete picture of what the expected 
answers are: an answer key generated for items placed on the scale of Fig. 12 identi-
fies which items are expected to generate conclusive, vs. inconclusive answers; for 
the conclusive items, same-source pairs should be individualizations and different-
source pairs should be exclusions.

3.4.1  Models

We fit four models to the Black Box data: (1) the LTRM (Anders and Batchelder 
2015), (2) an adapted LTRM using a cumulative logits model (C-LTRM), (3) an 
adapted LTRM based using an adjacent logits model (A-LTRM), and (4) an IRTree 
model. The LTRM was fitted using the R package CCTpack (Anders 2017), while 
all other models were fitted using Stan (Stan Development Team 2018b, a). Each 
of the four models is detailed below, and information on prior specification may be 
found in Table 7.

3.4.2  Latent truth rater model

Let Yij = c denote examiner i’s categorical response to item j, where c = 1 is the 
response “No Value”, c = 2 is the response “Inconclusive”, and c = 3 is the response 
“Conclusive”. Key features of the LTRM in our context are Tj , the latent “answer 
key” for item j, and �c ( c = 1, 2 ), the category boundaries between ‘No Value’ vs. 
‘Inconclusive’, and for ‘Inconclusive’ vs. ‘Conclusive’, respectively. Each examiner 
draws a latent appraisal of each item ( Zij ), which is assumed to follow a normal dis-
tribution with mean Tj (the ‘true’ location of item j) and precision �ij , which depends 
on both examiner competency ( Ei ) and item difficulty ( �j ) (that is, �ij =

Ei

�j
 ). If every 

examiner uses the ‘true’ category boundaries, then if Zij ≤ �1 then Yij = ‘No Value’, 
if �1 ≤ Zij ≤ �2 then Yij = ‘Inconclusive’, and if Zij ≥ �2 then Yij =‘Conclusive’. Indi-
viduals, however, might use a biased form of the category thresholds, and so indi-
vidual category thresholds, �i,c = ai�c + bi , are defined, where ai and bi are examiner 
scale and shift biasing parameters, respectively. That is, ai shrinks or expands the 
category thresholds for examiner i, and bi shifts the category thresholds to the left or 
right. The model is thus

where F(u) is the CDF of a normal variable with mean Tj and precision �ij (Anders 
and Batchelder 2015). The likelihood of the data under the LTRM is then

(16)P(Yij = No Value) = P(Zij ≤ �i,1) = P(Tj + �ij ≤ ai�1 + bi) = F(ai�1 + bi)

(17)
P(Yij = Inconclusive) = P(𝛿i,1 < Zij ≤ 𝛿i,2) = P(ai𝛾1 + bi ≤ Tj + 𝜖ij ≤ ai𝛾2 + bi)

(18)= F(ai�2 + bi) − F(ai�1 + bi)

(19)
P(Yij = Conclusive) = P(Zij > 𝛿i,2) = P(Tj + 𝜖ij > ai𝛾2 + bi) = 1 − F(ai𝛾2 + bi),
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where �i,0 = −∞ , �i,3 = ∞ , and �i,c = ai�c + bi . In addition to the LTRM model 
(Anders and Batchelder 2015), we also consider adaptations of the LTRM to a 
logistic modeling framework, with some simplifying assumptions on the LTRM 
parameters.

3.4.3  Adapted LTRM as a Cumulative Logits Model (C‑LTRM)

The original LTRM [Eq. 20, Anders and Batchelder (2015)] is a cumulative-probits 
model, and is, therefore, more closely related to more standard IRT models than it 
might seem at first glance. Specifically, if (1) the latent appraisals ( Zij ) are modeled 
with a logistic instead of a normal distribution, (2) it is assumed that �ij =

Ei

�j
= 1 for all 

i, j, and (3) it is assumed ai = 1 for all i, then the model collapses into a more familiar 
cumulative logits IRT model,

This transformed model has the same form as the Graded Response Model, which is 
identifiable under standard conditions (Samejima 1969; Muraki 1990). Relaxing the 
assumption that ai = 1 , a cumulative logits model with a scaling effect for each per-
son on the item categories is obtained, which we call the cumulative-logits LTRM 
(C-LTRM),

The likelihood for the data under Eq. 22 is

where �0 = −∞ and �C = ∞.

3.4.4  Adapted LTRM as an adjacent category logits model (A‑LTRM)

Making the same assumptions as above, P(Yij = c) could instead be expressed using an 
adjacent-categories logit model,

which takes the same form as the Rating Scale Model (Andrich 1978). The RSM has 
nice theoretical properties due to the separability of Tj and bi in the likelihood, and 

(20)L(Y|T, a, b, �,E,�) = ∏
I

∏
J

[F(�i,yij ) − F(�i,yij−1)],

(21)log
P(Yij ≤ c)

P(Yij > c)
= bi − Tj + 𝛾c.

(22)log
P(Yij ≤ c)

P(Yij > c)
= bi − Tj + ai𝛾c.

(23)

L(Y|a, b,T, �) = ∏
I

∏
J

[
exp(bi − Tj + ai�c)

1 + exp(bi − Tj + ai�c)
−

exp(bi − Tj + ai�c−1)

1 + exp(bi − Tj + ai�c−1)

]
,

(24)log
P(Yij = c)

P(Yij = c − 1)
= bi − Tj + �c,
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is identifiable under standard conditions (Fischer 1995). Re-casting the LTRM as an 
adjacent-category model opens the possibility of more direct theoretical compari-
sons between models. Relaxing the assumption that ai = 1 , a generalized adjacent-
category logit model with a scaling effect for each person on the item categories is 
obtained, which we call the adjacent-logits LTRM (A-LTRM),

The likelihood is then

3.4.5  IRTree for answer key generation

For comparison, we also consider a simplified IRTree model for answer key genera-
tion, which does not include the reason provided for inconclusive responses (as the 
model in Sect. 3.3 did). This simplification was made for two reasons: first, this sim-
plified IRTree model allows us to make inferences on the ‘conclusiveness’ scale in 
Fig. 12, facilitating comparison with the CCT model; second, the reasons provided 
for inconclusive responses are relatively inconsistent. Indeed, in a follow-up study 
done by the FBI (Ulery et al. 2012), 72 Black Box study participants were asked to 
re-assess 25 items. 85% of no value assessments, 90% of exclusion evaluations, 68% 
of inconclusive responses, and 89% of individualization evaluations were repeated; 
while only 44% of ‘Close’, 21% of ‘Insufficient’, and 51% of ‘No Overlap’ responses 
were repeated. Inconclusive reasoning thus varies more within examiners than the 
source evaluations, and a generated answer key containing reasons for inconclusives 
may not be reliable or consistent across time.

The tree structure for the simplified IRTree model is shown in Fig. 13. The first 
internal node ( Y∗

1
 ) represents the value assessment, the second internal node ( Y∗

2
 ) 

represents the conclusive decision, and the third internal node represents the indi-
vidualization/exclusion decision. Note that Y∗

3
 is not a part of the conclusiveness 

(25)log
P(Yij = c)

P(Yij = c − 1)
= bi − Tj + ai�c.

(26)L(Y|a, b,T, �) = ∏
I

∏
J

exp(bi − Tj + ai�c)

1 + exp(bi − Tj + ai�c)
.

Fig. 13  The answer key IRtree
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scale in Fig. 12, and thus provides additional information beyond the ‘conclusive-
ness’ answer key.

3.4.6  Results

We focus on comparing the answer keys generated by each of the models. As a sim-
ple baseline answer key, we also calculate the modal response for each item using the 
observed responses. Unlike the IRTree and LTRM approaches, this baseline answer 
key does not account for different tendencies of examiners who answered each item; 
nor does it account for items being answered by different numbers of examiners. 
The LTRM, A-LTRM, and C-LTRM all estimate the answer key, a combination of 
Tj s and �c s, directly. The answer for item j is ‘No Value’ if Tj < 𝛾1 , ‘Inconclusive’ if 
𝛾1 < Tj < 𝛾2 and ‘Conclusive’ if Tj > 𝛾2 . For the IRTree model, an answer key was 
calculated based on what one would expect an ‘unbiased examiner’ to respond. The 
response of a hypothetical unbiased examiner (i.e. �ki = 0 for all k) to each question 
was predicted, using the estimated item parameters in each split.

There are thus five answer keys: (1) Modal answer key, (2) LTRM answer key, 
(3) C-LTRM answer key, (4) A-LTRM answer key, and (5) IRTree answer key. Each 
of the answer keys has three possible answers: no value, inconclusive, or conclu-
sive. Table 4 shows the number of items (out of 744) that the answer keys disagreed 
upon. The most similar answer keys were the A-LTRM and C-LTRM, which only 
disagreed on six items: three that disagreed between inconclusive/conclusive and 
three that disagreed between no value and inconclusive. The original LTRM model 
most closely matched the modal answer, with the A-LTRM model disagreeing with 
the modal answer most often.

Recall that the three possible answers were (1) ‘no value’, (2) ‘inconclusive’, or 
(3) ‘conclusive’. There were 48 items for which at least one of the models disagreed 
with the others. The vast majority of these disagreements were between ‘no value’ and 
‘inconclusive’ or ‘inconclusive’ and ‘conclusive’. Of the 48 items in which models dis-
agreed, only five items were rated to be conclusive by some models and no value by 
others. All of these five items were predicted to be ‘no value’ by the LTRM, ‘incon-
clusive’ by the A-LTRM and C-LTRM, and ‘exclusion’ by the IRTree. Table 5 shows 
the number of observed responses in each category for these five items and illuminates 
two problems with the LTRM approaches. First, the original LTRM strictly follows the 

Table 4  The number of items 
whose answers disagreed among 
the five approaches to finding an 
answer key

The C-LTRM and A-LTRM most closely matched each other, and 
the original LTRM answer key most closely matched the modal 
answer

Modal LTRM C-LTRM A-LTRM IRTree

Modal 0 – – – –
LTRM 12 0 – – –
C-LTRM 48 39 0 – –
A-LTRM 52 43 6 0 –
IRTree 32 24 28 34 0
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modal response, even when a substantial number of examiners came to a different con-
clusion. In Question 665, for example, eight examiners were able to make a correct 
exclusion, while the LTRM still chose ‘no value’ as the correct response. Second, the 
A-LTRM and C-LTRM models may rely too much on the ordering of outcomes. Both 
adapted LTRM models predicted these items to be inconclusives, yet most examiners 
who saw the items rated it as either a ‘no value’ or ‘exclusion’.

Using a model-based framework to generate expected answers provides more robust 
answer keys than relying on the observed responses alone. Both IRTrees and a CCT-
based approach allow for the estimation of person and item effects alongside an answer 
key. Furthermore, although the two approaches are formulated quite differently, they 
lead to similar generated answer keys in the Black Box data. This similarity is due to 
the fact that the conditional sufficient statistics for the item location parameters in the 
two models both rely on the marginal category totals for each item. In fact, the con-
ditional sufficient statistic for the item parameter in the A-LTRM is a function of the 
conditional sufficient statistics for the item parameters in the IRTree model (see Luby 
2019a, for further details).

For this setting, we prefer using the IRTree framework to analyze responses because 
it does not require the responses to be ordered and because each decision may be mod-
eled explicitly. In addition, model fit comparisons using the Widely Applicable AIC 
index (WAIC, Vehtari et  al. 2017; Watanabe 2010), as well as in-sample prediction 
error, prefer the IRTree model for these data; see Table 6.

Table 5  The number of 
observed responses in each 
category for the five items with 
a disagreement between no 
value and conclusive

Item ID No Value Inconclusive Exclusion

427 13 3 13
438 12 3 7
443 7 1 6
665 9 4 8
668 14 1 11

Table 6  WAIC and in-sample 
prediction error for each of the 
four models

Model WAIC SE In-Sample 
Prediction 
Error

LTRM 40416 748 0.19
C-LTRM 13976 175 0.14
A-LTRM 14053 178 0.15
IRTree 12484 166 0.12
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4  Discussion and future work

In this survey of recent advances in the psychometric analysis of forensic exam-
iner decision-making process data, we have applied a wide variety of models, 
including the Rasch model, Item Response Trees, and Cultural Consensus Mod-
els, to identification tasks in the FBI Black Box study of error rates in fingerprint 
examination. Careful analysis of forensic decision-making processes unearths 
a series of sequential responses that to date have often been ignored, while the 
final decision is simply scored as either correct or incorrect. Standard IRT mod-
els applied to scored data, such as the Rasch model of Sect.  3.1, provide sub-
stantial improvements over current examiner error rate studies: examiner profi-
ciencies can be justifiably compared even if the examiners did not do the same 
identification tasks, and the influence of the varying difficulty of identification 
tasks can be seen in examiner proficiency estimates. Additional modeling tech-
niques are needed to account for the co-varying responses present in the form of 
reported difficulty (Sect.  3.2), the sequential nature of examiner decision-mak-
ing (Sect. 3.3), and the lack of an answer key for scoring ‘no value’ and ‘incon-
clusive’ responses (Sect. 3.4). See Luby (2019a) for further developments of all 
methods presented here.

In our analyses, we found a number of interesting results with important impli-
cations for subjective forensic science domains. Taken together, the results pre-
sented here demonstrate the rich possibilities in accurately modeling the complex 
decision-making in fingerprint identification tasks.

For instance, results from Sect.  3.2.2 show that there are differences among 
fingerprint examiners in how they report the difficulty of identification tasks, 
and that this behavior is not directly related to examiners’ estimated proficiency. 
Instead, examiners tended to over-rate task difficulty when the task was of mid-
dling difficulty, and under-rate the difficulty of tasks that were either extremely 
easy or extremely hard. A similar effect also holds for the intermediate decisions 
in an IRTree analysis (Luby 2019a).

Furthermore, we have shown that there is substantial variability among exam-
iners in their tendency to make no value and inconclusive decisions, even after 
accounting for the variation in items they were shown (Sect.  3.3.2). The varia-
tion in these tendencies could lead to additional false identifications (in the case 
of “no value” evidence being further analyzed), or to guilty perpetrators going 
free (in the case of “valuable” evidence not being further analyzed). To minimize 
the variation in examiner decisions, examiners should receive feedback not only 
when they make false identifications or exclusions, but also when they make mis-
taken ‘no value’ or ‘inconclusive’ decisions. Finally, in Sect. 3.4, we show how to 
use the data to infer which ’no value’ or ’inconclusive’ responses are likely to be 
mistaken.
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Our analyses were somewhat limited by available data; the Black Box study 
was designed to measure examiner performance without ascertaining how those 
decisions were made. Privacy and confidentiality considerations on behalf of 
the persons providing fingerprints for the study make it impossible for the FBI 
to share the latent and reference prints for each identification task; if they were 
available we expect meaningful item covariates could be generated, perhaps 
through image analysis. Similar considerations on behalf of examiners preclude 
the possibility of demographic or background variables (e.g. nature of training, 
number of years in service, etc.) linked to individual examiners; auxiliary infor-
mation such as examiners’ annotations of selected features, or their clarity and 
correspondence determinations, is also not available. Each of these, if available, 
might help elucidate individual differences in examiner behavior and proficiency.

We anticipate future collaboration with experts in human decision making to 
improve the models and with fingerprint domain experts to determine the type and 
amount of data that would be needed to make precise and accurate assessments of 
examiner proficiency and task difficulty. Finally, we expect a future line of work will be 
to consider what would be needed to connect error rates, statistical measures of uncer-
tainty, and examiner behavior collected from standardized/idealized testing situations 
such as those discussed in this paper, with task performance by examiners in authentic 
forensic investigations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen 
ses/by/4.0/.

Appendix: LTRM prior distribution specifications

The IRTree model was fit using the same priors as the efficient implementation dis-
cussed in Sect. 3.3. The prior distributions for the LTRM, A-LTRM, and C-LTRM 
are given below (see Table 7).
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