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Abstract

Although researchers have found evidence contextual bias in forensic science, the discussion
of contextual bias is currently qualitative. We formalize years of empirical research and extend
this research by showing quantitatively how biases can be propagated throughout the legal
system, all the way up to the final determination of guilt in a criminal trial. We provide a
probabilistic framework for describing how information is updated in a forensic analysis setting
by using the ratio form of Bayes’ rule. We analyze results from empirical studies using our
framework and use simulations to demonstrate how bias can be compounded where experiments
do not exist. We find that even minor biases in the earlier stages of forensic analysis lead to
large, compounded biases in the final determination of guilt in a criminal trial.

Key words: Contextual bias, forensic science, Bayes’ rule, decision-making, formalization.

1 Introduction

Contextual bias occurs in forensic science when well-intentioned forensic analysts are vulnerable to
making errors when exposed to external information (Thompson et al., 2013). There is evidence of
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this type of bias in a broad variety of forensic disciplines, including fingerprints (Dror et al., 2006),
bite marks (Osborne et al., 2014), and even the gold-standard of forensic disciplines, DNA (Dror
and Hampikian, 2011). US government-led reports have also stated that analysts’ judgments can
be influenced by irrelevant information about the facts of a case (NRC, 2009), and they urged that
efforts be made to mitigate this bias by ensuring “that examiners are not exposed to potentially
biasing information” (PCAST, 2016).

Contextual bias has been demonstrated even in very high profile cases. After the 2004 Madrid
bombing, American attorney Brandon Mayfield was wrongfully accused of being involved in the
attack after the FBI mistakenly concluded that Mayfield was the source of a fingerprint found at
the crime scene. The FBI reviewed what could have led to this mistake and found that the factors
to blame included over-reliance on the algorithm’s proposed candidates, other analysts’ opinions,
the fact that it was a high-profile case, and Mayfield’s religion, among others (US Department of
Justice, Office of the Inspector General, 2006). In an experiment designed to measure contextual
bias in fingerprint comparisons, analysts altered their conclusions after learning about contextual
information related to the Mayfield case in four out of five cases (Dror et al., 2006).

It is unclear what is meant by this "bias" that led to the Mayfield error, and a lack of formal-
ization can lead to disagreement about the definition of contextual bias and how to mitigate it.
What do the biasing factors from the Mayfield case have in common? Which information is biasing,
and should this information have been excluded in the material given to analysts? Do interactions
between analysts lead to bias? How does the bias affect the final decision of guilt by a judge or
jury? These are the types of questions that formalizing the forensic reasoning can help answer.

Our contribution is to clarify the problem of contextual bias by turning the current qualitative
discussion of bias into a rigorously defined and quantitative discussion. We provide a formal frame-
work for how information is updated in cases of cognitive bias by using the ratio form of Bayes’
rule. Bayes’ rule is a useful tool for this because it mirrors the adversarial system of the courts, and
for this reason it has been used elsewhere in forensics to motivate the use of likelihood ratio-based
reporting (Aitken, 2018; Ommen and Saunders, 2018). We hope this formalization can serve as a
tool for transparency, and is useful for both laboratories seeking to minimize bias in their analyses
and to researchers developing algorithms to augment forensic decision-making tasks.

We also show how systemic bias in the courts is possible in the decision of rational, well-
intentioned actors. Even if actors in the system did not discriminate with respect to race, ethnicity,
income, sexual orientation, gender, or other protected characteristics themselves, they might still
reach a biased conclusion. Thus, even without any biased forensic analysts, judges, or juries, there
can still be bias in the final determination of guilt.

Section 2 presents the formal setup and notation, the definitions of the tasks undertaken at
three different levels: the analyst, the laboratory, and the trier of fact. Section 3 describes biases in
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the analyst’s conclusions due to several factors, including data, reference materials, and contextual
information. Section 4 shows that bias can be propagated throughout the laboratory where the rest
of the evidence is analyzed by analysts, including as a bias cascade or snowball. Section 5 describes
how the trier of fact hears the analysts’ conclusions to make a final decision about guilt.

2 Formal Setup

2.a Notation

In this section, we describe a hypothetical workflow of fingerprint analysis to develop a formal model
of reasoning in forensic analysis. We use previously defined notation (Lund and Iyer, 2016; Lindley,
1977). Our approach is a generalization of forensic practice, since each forensic discipline and each
laboratory have a specific workflow for analyzing evidence. We use fingerprint comparisons as a
running example to describe our model, and this could then be applied to other forensic disciplines.

Suppose a latent print y was left at a crime scene and a forensic team lifts this print. Police
then identify a suspect and collect a fingerprint x from that individual. In reality, police collect the
ten prints from a suspect (or a set of suspects is found through a database search), and the analyst
selects which print, if any, is most like the latent print. For this article, we assume that only one
print is being compared. The latent print y from the crime scene may have some sections that are
blurry or distorted and some that are missing, while the exemplar print x from the suspect is clean
and complete, since if an exemplar print is defective, it may be taken again. The data contained
in y are a sample from a random variable Y with the underlying distribution Fy, a relationship
denoted by Y ∼ Fy. As usual, capital letters denote random variables and lower-case letters denote
observations of those random variables. Similarly, X ∼ Fx.

At the forensic laboratory, the analyst is asked to analyze the fingerprints. Suppose I denotes
all the information available to the analyst, in addition to being shown y and x. This set I could
include, for example, the fact that the supervisor mentioned that they believe the suspect committed
the crime, information about the suspect’s gender, age, or race, or the suspect’s criminal history. It
could also include information about the evidence itself, such as that the print was collected from
a glass surface, or that the print was made up of a tacky material.

Let S = {S0, S1, . . . , SN} denote the set of all the potential sources (individuals denoted by
0, . . . , N) of the crime scene, latent print. Since the source of y is unknown it is denoted by Sq,
where q is the questioned individual. The suspect is source S0 of fingerprint x. Thus, the analyst’s
task is to determine whether x and y have a common source, S0, an event denoted by E0,

E0 : S0 is the source of both x and y (i.e. q = 0), (1)
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or whether they have a different source. That is, some Sj , j ∈ {1, . . . , N} is the source of y while
S0 is the source of x, an event denoted by the complement of E0,

Ec
0 : S1 or S2 or . . . or SN is the source of y (i.e. q ∈ {1, 2, . . . , N}). (2)

2.b The analyst’s task

The analyst is responsible for determining whether two pieces of evidence were produced by the
same source. In fingerprint analysis, this is usually reported in terms of categories: an identification
(i.e. a conclusion in favor of E0), an exclusion (a conclusion in favor of Ec0), or an inconclusive (a
conclusion that favors neither E0 or Ec0).

We formalize this task by using probabilities and the ratio form of Bayes’ rule, as others have
done before (Lund and Iyer, 2016; Lindley, 1977; Aitken, 2018). The analyst’s task is comparing the
probability that x and y have a common source given x, y, and the information I, i.e., P (E0|x, y, I),
to the probability that x and y have a different source, given the same information, P (Ec

0|x, y, I).

After being given the evidence and other case information, the analyst would like to update his
belief concerning the event E0 in a rational and coherent manner. Denoting the analyst by A, this
task can be written by using the odds form of Bayes’ rule:

P (E0)

P (Ec
0)︸ ︷︷ ︸

Prior oddsA

× P (x, y, I|E0)

P (x, y, I|Ec
0)︸ ︷︷ ︸

Likelihood ratioA

=
P (E0|x, y, I)

P (Ec
0|x, y, I)︸ ︷︷ ︸

Posterior oddsA

. (3)

The prior odds is the analyst’s beliefs about E0 prior to seeing the evidence, the likelihood ratio is
the quantity at which the analyst arrives through the analysis of the evidence, and the posterior
odds is the final quantity at which the analyst will arrive after rationally incorporating all available
information.

Ideally, the analyst should hold prior odds that are in some sense “neutral,” so that their decision
will be made entirely based on the evidence contained in the data. In our setting, we assume that
the analyst believes there is a set of N suspects, and starts with the belief that each has an equal
chance of being the source of the latent print. In that case, the prior odds are given by 1/N .

The analyst updates their prior with new information via the likelihood ratio. Likelihood ratios
that are greater than one indicate that the observations x and y are more likely when S0 is the
source of both x and y (i.e. the event E0), and small likelihood ratios (between zero and one) arise
when x and y are more likely when S0 is not the source of the crime scene evidence (i.e. the event
Ec0). We follow Lund and Iyer (2016) in assuming that the denominators of these three are never
zero, which implies that the analyst never takes a “hardline” or extreme stance.
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The likelihood ratio has a long history in forensic science, dating to at least Lindley (1977),
who used it to evaluate whether two glass fragments came from the same source. It is now common
practice for forensic analysts to report a likelihood ratio for single-source DNA (Council et al., 1996;
Stockmarr, 1999; Steele and Balding, 2014), rather than simply stating that the questioned sample
came from a specific source. Although there has been a push for fingerprint analysts to state their
conclusions as likelihood ratios in the United States (Abraham et al., 2013), source conclusions
for fingerprint evidence are most often reported as categorical conclusions: “identification” (same-
source), “exclusion” (different sources), or “inconclusive”. Reporting the value of evidence using the
likelihood ratio has gained traction in Europe and internationally (Willis et al., 2015). See Aitken
(2018) for a more detailed overview of the use of the likelihood ratio to evaluate evidence. Through
the remainder of this article, we will use the likelihood ratio to quantify the value of evidence, but
recognize that it is not the only way that the value of evidence is expressed (Kaye, 2015). We
also note that our results are not dependent on how the likelihood ratio is calculated (e.g., using a
Bayesian or classical approach to statistics) and generalizes to different settings.

In order to carry out a fair analysis for all suspects, forensic analysts should start with the belief
that each of the N suspects has the same probability of having produced the crime scene print. In
other words, the analyst should use the principle of indifference to determine the probability that
each of the N suspects left the print at the crime scene. Thus forensic analysts should have a prior
odds of

P (E0|I)

P (Ec
0|I)

=
1/N

N − 1/N
=

1

N − 1
, (4)

or equivalently (if we just say there are N+1 suspects without changing the meaning of the equation),

P (E0|I)

P (Ec
0|I)

=
1/(N + 1)

N/(N + 1)
=

1

N
. (5)

However, it is possible that the analyst has incorrect prior beliefs either because his prior odds
are not 1/N , or because the analyst is confusing the version of the prior odds before conditioning on
I,—P (E0)/P (Ec

0)—with the version in which the terms are conditioned by I,—P (E0|I)/P (Ec
0|I).

It is possible that
P (E0)

P (Ec
0)

= 1/N, but
P (E0|I)

P (Ec
0|I)

6= 1/N. (6)

Thus, as soon as the analyst learns I, his prior odds change from the fair N to something else.

We know that the analyst can be biased by information about his base rate (i.e. his observed
distribution of identifications, exclusions, and inconclusives), education and training, personal fac-
tors, and cognitive factors (Dror, 2020). As the analyst gains experience in casework, if he does
not receive ground-truth feedback about whether he arrived the correct conclusion, he will acquire
long-run bias in his prior distribution (Dror, 2020). We might instead assume the analyst uses their
previous experience as a prior, taking the share of prints determined to have come from the same
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source that they’ve been shown as their prior odds. So if, for example, out of all of the prints they’ve
seen so far in their careers they have concluded the prints came from the same source 20% of the
time, their prior will be 0.2. Finally, the analyst might have some beliefs in the ability of the police
(or other customer) to deliver the correct suspect to them, and may take their prior odds to be
their estimation of the abilities of the police. They might imagine, for example, a set of N possible
perpetrators, but think the suspect identified by the police is more likely than the others to be the
true source of the crime scene prints. In our analysis, we will assume the prior odds of 1/N , as the
most neutral of these options.

We take a different approach to describing the quantity of interest than other researchers (Lund
and Iyer, 2016) since we propose that the analyst should arrive at a posterior odds, not just a
likelihood ratio. While we agree that the analyst should calculate a likelihood ratio, we also think
that since they are rational actors, they arrive at specific posterior conclusions after learning this
likelihood ratio, represented by the posterior odds. These odds can then be presented to the trier
of fact for them to make a decision about guilt.

If the posterior odds is greater than one, the evidence suggests that x and y have the same
source; if it is between zero and one, the evidence suggests that someone else is the source of y.
If the posterior odds is near one, neither conclusion is favored by the evidence. What should and
should not be included in the information I?

2.c Task-relevant and task-irrelevant information for the analyst’s task

Should the analyst be told every piece of information that is known to the police, and to other
analysts, about the case? Task-relevant and task-irrelevant information are two types of information
that distinguish between what should be known by the analyst and what should not (National
Commission on Forensic Science, 2015). It is useful to define these two types of information by
using conditional independence statements (Kaye, 2015).

Information is task-relevant if and only if (x, y) 6⊥⊥ I | E0, which is equivalent to

P (x, y | E0) 6= P (x, y | I, E0). (7)

Information is task-irrelevant if and only if (x, y) ⊥⊥ I | E0, which is equivalent to

P (x, y | E0) = P (x, y | I, E0). (8)

In each case E0 can be replaced with Ec
0 and the definitions still hold.

Intuitively, information is task-relevant if it has the potential to assist the analyst in evaluating
the probability of observing the two pieces of evidence if they really are from the same source. It is
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task-irrelevant if it does not help the analyst in their task if they are from the same source.

E
0 I

X Y

Task-relevant information

E
0 I

X Y

E
0 I

X Y

Task-irrelevant information

E
0 I

X Y

Figure 1: Directed acyclic graphs (DAGs) showing of task-relevant and task-irrelevant information.
The edges represent causal influence. The dashed line indicates that the edge can be present or
absent and the definition still holds.

A more precise way to understand the difference between task-relevant and task-irrelevant in-
formation is by using a directed acyclic graph. Fig. 1 shows a graphical representation of examples
of task-relevant and task-irrelevant information. Intuitively, if I is task-irrelevant, then if the pair
of prints (x, y) was truly left by the same individual, knowing I does not change the likelihood of
observing the evidence. If it is task-relevant, knowing I does affect it.

Task-relevant information often affects the physical appearance of the evidence. For example, if
an individual’s fingerprint was found on a curved surface, it will appear wider than a print left by
the same individual on a flat surface. In Fig. 1, this can be shown by using the left-most DAG. I
is the fact that the print X = x was left on a curved surface while Y = y was not. I thus affects
both how x looks and whether the prints were left by the same individual.

On the other hand, task-irrelevant information is often unrelated to the physical appearance of
the evidence. For example, a suspect’s criminal history is most likely task-irrelevant to a forensic
comparison task. In Fig. 1, this can be shown by using the right-most DAG. The reason is that the
likelihood two fingerprints (x, y) are similar does not depend on the suspect’s criminal history (I)
except through the fact that someone with a criminal history is more likely to leave a print at the
scene (E0). So, it’s irrelevant to the task of the analyst.

2.d The trier of fact’s task

It is not the role of the forensic analyst to determine the ultimate guilt of the suspect, but the role
of the “trier of fact” (TF) – a decision-maker who makes a final determination of guilt, such as a
judge or jury. In legal trials, the trier of fact is a person (e.g. judge), or group of people (e.g. jury),
who determines factual issues in a legal proceeding, meaning that they decide, from the evidence,
whether something existed or some event occurred. In reality, the types of decisions vary depending
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on the case and jurisdiction. For simplicity in our exposition, we define the trier of fact as the entity
responsible for deciding whether an individual is guilty or not guilty of a crime.

We can decompose the posterior odds held by the trier of fact. We define the evidence seen by
the trier of fact as M = {M1, · · · ,Mm, I} where each Mj is the evidence reported by an analyst,
police, or others in the courtroom. So for example, if M is all the evidence in a murder case, M1

may be a statement of “identification” from the fingerprint analyst, M2 may be a statement from
the firearms analyst, and so on. Note that all the Mj ’s are functions of the posterior odds ratio
estimated by each analyst. In addition, the trier of fact must decide whether the defendant(s) are
either guilty (G) or not guilty (Gc). The trier of fact version of Bayes’ rule in ratio form is therefore

P (G)

P (Gc)︸ ︷︷ ︸
Prior oddsTF

× P (M | G)

P (M | Gc)︸ ︷︷ ︸
Likelihood ratioTF

=
P (G |M)

P (Gc |M)︸ ︷︷ ︸
Posterior oddsTF

. (9)

Thus, if the posterior odds of the trier of fact are high, then the verdict will be guilty. The exact
value that this ratio requires to represent a guilty verdict is left up to the trier of fact to decide. It
is possible for a trier of fact to introduce new biases, e.g. jury selection. However, for this article,
we assume the trier of fact does not introduce new biases and we focus on the biases introduced by
the forensic analyses.

3 Biases at the analyst level

In this section, we study how biases arise at the analyst level. We present a formalization of
contextual bias, two examples (a hypothetical one and an empirical one), and then a formalization
of what psychologists have called reference bias (we call it imputation bias) and how long-term
effects of bias affect an analyst’s prior.

3.a Contextual bias formalization

If we assume a neutral prior, bias will enter into the determination by the analyst through the
likelihood. Note that this likelihood can be broken apart into two parts,

P (x, y, I|E0)

P (x, y, I|Ec
0)︸ ︷︷ ︸

Likelihood ratio

=
P (x, y|I, E0)

P (x, y|I, Ec
0)︸ ︷︷ ︸

Part 1

× P (I | E0)

P (I | Ec
0)︸ ︷︷ ︸

Part 2

(10)

Part 1 denotes the part of the likelihood that includes a comparison of how likely it is to observe
the pieces of evidence given the additional information and the fact that they are same-source or

8



different-source. Part 2 captures how the analyst acquires contextual bias. It denotes the belief the
analyst has about the chances of seeing information I depending on whether or not x and y have a
common source. We assume in this case that at least part of I is task-irrelevant.

Let us denote by α the share of suspects with characteristic I = 1 among all those suspects
who truly left a print at the scene over a long series of investigations. α is thus a true long-run
approximation of P (I = 1 | E0). Let us denote by β the share of suspects with characteristic
I among those included in the suspect set who did not leave the print, a true approximation of
P (I = 1 | Ec

0). We then have that part 2 is,

P (I = 1 | E0)

P (I = 1 | Ec
0)

=
α

β
. (11)

In other words, α is the prevalence of trait I within criminals and β is the prevalence of that trait
within non-criminals.

The analyst now updates his estimate of P (I | E0) according to past experience, external
attitudes, or other evidence. Letting α∗ be the analyst’s beliefs about the chances that information
I is true given that the prints match, and β∗ be the analyst’s beliefs about the chances that
information I is true given that the prints do not match. Then, PA, the analyst’s subjective
probability distribution, is similar to (11) above, but replacing true values with beliefs,

PA(I = 1 | E0)

PA(I = 1 | Ec
0)

=
α∗

β∗
. (12)

Clearly, as long as α∗

β∗ 6= α
β , this part of the likelihood will be biased since,

PA(I | E0)

PA(I | Ec
0)

=


(
α∗

β∗
β
α

)
P (I=1|E0)
P (I=1|Ec

0)
if I = 1(

1−α∗

1−β∗
1−β
1−α

)
P (I=0|E0)
P (I=0|Ec

0)
if I = 0.

(13)

Denote the bias term with δI(PA, I) and we can rewrite this more simply as

PA(I | E0)

PA(I | Ec
0)

= δI(PA, I)
P (I | E0)

P (I | Ec
0)
. (14)

Plugging this back into (10), we see that if the analyst is given task-irrelevant information I along
with the evidence samples x and y, the analyst’s likelihood ratio will be biased by a multiplicative
factor of δI ,

PA(x, y, I|E0)

PA(x, y, I|Ec
0)︸ ︷︷ ︸

Likelihood ratioA

= δI(PA, I)
P (x, y, I|E0)

P (x, y, I|Ec
0)︸ ︷︷ ︸

True likelihood ratio

. (15)
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3.a.1 Hypothetical application: Race as task-irrelevant contextual information for a
fingerprint comparison

How could knowing the suspect’s race affect an analyst’s performance in comparing two finger-
prints? It is likely that most forensic analysts are not intentionally racist. Nevertheless, learning
the suspect’s race, a piece of task-irrelevant information, could lead an analyst to incorrect results.

Suppose the supervisor tells the analyst that the suspect’s race is Black. Then, α is the prevalence
of Black individuals within the pool of criminals and β is the prevalence of Black individuals within
non-criminals. The bias δI(PA, I) is a function of the beliefs held by the analyst encoded in PA and
the contextual information about race, I. We might imagine that α∗ is roughly estimated as the
share of all suspects eventually found guilty who are Black. Holding β = β∗, as long as α∗ > α,
information about the race of any Black suspect will increase the estimated posterior odds.

Imagine that in reality α = β = P (I = 1), meaning the chances of being Black given the suspect
committed the crime are the same as the chances of being Black given they did not: both are simply
the chances of being Black among the suspect set. The analyst, however, believes instead that Black
individuals are overly represented among same-source suspects by a factor of two: α∗ = 2P (I = 1)

(assume for convenience P (I = 1) < 1/2), and β∗ = β. He might have this misconception from not
having observed enough realizations of that type of evidence, lack of ground truth corrections, from
media exaggerations, cultural biases, or other reasons.

In the neutral scenario we would expect to find that

P (I = 1 | E0)

P (I = 1 | Ec
0)

=
P (I = 0 | E0)

P (I = 0 | Ec
0)

= 1. (16)

We have that α∗ = PA(I = 1 | E0) = 2P (I = 1) and β∗ = PA(I = 1 | EC0 ) = P (I = 1). Thus,

PA(I = 1 | E0)

PA(I = 1 | Ec
0)

=
2P (I = 1)

P (I = 1)
= 2, (17)

and

PA(I = 0 | E0)

PA(I = 0 | Ec
0)

=
1− α∗

1− β∗

=
1− 2P (I = 1)

1− P (I = 1)

=
2(1− P (I = 1))− 1

1− P (I = 1)

= 2− 1

1− P (I = 1)
. (18)
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The analyst’s mistaken beliefs instead give

PA(I = 1 | E0)

PA(I = 1 | Ec
0)

= 2 · PA(I = 0 | E0)

PA(I = 0 | Ec
0)

= 2− 1

P (I = 0)
, (19)

which means that the bias factor due to learning the race I is

δI(PA, I) = 2− 1− I
P (Race 6= Black)

. (20)

Even if the crime scene (x) and suspect (y) data are correctly analyzed, the analyst may have
posterior odds that are double their true value since the analyst’s likelihood ratio is now twice what
it should be

PA(E0 | x, y, I = 1)

PA(Ec
0 | x, y, I = 1)

=
P (x, y|I = 1, E0)

P (x, y|I = 1, Ec
0)
× 2

N
(21)

= 2 · P (E0 | x, y, I = 1)

P (Ec
0 | x, y, I = 1)

. (22)

This misspecification could severely increase the estimated posterior odds that the suspect com-
mitted the crime, even though this is incorrect. Note that this type of bias is entirely separate from
the prior odds: even if the analyst were reporting the likelihood ratio and not the posterior odds,
the likelihood ratio has doubled.

Given the physical evidence, it may be that suspects with characteristic I are more likely to
have produced highly similar prints because they are more likely to commit crimes. This would
seem to argue for including I in the interpretation of evidence, but we have shown that doing so can
have negative consequences. Note that as more pieces of task-irrelevant information are given to the
analyst in I, the bias will continue increasing. That is, there is no correction mechanism that will
prevent the bias from growing after a certain amount of task-irrelevant information is incorporated
into the analyst’s judgment.

We selected the example including the suspect’s race here to show how misuse of this information,
even unintentionally, could lead to biased judgments. Other protected characteristics, such as age,
disability, sex, or religion could lead to biased judgments in much the same way as race. Examiners
will probably agree that the suspect’s protected characteristics are irrelevant the task of comparing
fingerprints, yet learning this information can have a negative effect. Furthermore, our argument
from this section holds for other non-protected characteristics that are task-irrelevant, such as
whether the defendant has a prior criminal history. Note that in this example we are not saying
that white and Black individuals are equally likely to commit a crime. We are saying that the two
prevalences α and β are equal to the population prevalence. We still find bias, even if α is not equal
to β, i.e., even if there is a true difference in the prevalence between criminals and non-criminals.
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3.a.2 Real-world application: The case of Brandon Mayfield and the Madrid Bombing

It is difficult to find evidence of bias in forensic analyses because (a) casework conclusions are rarely
made public outside of a courtroom, and (b) simulating real-world circumstances for an experiment
is challenging. A notable exception is the infamous FBI error in the Mayfield case described in the
Introduction, which was publicly reported on and allowed researchers to perform an experiment to
see if contextual bias could be detected (Dror et al., 2006).

The researchers selected five experienced examiners who 1) knew about the Mayfield case but 2)
had not examined the prints from that case. For each examiner, the researchers 3) selected a pair of
prints that the examiner had concluded was a match (identification) some time earlier. Then, one of
their colleagues asked them to review the prints, but 4) told the examiner that the prints were from
the Mayfield case (“thus creating an extraneous context that the prints were a non-match”). Three
of the examiners changed their mind from match to non-match (exclusion), one changed to “can’t
decide,” and one did not change. This, the authors argue, is evidence that “Contextual information
renders experts vulnerable to making erroneous identifications.”

We can formalize what happened in this experiment within the framework described in Equation
15. For an analyst’s bias δI due to their beliefs PA, and the contextual information I from 4) above,
the analyst has biased likelihood ratio,

PA(E0 | x, y, I)

PA(Ec
0 | x, y, I)

= δI(PA, I) · P (E0 | x, y, I)

P (Ec
0 | x, y, I)

, (23)

and biased posterior odds as well,

PA(x, y, I = 1 | E0)

PA(x, y, I = 1 | Ec
0)

= δI(PA, I)
P (x, y, I = 1 | E0)

P (x, y, I = 1 | Ec
0)
. (24)

We do not know the values of δI for each examiner exactly, but given the results from Dror et al.
(2006), one plausible situation is the following: For the three examiners who switched from “match”
to “no match”, δI = 2, for the one who switched to “can’t decide”, δI = 1.5, and for the one who
did not switch, δI = 1. Thus, the average bias for the group can be calculated as the average of the
individuals’ biases,

δ̄I =
3 + 3 + 3 + 1.5 + 1

5
= 1.7. (25)

This is the average bias due to the examiners being told that the prints were from the Mayfield case
(a task-irrelevant piece of information). Of course, the experiment had a small sample size of five,
and we could obtain more precise estimates of δ̄I from a larger sample.
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3.b Imputation bias

Imputation bias refers to the situation in which the analyst uses information from the reference print
to mark up the crime scene print. This is done unintentionally and likely unconsciously, without
malice. The task-irrelevant information in this case is contained within the physical evidence given
to the analyst, not external, contextual information. This has sometimes been called data-bias and
reference-material-bias (Dror, 2020).

b

a

Exemplar print, yLatent (questioned) print, x

Figure 2: Latent print from the Madrid bombing crime scene (left), and exemplar print from suspect
(right). It is easy to see that the minutiae at b correspond, but it is unclear whether the minutiae
at a correspond as well since x is missing information.

The suspect’s exemplar print is often a clean print taken under controlled circumstances, but the
latent print has low quality, meaning it is missing information in some areas. See, for example, the
prints in Fig. 2. The latent print from the Madrid bombing crime scene (left) is missing information
in some areas, while the exemplar print from Brandon Mayfield (right) is more complete. The
locations marked by b clearly point to corresponding minutiae (ridge endings) in both prints, but
for locations a it is not clear whether there are corresponding minutiae because the latent print is
missing information.

Fig. 3 illustrates how imputation bias could occur. The left-most pair of prints are the actual
prints, which the analyst does not observe and has actual minutiae (denoted with m’s). The middle
pair is the evidence given to the analyst, and the right-most pair is the analyst’s marked-up prints,
with minutiae marked by the examiner (m∗). In the middle pair, the areas with missing information
(black squares) could be marked as containing minutiae by the analyst. It makes sense that if a
gray square right next to a black square looked like a minutia was beginning, it would end inside
the black square. Since the exemplar and the latent have so many minutiae in common already, the
analyst might think that the minutiae in x should also be in y. However, it could be that precisely
those were not in y, as can be seen in the actual prints. Thus, the minutiae in the marked-up print
differs from the actual print, and this may lead to a false-positive identification error.

We now demonstrate how imputation bias can be generated within the likelihood ratio. We
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Figure 3: Example of imputation bias. The actual prints x and y have minutiae in certain places
(left pair). The analyst only observes y with missing information (central pair), and assumes that
the minutiae in x is also in y, incorrectly (right pair).

break down the likelihood even further from Equation (10), so that,

P (x, y, I|E0)

P (x, y, I|Ec
0)︸ ︷︷ ︸

Likelihood ratioA

=
P (y|x, I, E0)

P (y|x, I, Ec
0)︸ ︷︷ ︸

Part I.1

× P (x|I, E0)

P (x|I, Ec
0)︸ ︷︷ ︸

Part I.2

× P (I | E0)

P (I | Ec
0)︸ ︷︷ ︸

Part II

(26)

We already saw how problems with Part II could arise in section 3. Here we are interested with Part
I.1. This gives the probability distribution of minutiae on print y given all the other information,
x, I, E0 and x, I, Ec

0.

To simplify the example, we can encode y as a vector of 0’s and 1’s, where yi = 1 means
there is minutiae in position i of the print. The same holds for the vector x. The task can then
be conceptualized as determining how likely it is to see two vectors with the observed degree of
similarity. For example, we might have the following data where out of six positions on the print,
we see four matches, two of which are matching minutiae. The question is now what are the
chances of four matches given the two samples (x and y) come from the same source, and what
are the chances of four matches given they come from different sources. This is a very abstracted
version of the task analysts actually perform, and is meant only for illustration of the probability
problem.

Having tagged minutiae in both prints, the analyst might have some function f(x, y) to come
to their source conclusion. For example, in this extremely simplified case, they might say,

f(x, y) =


Source Identification if

∑m
i=1 I {yi = xi = 1} ≥ 12

Support for Same Source if 7 ≤
∑m

i=1 I {yi = xi = 1} < 12

Inconclusive if 3 ≤
∑m

i=1 I {yi = xi = 1} < 7

Exclusion otherwise.

(27)
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x y Correspond
0 0 1
0 1 0
0 0 1
1 1 1
1 1 1
1 0 0

Table 1: Example of simplified minutiae tagging task. The zeroes and ones correspond to the
presence or absence of a minutia, and this supposes that there is only one type of minutia.

If some of the information in a section is missing or blurry, the analyst’s task to tag minutiae
accurately becomes much more difficult. Imagine if instead of the information in Tab. 1, the analyst
could only observe the information in Tab. 2, where a missing value is represented by a question
mark.

x y Correspond
0 ? ?
0 ? ?
0 0 1
1 ? ?
1 1 1
1 0 0

Table 2: Example of simplified minutiae tagging task with missing information.

The analyst must now make decisions about where to tag minutiae with this limited dataset.
One danger is that the analyst–likely inadvertently–uses information from x or I to “impute” the
missing values of y.

Imputation is a strategy to fill in missing data by learning a model from observed data and
using that to predict missing values of a variable. Imagine the analyst fills in each missing bit of
information with information from x, giving,

y∗i =

{
yi if yi observed
xi if yi not observed

(28)

This results in the dataset shown in Tab. 3.

We see that in this case, the analyst has mistakenly declared the second row to be an area of
correspondence between the latent and reference print.

This is obviously an extreme example, but we might easily imagine that an analyst observing two
prints might come to believe they see minutiae in a blurry section of y after having seen minutiae in
the corresponding section of x, especially if they have other reasons to believe the prints are from
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x y∗ Correspond
0 0 1
0 0 1
0 0 1
1 1 1
1 1 1
1 0 0

Table 3: Example of simplified minutiae tagging task with missing pixels imputed.

the same source. After this imputation process, y has been replaced with y∗, which necessarily looks
more like x than the original y. Thus,

P (y∗ | E0, I, x) ≥ P (y | E0, I, x) and

P (y∗ | Ec
0, I, x) ≤ P (y | Ec

0, I, x)

Because of this, the new likelihood will be inflated relative to the truth, by some bias amount we
call δImpute(PA, I, x, y),

PA(y | E0, I, x)

PA(y | Ec
0, I, x)︸ ︷︷ ︸

Part I.1A

=
P (y∗ | E0, I, x)

P (y∗ | Ec
0, I, x)

(29)

= δImpute(PA, I, x, y)
P (y | E0, I, x)

P (y | Ec
0, I, x)︸ ︷︷ ︸

Unbiased Part I.1A

(30)

This extreme model is thankfully unlikely, but imputation need not be absolute in order to cause
similar issues. The issue arises as soon as the latent print is labeled using outside information,
without altering the likelihood ratio calculation to account for this. Note that this section again
does not depend on the inclusion of the prior.
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Figure 4: Example of imputation bias, similar to Fig. 3, but generated through simulation.
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Now we illustrate imputation bias through a simple toy simulation. We can imagine fingerprints
as 10x5 grids of information. Let x and y both be examples of such a grid, each with an expected
15 minutiae distributed uniformly across their surface. Marked presence of a minutia is represented
as an m and missing information is represented in black. The presence of minutiae for x (Fig. 4(a),
right) is perfectly known, while the true y (Fig. 4(a), left) is unobserved. 25% of the information
in y print is missing from the crime scene latent print (Fig. 4(b), right).

If the analyst could observe all the missing pixels (i.e. areas represented by boxes in the figures)
in y, he would see Fig. 4(a), right. With imputation, the analyst replaces missing pixels of the
latent y with the corresponding pixels of x and marks under these conditions 4(c), right. In this
setting, the analyst mistakenly marks missing information as minutiae.

The true prints share 5 minutiae. The print with missing sections shares only 3 with the exemplar
print, so if the analyst did no imputation, they would find only 3 matching minutiae. If, however,
the analyst filled in the missing pixels with pixels from x, they would mark 8 matching minutiae. In
this case, the conclusion of the analyst may switch from ‘exclusion’ or ‘inconclusive’ to ‘support for
same-source’. It is clear that with the additional information, the suspect and crime scene prints
appear much more similar, although in truth they are generated by completely different underlying
patterns.

3.c Long-term effects of bias in an analyst’s prior

We now return to the prior discussion of the forensic analyst’s prior odds. In most cases, we can
make the assumption that a biased prior will be corrected over time and with sufficient data by
the likelihood, giving unbiased posterior odds. Unfortunately, this mechanism may not operate
properly in some forensic disciplines. Suppose an analyst performs an examination and comes to a
conclusion that a suspect’s print and a crime scene print had a common source. Then the analyst
testifies in court, and the trier of fact determines the suspect is guilty. The analyst then believes
they have made a correct decision, since they agreed with the trier of fact. However, it is possible
that the suspect was wrongfully convicted. Since the arrival of DNA evidence, it has become clear
that many convictions were wrongful (The Innocence Project, 2019; Gross et al., 2014). Will the
fingerprint analyst correct their views once the suspect is found to have been wrongfully convicted?
And what if an individual who is wrongfully convicted is never found to be so? It is estimated that
about 6% of individuals were wrongfully convicted. (Loeffler et al., 2019). It is likely that since the
analyst often does not hear feedback about their conclusions, and especially if they take convictions
as positive feedback, they will not correct their conclusions in the long run as they analyze more
data over time.

Assume that when an analyst sees a conviction, they believe that the defendant in fact did
commit the crime and that there was no mistake in the conviction. Analysts will update their
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prior based on the conviction. Recall the context from earlier (Section 3.a.1), where the fingerprint
analyst wrongly believes P (I | E0) = 2P (I). The analyst may also impute data in the likelihood
and eventually decide that a suspect did leave the crime scene fingerprint. The initial bias of the
fingerprint analyst may have been based on the fact that among all the suspects he had seen who
were eventually found guilty, a large share were Black. This new conviction of a Black suspect
increases this share even further. The more times we repeat this experiment, the more biased his
prior odds become.

Remember that we are concerned with situations where the analyst’s prior beliefs about α are
far from the truth. Let the true probability be given as

P (E0|I) =
α

P (I)(N + 1)
, (31)

and assume the analyst instead believes

PA(E0|I) =
α∗

P (I)(N + 1)
. (32)

For some α∗ 6= α. Generally in these situations, the decision-maker will have a chance to observe
many instances and update their beliefs. In forensic science settings, however, there are few repeti-
tions of the decision-making scenario, and the ground truth may not be revealed to the analyst, or
it may be revealed in a way which reinforces their mistaken beliefs.

First, the ground truth of whether two prints were produced by the same source is rarely known.
Analysts must update their prior beliefs using incomplete or even incorrect labels. Especially in
forensic settings, one can imagine how this could introduce positive feedback loops, where suspects
with certain characteristics are more often convicted, regardless of guilt. These past convictions are
factored into the analyst’s updates as true positives, reinforcing the problematic prior.

This is shown via simulation below. We have a strong beta prior on α with a mean of 0.6. In the
first figure, the analyst gets to see 100 correctly convicted suspects, and observe the share who have
a prior criminal history. In the second, the analyst sees the same number of suspects, but some are
incorrectly convicted, in a way that is biased. In this second case, the prior still moves towards the
truth, but at a much slower rate than in the first case.

Second, the analyst has access to a very limited number of examples. If their prior beliefs about
the importance of prior criminal history (or race, sex, confessions, an alibi, etc) are sufficiently far
from the truth, there will not be enough data to correct these beliefs. If we imagine that their prior
beliefs about evidence are close to the true parameter, while those about prior criminal history are
far from the true parameter, the posterior which withholds information about criminal history will
be less prone to error. That is, a model which does not include criminal history and updates only
on evidence will do better, after a relatively small number of steps, than a model which updates on
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Figure 5: The analyst’s posterior estimate of α when he is allowed to see the truth (left) and when
the truth is revealed in a biased way (right). The vertical line represents the true value.

both criminal history and evidence if the prior on criminal history is sufficiently wrong.

If this is the situation, information about suspects should be withheld from the analyst. Even an
experienced technician will have trouble correctly estimating the necessary probabilities, which will
bias the final results. Next, we discuss how bias spreads after it has affected an analyst’s conclusions.

4 How bias is propagated among analysts

In this section, we focus on how bias is propagated among analysts throughout the laboratory.
Organizational factors can lead to bias being propagated from one analyst to the next in a bias
cascade, a bias snowball (Dror, 2020), and bias in final determination of guilt. These organizational
factors affect the likelihood ratio for the trier of fact.

4.a Bias Cascade

The bias cascade effect is when “bias arises as a result of irrelevant information cascading from
one stage to another, e.g. from the initial evidence collection to the evaluation and interpretation
of the evidence” (Dror et al., 2017). Fig. 6 shows that when analysts communicate with labo-
ratory personnel, even if they are not given task-irrelevant information, this could lead to biased
conclusions.

The analyst has allowed information about the suspect to enter into their decisions about the
evidence – either as they judged the chances of evidence coming from the same source given the
suspect information or as they marked the evidence itself, or both. The final posterior is then pulled
from the truth, despite the fact that the analyst has only learned true information. This bias is
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Figure 6: Bias cascade example. At the crime scene, several investigators learn information that
is task-irrelevant for analysts. This information is transferred to the laboratory, and then to the
analysts. The analysts are all biased by this cascading of task-irrelevant information, even if they
do not communicate with each other.

formalized as,

PA(E0 | I, x, y)

PA(Ec
0 | I, x, y)︸ ︷︷ ︸

Posterior OddsA

=

LRA︷ ︸︸ ︷
PA(y | x, I, E0)

PA(y | x, I, Ec
0)︸ ︷︷ ︸

Part I.1A

· PA(x | I, E0)

PA(x | I, Ec
0)︸ ︷︷ ︸

Part I.2A

· PA(I | E0)

PA(I | Ec
0)︸ ︷︷ ︸

Part IIA

· PA(E0)

PA(Ec
0)︸ ︷︷ ︸

PriorA

= δImpute
P (y | x,E0, I)

P (y | x,Ec
0, I)

· P (x | I, E0)

P (x | I, Ec
0)
· δI

P (I | E0)

P (I | Ec
0)

P (E0)

P (Ec
0)

= δCascade
P (E0 | I, x, y)

P (Ec
0 | I, x, y)︸ ︷︷ ︸

Unbiased Posterior Odds

.

That is, our estimated posterior odds that the suspect and latent print come from the same
source is δCascade times the neutral posterior odds. If we imagine that a court case was decided
only on whether the posterior odds on one piece of evidence were greater than 1, we can see that
individuals could face higher chances of being found guilty than the evidence would warrant. We
will discuss in the following sections how the fact that cases are based on multiple pieces of evidence,
each of which is subject to bias, actually aggravates this issue.
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4.b Bias snowball

The bias snowball effect, occurs when “bias increases as irrelevant information from a variety of
sources is integrated and influences each other”(Dror, 2020). In this section, we describe how the
sorts of errors we have discussed so far can snowball, building on one another and ultimately affecting
the final determination of guilt.

Fig. 7 shows that as information is passed from one examiner to the next (either with or without
additional task-irrelevant information), and thus the bias grows quickly, like a snowball as it rolls
down a hill. The figure only shows communication going in one direction, but in reality examiners
could be altering each other’s conclusions, and thus the mechanism could be quite complex. Note
that if there is a bias cascade, and the examiners communicate with each other, this is equivalent
to a bias snowball since the snowball relates to the communication between analysts.

Analysts

Analysts communicate about 

their results with each other 

so the bias snowballs as  

more analysts are included.

Biasing information

Biased conclusion

Figure 7: Bias snowball example. An analyst shares their conclusion with the next analyst, who
shares their conclusion with the next. The communication between examiners produces bias, and
this accumulates or “snowballs” as more analysts are included.

In contrast to bias cascade, bias snowball comes from different lines of evidence informing one
another: “when one piece of forensic evidence (biased or not) is known to other forensic analysts
who are analyzing different forensic evidence, and their examination is affected and biased by their
knowledge of the results of the other lines of evidence.” (Dror et al., 2017) For example, the
fingerprint analyst is aware of DNA evidence that points to the guilt of the suspect, and in turn
the analyst looking at blood spatter knows the results of the fingerprint analysis.

Mathematically, this is very similar to the bias cascade setting, but conceptually, it arises from
different practices and may have different impacts. In this case, although it is true that the chances
of a fingerprint match are higher given a DNA match, using the former to inform determination of
the latter double counts this evidence in the final determination of guilt.

We saw that for one piece of evidence, including true but irrelevant information can lead to
a biased estimate of the posterior. Assume the first analyst produces estimated posterior odds,
denoted by hat, M̂1 = PA(E0|I1,X1,Y1)

PA(Ec
0|I1,X1,Y1)

, and passes these odds on to the second analyst. The neutral

posterior odds, which the second analyst cannot see, we denote, M1 = P (E0|I1,X1,Y1)
P (Ec

0|I1,X1,Y1)
. Now the
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analyst of the information has access to M̂1 as well as some I2 (which may or may not be the
exact same information as what was given to the first analyst). The posterior of the second analyst

now has a two-step bias. First, the posterior, M̂2 =
PA2

(E0|X2,Y2,I2,M̂1)

PA2
(Ec

0|X2,Y2,I2,M̂1)
is a biased estimator of the

posterior they would arrive at were they able to see an unbiased posterior, denoted by tilde, M̃2 =
PA2

(E0|X2,Y2,I2,M1)

PA2
(Ec

0|X2,Y2,I2,M1)
, which just as before is a biased estimator of the posterior,M2 = P (E0|X2,Y2,I2,M1)

P (Ec
0|X2,Y2,I2,M1)

.

The second difference between M2 and M̃2 can be expressed just as we have seen earlier by
treating M1 as a component of I2. That is, M1 is true but task-irrelevant information (it has no
impact on the appearance of the evidence). Thus we can write,

PA2(E0 | X2, Y2, I2,M1)

PA2(Ec
0 | X2, Y2, I2,M1)

= δ2(I,M1) ·
P (E0 | X2, Y2, I2,M1)

P (Ec
0 | X2, Y2, I2,M1)

⇒ M̃2 = δ2(I,M1)M2.

To expand on the bias between M̃2 and M̂2, we can break down the second analyst’s final
posterior estimation M̂2 as before,

M̂2 =
PA2(E0 | x2, y2, I2, M̂1)

PA2(Ec
0 | x2, y2, I2, M̂1)

(33)

=
PA2(x2, y2, I2, M̂1 | E0)

PA2(x2, y2, I2, M̂1 | Ec
0)
· PA2(E0)

PA2(Ec
0)

(34)

=
PA2(x2, y2 | E0, I2, M̂1)

PA2(x2, y2 | Ec
0, I2, M̂1)︸ ︷︷ ︸

I

· PA2(I2 | E0, M̂1)

PA2(I2 | Ec
0, M̂1)︸ ︷︷ ︸

II

· PA2(M̂1 | E0)

PA2(M̂1 | Ec
0)︸ ︷︷ ︸

III

· PA2(E0)

PA2(Ec
0)︸ ︷︷ ︸

IV

. (35)

Term I acts like the likelihood we saw earlier, with the additional conditioning that the first
analyst produced a posterior odds of M̂1. We might imagine that the analyst feels even more
tempted, perhaps subconsciously, to impute data to match the findings of the first analyst. We’ll
call this bias term δ̃Impute(m) and let it depend on the reported posterior from the first analyst. So
for example if M̂1 is very high (meaning the first analyst is firmly convinced the evidence points to
the suspect), the second analyst may feel comfortable filling in more of the data than they would have

with just I2, or with a low value of M̂1. Thus, PA2
(x2,y2|E0,I2,M̂1)

PA2
(x2,y2|Ec

0,I2,M̂1)
= δ̃Impute(M̂1)

PA2
(x2,y2|E0,I2,M1)

PA2
(x2,y2|Ec

0,I2,M1)
.

In a similar vein, the prior term has a bias of δ̃I(m) where, PA2
(I2|E0,M̂1)

PA2
(I2|Ec

0,M̂1)
= δ̃I(M̂1)

PA2
(I2|E0,M1)

PA2
(I2|Ec

0,M1)
.

Term III is a measure of the second analyst’s confidence in the first analyst’s abilities. If the
second analyst is not correcting for biases may have contaminated the first analyst’s output, this
ratio will again be biased. We write this as, PA2

(M̂1|E0)

PA2
(M̂1|Ec

0)
= δ̃Peer(M̂1)

PA2
(M1|E0)

PA2
(M1|Ec

0)
. Substituting back
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in to the full posterior gives,

M̂2 = δ̃2(M̂1, I)M̃2, (36)

Where δ̃2(M̂1) = δ̃Peer · δ̃I(M̂1) · δ̃Impute(M̂1).

To summarize, in the snowball case, bias can arise in two main ways. First, there is the bias we
would see even if an analyst were given only true information. This is what we saw in the case of
a bias cascade, except that the true information could now include posterior odds about previously
analyzed pieces of evidence. Second, there is the bias introduced when an analyst has access to only
estimates of true information–namely the judgement of their peers about the evidence. We use an
overbar to denote a history, so M̄i denotes all of the results up to the i’th piece of evidence.

Let
δ̃i(I, xi, yi,

¯̂
Mi) = δ̃Impute(I, xi, yi,

¯̂
Mi)δ̃I(

¯̂
Mi)δ̃Peer(

¯̂
Mi)

and let
δi(I, xi, yi, M̄i) = δImpute(I, xi, yi, M̄i)δI(I, M̄i)δPeer(M̄i).

Then,

M̂2 = δ̃2(M̂1, xi, yi, I) · M̃2

= δ̃2(M̂1, xi, yi, I) · δ2(M1, xi, yi, I) ·M2

The first term δ̃2(M̂1) is the bias from seeing previous analyst’s biased conclusions. The second
term δ2(M1, I) is the bias from seeing any irrelevant information, even if it is true. As the number
of pieces of evidence grows and later analysts are shown more and more information from previous
analysts, it is clear these biases will snowball.

We can run another illustrative simulation to show how this might happen. We imagine a
scenario where we have N = 10 suspects, and one characteristic I such that P (I = 1) = 0.15

and as before P (E0 | I) = P (E0). We will assume in this case that the analysts across K = 5

pieces of evidence don’t have additional bias if they see true information about matches, but true
information about I and missing values can still lead to bias. We also assume seeing estimated
matches doesn’t bias analysts’ through imputation or compound their bias with regards to I, but
that they do over-weight the importance of matches. Let PnR denote the share of missing data.
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The bias terms discussed above are therefore,2

δImpute(I, xi, yi, M̄i) = PnR+ 0.5 ∗ I + 1

δI(I, M̄i) = 2− 1− I
1− P (I = 1)

δPeer = 1

δ̃Impute(I, xi, yi,
¯̂
Mi) = 1

δ̃I(
¯̂
Mi) = 1

δ̃Peer(
¯̂
Mi) =

∑
i

I
{
M̂1 ≥ 1

}
+ 1.

We model each of the k pieces of evidence as an independent draw from a Binomial. We assume
that if x and y come from the same source, the chance of a match for piece is 0.5; if they come from
different sources, it is 0.25. After 1,000 simulations, we see in Fig. 8
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Figure 8: Comparison of bias snowball and bias cascade in a simulation in which five analysts
sequentially examine a type of evidence after being exposed to task-irrelevant information (Iti). In
the bias snowball case, analysts are exposed to the conclusions from the prior analyst (LRX , transfer
of information illustrated with arrows). Once bias has cascaded or snowballed, it is impossible to
return to an unbiased estimate of the posterior.

2Recall that these are multiplicative biases so a term of 1 means no additional bias
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5 Systemic bias: Bias the in final determination of guilt by the trier
of fact

Recall that for the trier of fact (i.e., a judge or jury), the final goal is to determine P (G|M)
P (Gc|M) , where

M = {M1, · · · ,Mk, I} includes all strains of physical evidence as interpreted by the forensic analysts
Mi as well as contextual evidence I. Once the evidence M gets to the trier of fact, biases that M
had from previous processes are "baked in", and it is difficult to know where the biases came from
originally.

Thus, we show that this bias is systemic: it arises in various stages throughout the system, and
affects the final conclusions. The trier of fact does not know that the experts have biased opinions
and takes them each as unbiased estimates. We have used relatively simple probabilistic ideas to
show that systemic bias is not only possible but is actually quite likely to occur in this part of the
criminal justice system.

Analysts

Biasing information

Biased conclusion
Trier of fact

Bias snowball

(bias from 
communication 

between examiners)

δ = 2 δ = 2 δ = 1.5 δ = 1.5

δ = 9

Bias cascade

(biasing info. coming from 
evidence collection and other 

early stages)

Figure 9: Bias propagation to the trier of fact. Various forms of bias in the examiners’ reports
can lead to the trier of fact having an accumulation of bias. Bias can increase as the amount of
task-irrelevant information or the number of examiners communicating with each other increase.

Fig. 9 shows how the bias is propagated by the examiners and ends up being compounded by the
trier of fact, unbeknownst to both examiners and trier of fact. In this example, the examiners were
subject to both a bias cascade and a bias snowball. Note that the conclusions from the different
types of evidence (e.g., fingerprints, firearms, DNA, shoe prints, etc.) could be weighted more or less
heavily depending on how much the trier of fact trusts that the forensic conclusion is correct. For
example, a sample of US residents believed that conclusions from DNA are 83% accurate, fingerprints
are 78%, firearms and toolmarks are 68%, and voice recognition is 55% (Ling et al., 2020). Studies
have shown that accuracy, when it has been estimated, is often lower in most disciplines (PCAST,
2016). Conclusions such as these could be used to devise a system of weights for how triers of fact
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could weigh conclusions from different forensic disciplines. Furthermore, different types of triers of
fact could weigh evidence differently. For instance, a juror drawn from the general population might
have different beliefs about the validity of a forensic discipline–the CSI effect could be driving this
(Cole and Dioso-Villa, 2008)–than an judge with years of experience hearing forensic testimony. For
our purposes, we do not include specific weights for conclusions from different disciplines.

In the final determination of guilt, the posterior odds can be written as

P (G |M)

P (Gc |M)
=

P (G | ∪kMk, I)

P (Gc | ∪kMk, I)
(37)

=
P (∪kMk | I,G)

P (∪kMk | I,Gc)

P (I | G)

P (I | Gc)

G

Gc
(38)

=
P (∪kMk | I,G)

P (∪kMk | I,Gc)

P (I | G)

P (I | Gc)

1

N
. (39)

We assume that each piece of evidence is related to all others only through the guilt (or innocence)
of the suspect and contextual evidence. For example, the chances that both the fingerprints match
and the DNA matches are only related because the suspect is guilty and perhaps factors about the
suspect themselves contained in I. This implies a neutral posterior,

P (G | I,M)

P (Gc | I,M)
=

1

N

P (M1 | I,G)

P (M1 | I,Gc)

P (M2 | I,G)

P (M2 | I,Gc)
· · · P (Mk | I,G)

P (Mk | I,Gc)

P (I | G)

P (I | Gc)
. (40)

The proper way to calculate the chances of guilt is therefore to estimate the probability of each
piece of evidence separately.

Imagine instead that the results of one stream of evidence influence beliefs about the next stream
of evidence. We have seen the effects of this “bias cascade.” Then we saw the effects when the strains
of evidence are allowed to influence one another when discussing “bias snowball.” A jury would likely
be unaware that the strains of evidence have contaminated one another, and will treat each stream
of evidence as if it were independent of the others. With these biases in place, instead of the neutral
posterior odds given in (40), we have,

P (G | M̂)

P (Gc | M̂)
=

1

N

P (M̂1 | I,G)

P (M̂1 | I,Gc)

P (M̂2 | I,G)

P (M̂2 | I,Gc)
· · · P (M̂k | I,G)

P (M̂k | I,Gc)

P (I | G)

P (I | Gc)
(41)

=
1

N

[
β1(H1)

P (M1 | I,G)

P (M1 | I,Gc)

]
·
[
β2(H2)

P (M2 | I,G)

P (M2 | I,Gc)

]
· · · (42)[

βk(Hk)
P (Mk | I,G)

P (Mk | I,Gc)

]
P (I | G)

P (I | Gc)
(43)

=

k∏
j=1

βj(Hj)
P (G |M)

P (Gc |M)
. (44)

In this context, the first term β1(H1) = β1(I) measures the biased chances of seeing a first
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match declared because I was incorporated into the first analyst’s decision-making. The βj(Hj)

terms represent the biased chances of seeing a match declared by the j’th analyst due to having
been given access to information about all previous analyst’s beliefs.

We assume the triers of fact in this setting hold no bias of their own, but that they treat each
piece of evidence as if it had been analyzed independently of any other information. For instance,
they believe that the DNA analyst did not use the fingerprint analyst’s conclusions to inform their
own. If this assumption does not hold, then it will only mean that it will be more difficult for the
trier of fact to make the correct decision on average.

Thus, we have shown how biases aggregate and interact throughout the investigation and legal
process, and end in a larger, compounded bias in the final determination of guilty by the trier of
fact: a clear example of systemic bias.

6 Conclusion

We have formalized the definitions of bias at the level of the individual examiner and the labora-
tory demonstrated in previous empirical studies. For an individual examiner, we give probabilistic
formalizations of imputation bias and of the long-term effects of bias in an analyst’s prior. For the
propagation of bias among analysts, we give formalizations of bias cascade and bias snowball. And
for the trier of fact, we give a formalization of how biases from individual examiners and groups of
examiners compound and lead to systemic bias.

Our formalization is based on years of research, mostly in the field of psychology, and it extends
this research by demonstrating how biases can be propagated throughout the system to impact
the decisions made by the trier of fact. In this way, we have shown that not only is systemic
bias possible, but under certain conditions it necessarily will occur. For instance, if task-irrelevant
information has led to bias at the examiner level, this will propagate and possibly compound such
that the final determination of guilt is biased.

We have shown that contextual bias in forensics is not only a qualitative problem, and that
it can quantitatively lead to a serious compounding of errors. By formalizing contextual bias, we
clarify where errors arise and when forensic analysts should be given which information. Without
a formal framework for discussing bias, a plethora of types of biases might be used in overlapping
or ambiguous ways. Our contribution is to by define biases in rigorous, probabilistic terms to help
to eliminate vagueness and ambiguity. Not only can this. We motivate this analysis with the study
of fingerprint matching in forensic science, an example in which analysts may be given additional
truthful information about suspects which biases their determination of whether the fingerprints
are from the same source.
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One example in which our research could be used is algorithm design. Algorithms are increasingly
used in forensic science to inform and complement examiners’ conclusions. For instance, there are
a number of Automated Fingerprint Identification Systems (AFIS). The US Integrated AFIS holds
the fingerprint sets collected in the United States, and is managed by the FBI. Many states also
have their own AFISs. AFISs have capabilities such as latent searching, minutiae identification,
electronic image storage, and electronic exchange of fingerprints and responses.

In order for the widespread adoption of algorithms in forensics to be most effective, it is important
to be aware of how the errors are occurring in human-based decisions so they can be prevented from
happening in algorithms. As researchers develop more of these algorithms, they need to be aware
of how human biases enter the final conclusions and initial inputs, and formal tools for discussing
and preventing bias are needed. Only by knowing how to formalize the biases observed empirically
can algorithms improve upon human performance.
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