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Abstract

A principal cue for sound source localization is the difference in arrival times of sounds at an
animal’s two ears (interaural time difference, ITD). Neurons that process ITDs are specialized
to compare the timing of inputs with submillisecond precision. In the barn owl, ITD processing
begins in the nucleus laminaris (NL) region of the auditory brainstem. Remarkably, NL neurons
are sensitive to ITDs in high-frequency sounds (kilohertz-range). This contrasts with ITD-based
sound localization in analogous regions in mammals where ITD-sensitivity is typically restricted
to lower-frequency sounds. Guided by previous experiments and modeling studies of
tone-evoked responses of NL neurons, we propose NL neurons achieve high-frequency ITD
sensitivity if they respond selectively to the small-amplitude, high-frequency fluctuations in
their inputs, and remain relatively non-responsive to mean input level. We use a
biophysically-based model to study the effects of soma-axon coupling on dynamics and function
in NL neurons. First, we show that electrical separation of the soma from the axon region in
the neuron enhances high-frequency ITD sensitivity. This soma-axon coupling configuration
promotes linear subthreshold dynamics and rapid spike initiation, making the model more
responsive to input fluctuations, rather than mean input level. Second, we provide new
evidence for the essential role of phasic dynamics for high-frequency neural coincidence
detection. Transforming our model to the phasic firing mode further tunes the model to
respond selectively to the fluctuating inputs that carry ITD information. Similar structural and
dynamical mechanisms specialize mammalian auditory brainstem neurons for ITD-sensitivity,
thus our work identifies common principles of ITD-processing and neural coincidence detection
across species and for sounds at widely-different frequencies.

Author summary

Differences in the arrival times of sounds at the two ears are essential for creating a sense of
auditory space. For many animals, the utility of these interaural time-differences for sound
source localization is thought to be restricted to relatively low-frequency sounds, due to limits
of temporal precision in the auditory pathway. Barn owls, remarkably, use temporal processing
to localize high-frequency (kilohertz-scale) sounds. This capability is critical for their activities
as nocturnal predators. Building on insights from previous experimental and modeling studies,
we propose that these neurons encode time differences in high-frequency sounds because they
respond selectively to input fluctuations, and are relatively non-responsive to input mean. We
use a biophysically-based computational model to show that electrical separation between a
neuron’s input region (soma) and spike-generating region (axon) improves sensitivity to input
fluctuations. This structural configuration produces linear integration of subthreshold inputs
and rapid spike initiation, two dynamical features that improve time-difference sensitivity to
high-frequency sound-evoked inputs. Neural coincidence detection in the neuron model is
further enhanced if it operates in a phasic firing mode. Taken together, we provide new insights
into the dynamical and structural mechanisms that support high-frequency sound localization
by coincidence detector neurons.
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Introduction 1

A principal cue for sound source localization is the difference in arrival times of sounds at an 2

animal’s two ears (interaural time difference, ITD). ITDs depend on animals’ head sizes and are 3

small compared to typical neural time scales. The physiological ranges of ITDs are ±700 µs in 4

humans and ±170 µs in barn owls, for instance. Neurons and neural circuits that process ITDs 5

are specialized for temporal precision so that they can compare the timing of inputs at this 6

submillisecond scale [1, 2]. Binaural ITD processing begins in mammals in the medial superior 7

olive (MSO) and in birds in the nucleus laminaris (NL). Neurons in these two nuclei are often 8

characterized as coincidence detectors because they respond with higher firing rates when brief 9

inputs arrive nearly simultaneously [3–10] and because they have been considered as possible 10

neural substrates for Jeffress’s influential theory of sound source localization by delay 11

lines [11,12]. 12

Although MSO and NL neurons share a similar role in auditory processing, they operate at 13

widely-different frequency ranges. ITD-sensitive MSO neurons are thought to primarily aid in 14

the localization of low-frequency sounds due to the limits of phase-locking of their inputs [13] 15

and consistent with the classical duplex theory of sound localization [14]. Phase-locking in the 16

early auditory pathway of barn owls persists for much higher-frequency sounds [15]. Indeed, 17

barn owls accurately localize sounds in the 4 kHz to 8 kHz range [16] and NL neurons shows 18

ITD sensitivity in this frequency range as well [5, 17]. 19

Extracting ITDs from kilohertz-scale signals poses a difficult computational challenge for 20

coincidence detector neurons. At these high frequencies, inputs to NL neurons are not resolved 21

as isolated synaptic events whose relative timing can be compared. Instead, sound-evoked 22

votage-responses in the soma of NL neurons are small-amplitude oscillations at the frequency of 23

the tone input, termed the sinusoidal analogue potential (SAP) [17]. Essential features of the 24

SAP described by Funabiki and colleagues are 1) SAP amplitude varies with ITD, but the mean 25

SAP level does not; and 2) NL firing rate increases with increases in SAP amplitude, but does 26

not depend on SAP mean. These observations suggest that high-frequency ITD processing in 27

the barn owl requires that NL neurons respond to fluctuations in their inputs (SAP amplitude) 28

while remaining insensitive to slower changes in the baseline input level (SAP mean). 29

The presumption that NL neural firing should be selective for high-frequency fluctuations 30

guides our analysis. Adapting a biophysically-based NL neuron model [17,18], we identify 31

structural and dynamical features that specialize NL neurons for high-frequency ITD sensitivity. 32

We show that electrical separation of the soma and the axon improves neural coincidence 33

detection. When the soma and axon regions are weakly-coupled, spike generation in the NL 34

neuron model depends less on input mean than in the case of strong coupling between soma 35

and axon. We identify two dynamical features associated with weak soma-axon coupling that 36

benefit high-frequency neural coincidence detection: linear subthreshold dynamics (as opposed 37

to amplified, supralinear responses to subthreshold inputs) and rapid spike initiation. The 38

importance of electrical separation between soma and axon regions for high-frequency ITD 39

processing accords with related studies of NL neurons [18,19] (and similar work in MSO 40

neurons [20,21]), but we offer novel and clarifying insights into how weak soma-axon coupling 41

produces fluctuation-sensitive dynamics that enhance ITD encoding. 42

Fluctuation-sensitivity is a feature of phasic neurons (also known as Type III 43

excitability) [22–25]. Phasic neurons respond to a prolonged pulse of current (constant level) 44

with a single spike at pulse onset, with no possibility for repetitive firing [26]. NL neurons 45
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exhibit phasic firing in vitro [7], but biophysically-based models developed previously for NL 46

neurons are tonic (produce repetitive spiking in response to sufficiently strong constant 47

inputs) [17,18]. We show that transforming our model to the phasic firing further tunes the 48

model to respond selectively to the small amplitude, high-frequency signals that carry ITD 49

information. Thus we add to the understanding of the functional importance of phasic 50

dynamics by showing phasicness beneftis high-frequency coincidence detection. In sum, our 51

work points to coherent principles of soma-axon coupling configurations and spiking dynamics 52

that specialize auditory neurons for coincidence detection across species and for sounds at 53

widely-different frequency scales. 54

Results 55

Time-difference sensitivity is greater for weakly-coupled soma and axon 56

regions 57

To study neural coincidence detection and ITD sensitivity in the barn owl NL, we constructed a 58

two-compartment model with parameters adapted from an established model of these 59

neurons [17]. The two compartments represent a soma-dendritic region (compartment 1) and an 60

axonal region of spike generation (compartment 2). Synaptic inputs target the first 61

compartment and spike-generating sodium currents are restricted to the second compartment 62

with dynamics described by Hodgkin-Huxley-type nonlinear differential equations. We provide 63

details in Methods. In NL neurons, spikes are thought to be primarily generated in the axon 64

initial segment [18]. Axon structure and physiology can vary across the NL [19,27]. Our first 65

goal, therefore, was to systematically explore the effects of electrical coupling between soma and 66

axon regions on firing rate responses to high-frequency inputs. We did this by parameterizing 67

the NL model to describe the strength of electrical connection between the two compartments. 68

We identified constants for forward coupling strength (κ1→2) and backward coupling strength 69

(κ2→1) based on the method in [21]. These coupling constants can also be understood as the 70

attenuation ratios of steady-state voltages. 71

By construction, all models (regardless of coupling configuration) have nearly identical 72

passive soma dynamics, but the addition of sodium current in the second compartment leads to 73

marked difference in spiking dynamics. In particular, models with weak soma-axon coupling 74

have large-amplitude, fast-initiating, “all-or-nothing” spikes (Fig 1B) whereas spikes in 75

strongly-coupled models are more graded with more gradual upstrokes (Fig 1D). To make 76

consistent comparisons across coupling configurations, we separately determined maximal 77

sodium conductance for each coupling configuration to achieve a fixed peak firing rate in 78

simulated responses. Specifically, we generated two synaptic input streams (meant to represent 79

4 kHz tone-evoked responses from the two ears) with a possible time difference (ITD). For 80

in-phase inputs (ITD= 0 ms), such as those shown in Fig 1A1, we set maximum sodium 81

conductance so that the average firing rate of the NL neuron model was 500 spikes per second. 82

Importantly, when synaptic events were evoked by out-of-phase 4 kHz sine waves (ITD= 125µs, 83

as in the example in Fig 1A2), NL firing rates decreased, indicatingITD-sensitivity. In these 84

examples, the model with weaker coupling produces just two spikes (Fig 1B2) (a decrease from 85

the in-phase response). The model with stronger coupling produces five spikes in response to 86

the same input (Fig 1D2) which is nearly equal to its in-phase firing rate. The coupling 87

configuration κ1→2 = 0.9 and κ2→1 = 0.5 is similar to the previously-developed model that is 88
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the starting point for our work [17]. We show responses of this model in Fig 1C. 89
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Fig 1. Spiking dynamics of a two-compartment NL model. (A) Synaptic conductance
time-courses for 4 kHz in-phase (left column) and out-of-phase (right column) inputs. (B-D)
Membrane voltage responses to inputs in (A), using three different soma-to-axon coupling
configurations: (κ1→2, κ2→1) = (0.3, 0.2) in B, (0.9, 0.5) in C, and (0.9, 0.9) in D. Gray curves
in these panels show soma voltage (V1) and colored curves show axon voltage (V2).

We next computed ITD tuning curves by simulating neural responses to inputs with a range 90

of time differences (Fig 2A). For the strongly-coupled model, in which V1 and V2 are nearly 91

isopotential, firing rates do not vary substantially with ITD. This is evident in the relatively 92

flat firing rate curve for the case of κ1→2 = κ2→1 = 0.9 (Fig 2A). The other coupling 93

configurations produce larger differences in the firing rates evoked by in-phase inputs versus 94

out-of-phase inputs. This is our primary result – electrical separation of soma and axon 95

improves ITD sensitivity in simulated NL responses. 96

To expand on these initial observations, we measured the difference between in-phase and 97
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Fig 2. Tuning to input time difference requires electrically-isolated soma and axon
compartments. (A) ITD tuning curves (spike rate as function of input time difference) in
response to 4 kHz synaptic inputs. Coupling configurations and color scheme is same as Fig 1.
Dotted lines are a reflected version of computed values. Error bars represent standard error in
the mean firing rate from 100 repeated simulations. Sodium conductance is determined so 500
spikes/sec is peak firing rate for all configurations. (B) Difference between in-phase and
out-of-phase firing rates across across the space of coupling configurations (∆R, scale bar at
right). ∆R is smallest for strong coupling and increases for electrically-isolated soma and axon
compartments (weaker coupling).

out-of-phase firing rates across a full range of coupling configurations (Fig 2B). This measure of 98

ITD tuning curve depth, which we denote by ∆R, is commonly-used in simulation studies and 99

recordings of NL neurons [17,18,28]. By this measure, there is a relatively broad range of 100

coupling configurations with large ∆R (good ITD sensitivity). The disadvantage of strong 101

coupling is confined to a relatively small region of parameter space (small ∆R in the 102

upper-right corner). 103

In the following, we explain this effect of coupling configuration on ITD sensitivity by 104

clarifying the signal processing imperative for NL neurons to respond to input fluctuations, not 105

mean level, and by explaining how structure creates dynamics that support effective 106

high-frequency ITD coding. 107

Coding imperative: ITD represented by input fluctuations 108

Informed by insightful experimental and theoretical work in the NL [17,18,29, 30], we take the 109

view that ITD information is delivered to NL neurons via fluctuating synaptic inputs. These 110

fluctuations evoke the small-amplitude, high-frequency oscillations in the somatic membrane 111

potential of NL neuron termed the sinusoidal analogue potential (SAP) [17]. For NL neurons to 112

effectively encode ITD signals, the amplitudes of input fluctuations should drive NL spiking 113

activity, not the mean input level. An idealized view of this computation is NL neurons must 114

monitor their synaptic inputs and use spike generation in the axon to signal when voltage 115

fluctuations in the soma exceed some threshold. Threshold crossings should be determined by 116

fluctuation amplitude and not mean input level. 117

We illustrate this coding perspective by computing, on a cycle-by-cycle basis, the mean and 118

amplitude of the excitatory synaptic conductances that are inputs to the NL model. The period 119

of each cycle is 250 µs, as dictated by our use of a 4 kHz input tone. A scatter plot of 100 120
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cycles of synaptic inputs reveals, as expected, that in-phase synaptic inputs are more 121

distinguishable from out-of-phase inputs by differences in fluctuation amplitude, not the mean 122

input level (Fig 3A, see also Fig 1A for example synaptic conductance time-courses).
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Fig 3. High-frequency ITD processing requires sensitivity to cycle-amplitude, not
cycle-mean, of fluctuating inputs. (A) Scatter plot of mean and amplitude of synaptic
conductance measured relative to period of 4 kHz input frequency for in-phase inputs (filled
circles) and out-of-phase inputs (empty circles). Arrow heads indicate mean values of these
measures (black arrow for in-phase, gray for out-of-phase). A classification boundary based on
Fisher’s linear discriminant is indicated by the solid line. (B) Thresholds of repetitive firing in
two-compartment NL model in response to sine-wave conductance. Coupling configurations and
color scheme are same as Fig 1.

123

To explore further this idealized view of NL neurons as cycle-by-cycle observers of their 124

inputs, we computed a classifier boundary defined using Fisher’s linear discriminant [31]. 125

Synaptic inputs that fall above the boundary would be reported by an ideal observer of these 126

synaptic conductances as in-phase inputs. The classifier boundary is upward sloping because 127

fluctuation amplitudes are positively-correlated with mean input level for in-phase inputs. This 128

suggests a stringent coding imperative for NL neurons: they should generate spikes when the 129

amplitude of their high-frequency fluctuating inputs are sufficiently large and, also, they should 130

avoid generating spikes to inputs with large mean values. 131

This description of an NL neuron as a signal classifier observing its inputs is, of course, an 132

over-simplification of the biophysical processes at work. We do not expect NL neurons to act 133

exactly like such ideal observers because intrinsic dynamics of NL neurons do not allow 134

spike-generation to occur on a cycle-by-cycle basis in response to high-frequency inputs (due to 135

refractory periods, for instance). Nevertheless, this perspective helps clarify which 136

characteristics of NL excitability may enhance ITD sensitivity. 137

To relate this signal classification perspective to modeling results, we used sinusoidal 138

conductance inputs (as opposed to the random synaptic inputs used in other simulations) to 139

compute thresholds for repetitive firing as a function of input mean and amplitude (Fig 3B). 140

For all coupling configurations, the slope of these threshold curves was negative, indicating the 141

model becomes more excitable for larger mean input levels. This is inconsistent with ideal 142

observer’s classification boundary. Among these coupling configurations, though, the 143

strongly-coupled model had the steepest threshold curve. For gmean larger than roughly 15 nS, 144

changes in mean input level alone, not fluctuation amplitude, can drive changes in firing rate 145
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for this coupling configuration. This parallels the simulated ITD tuning curves presented above 146

(Fig 2D) by showing that strong electrical coupling between soma and axon is disadvantageous 147

for ITD tuning because configurations with electrically-separated soma and axon compartments 148

are more selective for input fluctuations (rather than input mean). 149

Distinctive dynamics of strongly-coupled models that hinder high-frequency 150

coincidence detection 151

What accounts for enhanced ITD-tuning for models with stronger soma-axon coupling? We 152

identified two dynamical features caused by strong coupling that distinguish those models from 153

models with electrical isolation between soma and axon. These features are: 1) supralinear 154

subthreshold integration in the soma and 2) slow spike initiation in the axon. By supralinear 155

integration, we mean that the subthreshold current-voltage relation is nonlinear with positive 156

concavity as in the I-V curves shown in Fig 4A. Amplification of subthreshold voltage is 157

greatest for models with strong soma-axon coupling because strong soma-to-axon (forward) 158

coupling activates sodium conductance and, in turn, strong axon-to-soma (backward) coupling 159

enables axonal sodium current to depolarize the soma. 160
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Fig 4. Nonlinear mechanisms that distinguish strongly-coupled models from
models with electrically-isolated compartments. (A) Stready-state soma voltage
response to constant input current (I-V relation). Color code and coupling configurations are
same as Fig 1. Black line is response of the model gNa removed (linear response with 5 MΩ
soma input resistance). (B) Subthreshold V1-amplification measured as the difference between
steady-state V1 responses to 1000 pA inputs for models with and without sodium current. (C)
Maximum V2 slope during spike upstrokes, calculated as average of 100 responses to in-phase
inputs. Colors given on a logarithmic scale as indicated.

We quantified the amount of amplification across the range of coupling configurations by 161

calculating the steady state V1 (soma) voltage response to a subthreshold input (1000 pA 162

constant current) and compared it to the V1 value that would be expected for a purely passive 163

model (recall that passive soma input resistance is fixed as a constant for all coupling 164

configurations). The largest amplification occurs in models with strong soma-axon coupling and 165

models with weak soma-axon coupling have nearly linear I-V relations (Fig 4B). 166

In addition to affecting subthreshold integration, coupling configuration also changes the 167
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shape and dynamics of spikes (recall Fig 2A,B). In strongly-coupled models, voltage dynamics 168

in the two compartments track one another closely. Spikes occur in both compartments with V1 169

dynamics slowing the rate of upstroke. In weakly-coupled models, by contrast, voltage dynamics 170

in the axon are insulated from the soma. In these cases, fast activation of sodium current during 171

a spike increases V2 rapidly and without hindrance from the more slowly-depolarizing soma. 172

We measured the maximum slope of spike upstroke in V2 across coupling configurations 173

(Fig 4C). The rates of spike upstrokes in weakly-coupled models are as much as one hundred 174

times faster than those in the most strongly-coupled model. This finding is consistent with 175

previous modeling work showing that moving the location of a localized spike initiation zone to 176

positions on the axon more distant from soma leads to steeper spike upstrokes [32]. 177

Advantages of linear subthreshold integration and fast spike initiation 178

illustrated in an integrate-and-fire model 179

We hypothesized that the two dynamical features identified above that distinguish 180

strongly-coupled models from other coupling configuration (supralinear subthreshold integration 181

and slow spike initiation) could account for degraded ITD sensitivity in models with strong 182

soma-axon coupling. Our reasoning was as follows. Inputs to NL neurons are relatively weak — 183

the SAP (soma voltage fluctuations) is on the order of a few millivolts [17]. Models of NL 184

neurons must operate, therefore, near threshold so these small-amplitude fluctuations suffice to 185

evoke spiking in NL neurons [17,18]. At the same time, to maintain high-frequency ITD 186

sensitivity, NL neurons must not respond to changes in input mean. Nonlinear amplification of 187

subthreshold inputs are detrimental for high-frequency coincidence detection, therefore, because 188

constant or slowly-varying subthreshold inputs that are nonlinearly amplified can drive spiking 189

activity even in the absence fluctuations related to meaningful ITD information. There is 190

greater amplification of soma voltage in strongly-coupled models than models with weak 191

axon-to-soma coupling, so the strongly-coupled configuration is not optimal for preventing spike 192

initiation in response to constant or slowly-varying inputs. 193

The second distinctive feature of strongly-coupled models is (relatively) slow spike initiation. 194

Fast spike initiation should be beneficial for high-frequency ITD detection. The 195

larger-amplitude portions of high-frequency fluctuating inputs represent coincident inputs 196

corresponding to salient ITD information. When a brief but strong input fluctuation arrives 197

(viewed as a small portion of a high-frequency oscillating input), a rapidly-initiated spike can be 198

triggered before the input level decreases (during the next phase of the input oscillation). 199

Neurons with slowly-initiating spikes, by contrast, may need to “integrate” over larger portions 200

of their inputs before spikes fully develop. Neurons with gradual spike upstrokes would be less 201

responsive to the brief and strong input fluctuations created by coincident inputs. 202

We illustrate how these two features affect high-frequency fluctuation sensitivity using an 203

integrate-and-fire model customized with parametric control over subthreshold dynamics and 204

spike upstroke speed. An interpolation parameter p switches the model between linear 205

subthreshold dynamics (p = 0) and supralinear subthreshold dynamics (p = 1). When the 206

dynamical variable in the model exceeds a threshold level, the dynamics change to exponential 207

growth. A gain parameter q controls the exponential rate-of-rise of x. When x(t) exceeds the 208

maximum value of xmax = 50 the dynamical variable is returned to x(t) = −5, a reset condition 209

typical for representing spikes in integrate-and-fire model. See Methods for details and Fig 5A 210

shows the graph of the piecewise-function that governs the intrinsic dynamics of the model. A 211

linear subthreshold model with slow spike initiation is in Fig A1 (p = 0, q = 1) and a model 212
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with suprathreshold amplification and fast spike initiation is in Fig A2 (p = 1, q = 4). We 213

simulated responses of this model to high-frequency sinusoidal inputs, varying input mean 214

(gmean) and input amplitude (gamp). Examples of spiking responses are shown in Fig 5B with 215

steeper spike upstroke visible in Fig 5B2 due to the larger value of q in that simulations. 216

We have parametric control over subthreshold amplification and rate of spike initiation in 217

this integrate-and-fire model. We first computed thresholds for repetitive spiking as a function 218

of input mean and amplitude and found that increasing the degree of subthreshold 219

amplification (increasing p) produces threshold curves that slope downward more steeply 220

(Fig 5C). This is qualitatively consistent with repetitive spiking threshold curve for the 221

strongly-coupled two-compartment model (Fig 3B). In the simulations shown, we used q = 3 for 222

the rate of spike growth in the integrate-and-fire model. In additional simulations (not shown) 223

we varied q between 1 and 5 and observed no changes to these threshold curves. 224

Next, we varied the spike growth parameter q to confirm that rapid spike initiation increased 225

sensitivity to high-frequency fluctuations (Fig 5D). For these simulations we used inputs that 226

were sinusoidal, but with oscillation amplitude that varied randomly on a cycle-by-cycle basis. 227

Our rationale for this input structure was that most cycles would be subthreshold oscillations 228

(by design) with some larger-amplitude fluctuations occurring at random. Higher firing rates in 229

response to this random input would indicate greater sensitivity to the brief but large 230

fluctuations produced by coincident inputs. We found, as expected, firing rates increased with 231

the speed of spike initiation. The results shown in Fig 5D are for p = 0 (linear model), and we 232

found qualitatively similar outcomes for models with nonlinear subthreshold dynamics (p > 0, 233

results not shown). 234

Phasic dynamics enhance high-frequency ITD-sensitivity 235

To this point we have illustrated now soma-axon electrical separation promotes 236

fluctuation-sensitive dynamics that are beneficial for high-frequency ITD sensitivity. A 237

well-known mechanism for fluctuation-sensitivity in neurons is phasic dynamics. NL neurons 238

display phasic dynamics in vitro [7] and phasic neurons are known to respond selectively to 239

input fluctuations (and not input mean) [22,23,26]. Previous models of NL neurons have not 240

exhibited phasic firing [17, 18], so we were compelled to explore whether phasic dynamics would 241

enhance high-frequency ITD sensitivity in the NL neuron model. We began by inspecting the 242

dynamics of a reduced version of the model in which soma voltage V1 is a (constant) input 243

strength, sodium activation is set instantaneously to its voltage-dependent steady state value 244

m∞(V2), and gKHT set to 0. These manipulations yielded a two-variable model (V2-h) of 245

axonal dynamics. The phase plane for this reduced axon model contains a fixed point that loses 246

stability as it transitions from the left branch of the V2-nullcline to the middle branch for 247

sufficiently large input strength V1 (Fig 6A1). This transition is characteristic of tonic 248

dynamics [33]. 249

From this geometric approach, we observed that a convenient way to convert this 250

two-parameter axon model to the phasic firing mode was to steepen the sodium inactivation 251

function h∞ by decreasing the parameter σ in Eq 3. The default value used in Fig 6A1 and 252

based on previous models [17] is σ = 7.7. When we steepened sodium inactivation by setting 253

σ = 5, we found the fixed point remained stable and located on the left-branch of the 254

V2-nullcline (Fig 6A2). This indicates no possibility of repetitive firing to constant inputs [26]. 255

We next confirmed that this manipulation of h∞ acted similarly in the full two-compartment 256

NL model. For various values of sodium inactivation steepness (σ), we performed a 257
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Fig 5. Nonlinear integrate-and-fire model illustrates effects of subthreshold
amplification and spike initation speed on sensitivity to high-frequency fluctuations.
(A) Piecewise-defined function that governs model dynamics. An interpolation parameter (p)
controls whether subthreshold integration is linear (p = 0 in A1) or supralinear (p = 1 in A2).
A second parameter (q) controls the speed of spike initiation (the slope of f(x) where x > 1).
(B) Time-courses of the dynamical variable x(t) in response to 4 kHz sine-wave input, with
parameter sets in B1 and B2 corresponding to those in A1 and A2. (C) Thresholds for
repetitive firing in response to 4 kHz input with varying mean (ordinate) and amplitude
(abscissa). The subthreshold nonlinearity p affects the slope of these threshold curves (as
shown), but the spike slope q does not. (D) Mean spike rate in response to 4 kHz inputs with
fluctuating cycle-amplitudes (with zero mean input) and linear subthreshold dynamics (p = 1).
Error bars show standard deviations of 500 repeated trials.
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Fig 6. Modification of sodium inactivation converts two-compartment model from
tonic to phasic firing. Coupling configuration is κ1→2 = 0.9, κ2→1 = 0.5. (A) Phase-plane
diagrams for two-variable (reduced) axon model. Dotted line shows h-nullcline for the control
model (σ = 7.7 in A1) and a model with steeper h∞ function (σ = 5 in A2). Solid lines show
V2-nullclines for varying V1 (treated as a constant, input parameter). (B) Two-parameter
bifurcation study of two-compartment (full) NL model showing combinations of constant input
current (I0) and sodium conductance (gNa) that produce tonic firing (shaded region) or phasic
firing (non-shaded region). Horizontal dashed line marks the gNa value used in ITD simulations
(to satisfy criterion of 500 sp/s peak firing rate). Values of σ (steepness of h∞ in B1 and B2
correspond to values in A1 and A2, respectively.
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two-parameter bifurcation analysis using input current strength I0 and sodium conductance 258

gNa as bifurcation parameters (Fig 6B). For the reference model using σ = 7.7 a region of tonic 259

firing was present for sufficiently strong input current (gray shaded region in Fig 6B1). 260

Maximal sodium conductance for this configuration was gNa = 1286 nS (marked by dashed line 261

that passes through the tonic firing region). This model fires repetitively for inputs with 262

sufficiently large mean values. The model with steeper h∞ and gNa = 1522 nS does not fire 263

repetitively to constant inputs, regardless of the input level (Fig 6B2). Recall that gNa is 264

different in these two models because we selected gNa separately for all model configurations to 265

maintain the 500 sp/s firing rate at 0 µs ITD. 266

Converting the model from tonic to phasic firing substantially altered sensitivity to synaptic 267

fluctuations and improved ITD tuning. We first computed thresholds for repetitive firing to 268

sinusoidal conductance (Fig 7A). Earlier we observed these curves were downward sloping 269

(Fig 3B), even though an idealized signal classification view of this problem indicated that 270

upward-sloped threshold curves would be optimal for coincidence detection (Fig 3A). Reducing 271

σ had the effect of flattening these threshold curves so that the model could be more sensitive 272

to input fluctuations and less sensitive to input mean. In fact, for the steepest h∞(V ) curve 273

tested (σ = 3, also a phasic model), portions of the threshold were upward-sloped and thus 274

more similar to the ideal observer’s classification boundary. 275
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Fig 7. Phasic dynamics enhance fluctuation sensitivity and ITD tuning in the
two-compartment NL model. (A) Thresholds for repetitive firing in response to 4 kHz
sinusoidal conductance with varying mean (ordinate) and amplitude (abscissa). Compare to
Fig 3B and observe the slope of the threshold curves is less step, and can even turn positive, for
phasic firing models (smaller σ). (B) ITD tuning curves (spike rate as function of input time
difference) in response to 4 kHz synaptic inputs. Format is same as Fig 2A. Tuning curves
narrow for smaller σ demonstrating advantage of phasic firing for high-frequency ITD
processing.

Consistent with these changes in responsiveness to sinusoidal conductance, we found that 276

converting the model to phasic-firing enhanced ITD tuning (Fig 7B). Visible changes to ITD 277

tuning curves for smaller σ include both narrower tuning curves and greater peak-to-trough 278

differences (∆R). For the default parameter value of σ = 7.7 (tonic mode) the model fired 279

vigorously to out-of-phase inputs (200 spikes/second, approximately). Out-of-phase firing is 280

nearly extinguished for sufficiently steep sodium inactivation (σ = 3, phasic firing mode) while 281

maintaining the criterion level of excitability to in-phase inputs (500 spikes/second). 282
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Discussion 283

Temporal precision is a hallmark of neural processing in the auditory pathway [13,15,34–37]. 284

Sound localization on the basis of interaural time differences (ITDs) is one of the most 285

temporally-demanding aspects of auditory perception. Sound source location is encoded (in 286

part) by submillisecond-scale time differences in sounds arriving at the two ears. Unraveling the 287

physiological specializations of temporally-precise binaural neurons has been the subject of 288

sustained investigation. Features that specialize these neurons to act as temporally-precise 289

coincidence detectors include dendritic integration [28,34,38–40], ionic currents active at 290

subthreshold voltages [9,25,41], synaptic inputs [42–46], and spike generator regions in the axon 291

at locations remote from the soma [18–21,27]. 292

Electrical separation of the soma and axon is essential high-frequency 293

coincidence detection 294

We focused our attention on the dynamics of spike generation and the nature of soma-axon 295

coupling since fine-tuning of soma-axon coupling may be particularly relevant for 296

high-frequency ITD processing. In the nucleus laminaris (NL), where neurons can face the 297

extreme challenge of extracting ITD information from kilohertz-scale inputs, previous work has 298

shown that spike initiation zones in the axon are more distant and smaller in size for neurons 299

that have higher characteristic frequencies [19]. Computational modeling also showed that ITD 300

sensitivity is improved if spike initiation occurs only in the axon, with the soma structured as 301

large and passive (without sodium current) [18]. Similar structural advantages may help MSO 302

neurons operate at the upper frequency-limit of their ITD sensitivity [20,21,47]. 303

A typical explanation for the advantage of remote spike initiation zones in NL neurons is 304

that this configuration can prevent temporally-summated inputs in the soma from causing 305

sustained depolarization of the axon. Insulating the spike-generator region from sustained 306

depolarization prevents inactivation of sodium channels that would suppress excitability [19, 27]. 307

In addition, impedance analysis in a NL model indicates that the transfer of high-frequency 308

voltage oscillations from soma to axon is greater if sodium current is absent from the soma 309

region [18]. Synthesizing these arguments, one could conclude that the NL soma-axon 310

connection should act as a high-pass filter. There should be minimal attenuation (or even 311

amplification) in the transfer of high-frequency voltage fluctuations to the axon, but mean soma 312

voltage or slow variations in soma voltage should not pass to the axon. 313

Using a signal detection analogy, we considered the same ITD encoding challenge, but from 314

the point of view of using axonal spiking as a means to monitor NL inputs for ITD information. 315

Informed by current understanding of NL responses to high-frequency pure tone inputs (the 316

sinusoidal analogue potential, SAP, as measured in [17] and studied further in [29,30]), our view 317

is that spike generation in NL neurons should be insensitive to slowly-varying changes in inputs 318

(the kinds of changes that would be associated with temporal summation of non-coincident 319

inputs). Instead, NL neurons should fire in response to the high-frequency fluctuations that are 320

evoked by coincident synaptic events. Said differently, we concur that NL neurons should have 321

high-pass-like behavior to be effective ITD processors, but we locate mechanisms for 322

high-pass-like behavior in several nonlinear aspects of NL neural dynamics. 323

We showed that high-frequency ITD sensitivity is severely degraded by strong electrical 324

coupling between the soma and spike-generating regions (Fig 2). Strong soma-axon coupling 325

allows for sodium in the axon to act as a source of nonlinear amplification of subthreshold 326
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inputs in the soma (Fig 4A,B). This causes neural excitability to depend on mean input level 327

(Fig 3B). Structural configurations with weaker soma-axon coupling linearly integrate 328

subthreshold inputs and thus respond more selectively to input fluctuations. This is consistent 329

with a previous finding that a passive soma enhances coincidence detection in an NL model 330

because sodium in the soma nonlinearly-amplifies subthreshold inputs [18]. In addition, strong 331

coupling slows the speed of spike initiation (which we measured as the slope spike upstroke, 332

Fig 4C). Similar observations about the relationship between spike upstroke and soma-axon 333

coupling have been made previously [32]. Fast spike initiation aids in responding to 334

high-frequency input [47–49], so this is a second reason why electrical separation of the soma 335

from the axon enhances high-frequency ITD sensitivity. 336

If insulation from temporally-summating inputs (to prevent sodium inactivation in the axon) 337

were the primary benefit of weak soma-to-axon coupling, one might expect that ITD sensitivity 338

should decrease in our model with increases in the forward-coupling constant. Some minor 339

trends to this effect are evident in Fig 2B for configurations with strong backward coupling. For 340

weaker backward coupling, though, ITD sensitivity does not depend on forward coupling 341

strength. Recall, though, that we selected sodium conductance separately for each coupling 342

configuration to maintain a comparable degree of excitability (500 sp/sec to in-phase inputs). 343

For instance, maximum sodium conductance is gNa = 4304 nS for the (κ1→2, κ2→1) = (0.3, 0.2) 344

configuration and is gNa = 428 nS for the (κ1→2, κ2→1) = (0.9, 0.2) configuration. Reduced 345

sodium conductance for increases in forward coupling strength may explain why we did not find 346

that strong forward coupling, on its own, degrades ITD sensitivity by inactivating sodium 347

currents. 348

Phasic excitability, a generic mechanism for neural coincidence detection, also 349

improves high-frequency ITD processing 350

NL neurons exhibit phasic firing in vitro [7], but the Hodgkin-Huxley-type models previously 351

developed for NL neurons do not [17,18]. We determined that our NL model became more 352

sensitive to input fluctuations and less sensitive to input mean when it was converted to the 353

phasic firing mode (Fig 7A). In addition, phasic firing resulted in improved ITD tuning 354

(Fig 7B). 355

We steepened the sodium inactivation steady-state curve h∞(V ) as a straightforward way to 356

convert the model to phasic firing (see also [26]). A previous study of coincidence detection and 357

temporal precision in MSO neurons left-shifted the h∞(V ) curve as a means to toggle between 358

phasic and tonic firing [25]. Either manipulation of h∞(V ) creates phasic firing dynamics 359

because they strengthen the negative-feedback effect produced by sodium inactivation at 360

subthreshold voltage levels [25]. 361

If a model is in a tonic firing mode then it can be tipped into a repetitive firing pattern by 362

temporal summation of high-frequency inputs. This can be problematic for modeling NL neural 363

activity because voltage-responses in the soma that trigger spikes are small-amplitude events 364

(SAP fluctuations on the order of a few millivolts) [17]. Sodium current in these models must 365

be carefully calibrated, therefore, so that small fluctuations can evoke spikes but temporal 366

summation of inputs do not [28]. In past modeling studies, mean input levels have been selected 367

to position the dynamics near the boundary of critical points for repetitive firing [18] or have 368

incorporated synaptic suppression to reduce temporal-summation of synaptic inputs [17]. Some 369

amount of fine-tuning is necessary for these neurons because of the nature of their synaptic 370

inputs and the temporally-demanding computation they perform. Indeed, developmental and 371
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homeostatic processes do regulate axon physiology in NL neurons and their inputs [19,27]. 372

That being said, phasic excitability offers a robust mode for neurons to selectively respond to 373

input fluctuations and remain insensitive to temporally-summated, slowly-varying input 374

currents [22,23,26]. 375

Toward a unified view of binaural coincidence detector neurons 376

We have found ITD sensitivity to be enhanced if soma and axon regions are electrically 377

separated in an NL neuron model and that phasic dynamics further enhance the function of 378

these neurons as temporally-precise coincidence detectors. Similar structural configurations may 379

enhance ITD processing by MSO neurons in mammals [20, 21, 47], suggesting common dynamic 380

principles at work in these different neural systems. While MSO and NL neurons operate at 381

different frequency scales and in the context of cross-species differences in their auditory 382

pathways, they appear to share many physiological features. We have remarked that both MSO 383

and NL neurons exhibit phasic firing. In addition, they are both characterized by several 384

related physiological features (low input resistance, fast membrane time constant, prominent 385

voltage-gated currents active at subthreshold voltages). There are, however, notable differences 386

in these two circuits. See [50, for review], including discussion of the differences in the numbers 387

and types of synaptic inputs. Continued explorations of the similarities and differences between 388

these centers for binaural coincidence detection may clarify the function of MSO neurons with 389

high characteristic frequency [51,52] and may also provide insights into how ITD information 390

can be delivered with the high-frequency stimuli used in cochlear implant technology [53,54]. 391

There are some features of binaural neurons and circuits that we have not included in our 392

model but that can be understood in relation to our findings. Inhibitory feedback from the 393

superior olivary nucleus improved ITD sensitivity in a model of NL circuit in chicken [55]. 394

Inhibitory feedback that stabilizes mean input level (counteracting sustained depolarization due 395

to temporal summation) would help the NL circuit transmit ITD information via input 396

fluctuations. The function of inhibition in MSO neurons continues to be studied [44,56–58] with 397

some proposals that precisely-time inhibitory inputs shift the peaks of ITD tuning 398

curves [42,43,59,60] (but see also [10,46]). Low-threshold potassium current is prominent in NL 399

neurons and enhances ITD sensitivity in MSO neurons. As discussed by Ashida and colleagues, 400

low-threshold potassium current renders their model “more tolerant to changes in DC 401

amplitude” [18]. In other words, the negative-feedback effect of this current (active at 402

subthreshold voltage levels) can prevent supralinear amplification of subthreshold inputs (and 403

recall we found such amplification be detrimental to high-frequency ITD sensitivity). 404

In sum, the remarkable temporal precision of binaural coincidence detector neurons requires 405

numerous cellular and circuit-based specializations. Tracing cross-species similarities between 406

MSO and NL neurons provides useful perspectives on both systems. We have emphasized that 407

the nature of high-frequency synaptic inputs requires NL neurons to respond selectively to 408

fluctuations amplitude, not mean input level. Low-frequency ITD encoding in the MSO, in 409

contrast, requires slope-sensitive neurons to respond selectively to a few well-timed 410

inputs [9, 26,42,51]. Taken together, our findings add to the evidence that there are shared 411

structural and dynamical principles underlying the encoding of sound source location by neural 412

coincidence across different species and widely-different frequency ranges. 413
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Methods 414

Two-compartment NL neuron model 415

We studied spiking dynamics of a barn owl NL neuron using a two-compartment model that 416

had been developed previously [17,18]. The model consists of a compartment with passive 417

dynamics (compartment 1 with voltage variable V1, representing the soma region) and a 418

compartment with excitable dynamics (compartment 2 with voltage variable V2, representing a 419

spike-initiating node in the axon). Voltages in the two compartments are governed by coupled 420

differential equations 421

c1
dV1

dt
= −glk,2(V1 − Elk,1)− gax(V1 − V2)− Iin(t)

c2
dV2

dt
= −glk,1(V2 − Elk,2)− gax(V2 − V1)− INa(V2)− IKHT (V2)

(1)

where capacitance (c), leak conductance (glk), and leak reversal potential (Elk) can take 422

different values in each compartment. The coupling conductance gax is the Ohmic coupling 423

between the two compartments. The input current to the soma Iin typically represents either 424

sinusoidal input current or conductance-based synaptic inputs. Voltage-gated ionic currents in 425

the axon are spike-generating sodium current (INa) and high-threshold potassium current 426

IKHT . More details regarding these currents are given below. 427

Passive parameters determined by soma-axon coupling 428

Following the method described in [21], we set passive parameter values so that V1 dynamics 429

reproduced basic, physiologically-measurable properties of NL neurons (resting potential, input 430

resistance, and membrane time constant). We then created a two-parameter space described by 431

the strength of forward and backward couplings between the two compartments. With this 432

approach we could study ITD sensitivity while systematically varying soma-axon coupling 433

configurations [21,61]. 434

We set passive parameter values using values of three physiological constants similar to what 435

has been reported in a previous studies of NL neurons [17]. These are input resistance in the 436

soma (R1 = 5 MΩ), resting potential in the soma (Erest = −62 mV , also used for V2 resting 437

voltage), and soma membrane time constant describing the time-scale of exponential decay of 438

V1 (τexp = 0.1 ms). We assumed the surface area of the first compartment is orders of 439

magnitude larger than the surface area of the second compartment (2400 µm2 compared to 440

20 µm2), consistent with previous NL modeling studies following [17,18]. 441

We followed the approach in [21] to determine passive parameters in the two-compartment 442

model. This enables systematic variation of coupling configuration will maintaining nearly 443

identical passive V1 dynamics. Defining U1 and U2 to be the deviations of voltages from rest and 444

removing the voltage-gated currents INa and IKHT , the passive dynamics relative to rest are: 445

τ1
dU1

dt
= −U1 + κ2→1U2 − Jin(t)

τ2
dU2

dt
= −U2 + κ1→2U1
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where the time constant parameters τi = ci/(gi + gax) for i = 1, 2 and Jin = Iin/(g1 + gax) is a 446

rescaled input term. The soma-to-axon (forward) coupling parameter κ1→2 and axon-to-soma 447

(backward) coupling parameter κ2→1 describe the impact of voltage deviations in one 448

compartment on the other. Alternatively, these parameters can be thought of as steady-state 449

attenuation factors between the two compartments. They are 450

κi→j = gax/(gj + gax) for i, j = 1, 2 with i ̸= j

Due to the large discrepancy in membrane surface areas, there is a time-scale separation 451

between the passive dynamics in the two-compartments (V2 is fast relative to V1). In particular, 452

the ratio of time constants is τ2/τ1 = ακ1→2/κ2→1. For α = 20/2400 (as specified above) and 453

the range of coupling constants used in our study, we have that τ2 takes values approximately 454

10 to 100 times smaller than τ1. Due to this separation of time-scales, we could use fast-slow 455

analysis to uniquely define combinations of passive parameters that vary soma-axon coupling 456

while maintaining nearly identical passive dynamics in the soma compartment (see [21] for 457

details): 458

gax =
κ2→1

R1(1− κ1→2κ2→1)

g1 = gax

(
1

κ2→1
− 1

)
g2 = gax

(
1

κ1→2
− 1

)
c1 = τexp(1− κ1→2κ2→1)(g1 + gax)

c2 = αc1

(2)

Values of these parameters throughout the coupling parameter space are shown in Fig 8A-C. 459

Voltage-gated spike-generating currents 460

The voltage-gated currents in the axon region are the spike-generating sodium current INa and 461

the high-threshold potassium current IKHT . We modeled the dynamics of these currents as 462

in [17]: 463

INa(V2) = gNamh(V2 − ENa)−m∞(Vrest)h∞(Vrest)(Vrest − ENa)

IKHT (V2) = gKHTn(V2 − ENa)− n∞(Vrest)(Vrest − ENa).

We include the second term so that these currents are zero at rest. This facilitates our 464

exploration of coupling parameter space. This can be implemented equivalently as a shift in the 465

leak reversal potential. Reversal potentials are ENa = 35 mV and EK = −75 mV . 466

We set maximal sodium conductance gNa separately for each coupling configuration to 467

achieve a consistent firing rate response of 500 spikes per second to in-phase synaptic inputs. 468

We selected this criterion to be similar to the peak firing rate reported in previous modeling 469

work [17,30]. We found gNa values to range from 200 nS to 7000 nS, roughly (Fig 8D). We set 470

the maximal high-threshold potassium conductance to gKHT = 0.3gNa as in [17]. The passive 471
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Fig 8. Parameter space for two-compartment NL model. (A) Total conductance in the
soma compartment (g1). (B) Total conductance in the axon compartment (g2). (C) Axial
conductance between the two compartments (gax). Parameters in (A-C) depend uniquely on
soma-axon coupling constants and commonly-reported physiological properties (input resistance
and membrane time constant in the soma) and are determined for a passive model. (D) Sodium
conductance in the axon compartment (gNa). This parameter is determined so that, at each
coupling configuration, the model fired at 500 spikes/sec at ITD = 0 µs. Colored dots mark the
specific coupling configurations used in many figures (refer to Fig 1). We used, as a reference
value κ1→2 = 0.9 and κ2→1 = 0.5 since this configuration is similar to the parameter set used
in [17].
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leak conductance in the axon (glk,2 in Eq 1) was reduced by amounts equal to gNa and gKHT to 472

maintain the total axon conductance at rest determined by the initial parameter-fitting 473

calculation (g2 in Eq 2). We did not include any voltage-gated currents in the soma (as in [18]), 474

so leak conductance in the soma compartment is identical to g1. 475

The kinetics of the gating variables are governed by equations of the form 476

du

dt
= ϕ

(
u∞(V2)− u

τu(V2)

)
(for u = m,h, n).

The constant ϕ = 4.75 adjusts for temperature at 40◦ C with Q10 factor 2.5. The functions u∞ 477

and τu are identical to the model in [17] using the conventional definitions that 478

u∞(V ) = αu(V )/ (αu(V ) + βu(V )) and τu(V ) = 1/ (αu(V ) + βu(V )) where αu and βu represent 479

opening and closing rates, respectively, for voltage-gated ion channel subunits (Table 1) 480

Table 1. Voltage-gated ion channel subunit kinetics.

Na activation (m)

αm(V ) = 3.6e(V+34)/7.5

βm(V ) = 3.6e−(V+34)/10

Na inactivation (h)

αh(V ) = 0.6e−(V+34)/18

βh(V ) = 0.6e(V+34)/13.5

KHT activation (n)

αn(V ) = 0.110e(V+19.)/9.1

βn(V ) = 0.103e−(V+19.)/20

Modification of sodium inactivation for phasic model 481

We created a phasic version of the model by altering the steady-state function for sodium 482

inactivation (h∞). The default definition of h∞ using the values of the αh and βh given in 483

Table 1 is 484

h∞(V ) =
1

1 + e(V+57)/σ
(3)

where σ = 7.7 reproduces the model in [17]. We found that reducing σ (resulting in steeper h∞ 485

curve) was a practical way to toggle the model between a tonic firing mode (at the default σ 486

value) and a phasic firing mode (for smaller σ values). We recalculated maximal sodium 487

conductance separately for each σ value to maintain the consistent peak firing rate of 500 488

spikes/sec. It was necessary to increase gNa for smaller values of σ. For the coupling 489

configuration κ1→2 = 0.9 and κ2→1 = 0.5, for example, gNa increased from 1240 nS for σ = 9 to 490

1838 nS for σ = 3. 491
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Synaptic current and the SAP 492

We modeled input currents Iin as either a sinusoidally-varying conductance (an idealized 493

description of the high-frequency oscillatory input to NL neurons [17, 18, 29]) or as the summed 494

input of simulated excitatory synaptic events. In the first case (idealized sinusoidal input), the 495

parameter g0 is the baseline (mean) level of the input conductance and g1 is the amplitude of 496

input oscillations. The reversal potential is Esyn = 0 mV for both input types. We used 497

f = 4000 Hz in all simulations in this study. This value is in the range of high-frequency tones 498

that barn owls can localize and has been used in previous modeling studies [17,18,30]. Our 499

rationale for this idealized input is that tone-evoked voltage responses in the soma of NL 500

neurons are characterized by oscillations at the tone frequency (the so-called sinusoidal 501

analogue potential, SAP) and that SAP amplitude (not baseline level) varies with ITD [17]. 502

The parameter g1 controls the amplitude of this idealized input with large g1 interpreted to 503

represent preferred ITDs with coincident inputs that drive maximal firing. 504

For simulations in which we preferred a more biophysically-realistic description of the ITD 505

computation performed by NL neurons, we let Iin(t) = g(t)(Esyn − V1) where g(t) represents 506

synaptic conductance generated by simulated trains of synaptic events filtered by 507

short-duration excitatory post-synaptic potentials (EPSGs): 508

g(t) =

N∑
n=1

∑
ti,n

gss(t− ti,n). (4)

We used the synaptic model of Ashida and colleagues [29, 30] and parameters drawn from their 509

work. Synaptic reversal potential is Esyn = 0 mV (as above) and the time-course of synaptic 510

conductance g(t) is a random process constructed as the sum of unitary EPSG events produced 511

by N independent input neurons whose event times ti,n are sampled from an inhomogeneous 512

Poisson process. The Poisson intensity λ(t) is the periodic function λ(t) = 2πλ0pk(2πft), where 513

f = 4000 Hz is the input frequency, λ0 is the baseline rate (500 Hz), and pκ is the von Mises 514

distribution function with concentration parameter κ (see [29,30] for details). The unitary 515

EPSG events are alpha-functions 516

s(t− ti) =

{
0 for t < ti,n

(gst/τsyn)e
1−t/τsyn for t ≥ ti,n

with maximal conductance g0 = 1.3 nS and time constant τsyn = 40.9 µs. This exceptionally 517

brief time constant is required for the model to replicate properties of the SAP observed in 518

vivo [17, 29, 30]. We used N = 300 for the total number of inputs (NM neurons), evenly divided 519

into two input streams to simulate binaural (two-eared) inputs. Synaptic inputs carry ITDs 520

when there is a time-lag between the time-courses of λ(t) used in each of the two NM 521

population representing the two “ears.” 522

Measure of coincidence detection sensitivity and ITD coding 523

We simulated the sound localization computation performed by NL neurons by measuring mean 524

firing rate of the two-compartment model in response to repeated samples from the synaptic 525
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input model. Spikes (defined as an upward crossing of V2 past −30 mV were counted over a 526

duration of 20 ms and mean spike rates were averages from 100 repetitions. 527

As a summary measure of ITD sensitivity we calculated the difference between in-phase and 528

out-of-phase mean firing rates (visualized as the peak-to-trough difference in ITD tuning curve 529

height). We denoted this statistic as ∆R and note that it has been used commonly used in 530

previous studies of ITD processing including for NL neurons [17,18,28]. 531

We calculated thresholds for repetitive spiking in response to sinusoidal input conductance. 532

Repetitive firing to these inputs was defined as more than one spike in both halves of the 533

20 ms-long stimulus. Threshold for repetitive firing was defined as the smallest possible input 534

strength at which repetitive firing could be observed over a range of initial values. A modified 535

bisection search method was used so that, with g0 fixed, g1 thresholds were calculated to within 536

±0.5 nS. As part of the bisection search, we found it necessary to systemically test a range of 537

initial values in order to identify the minimum threshold in cases when the model exhibited 538

hysteresis dynamics. 539

Numerical methods 540

Original simulation code was developed in C, python, and Matlab and is available at 541

https://github.com/jhgoldwyn/TwoCompartmentNL. Computations to determine gNa 542

conductance values and measure ITD tuning curves were performed on a multi-CPU cluster 543

maintained by Swarthmore College. All other computations were performed on personal 544

laptops. Two-compartment model simulations were carried out using the forward Euler method 545

with a 0.1 µs time-step. Synaptic conductance time-courses (g(t) in Eq 4) were also computed 546

at this temporal resolution. For some coupling configurations (those with large gNa values), we 547

found it necessary to use smaller time step-sizes in the Euler calculations, in which case we 548

linearly interpolated synaptic conductance time-courses to the smaller time steps. 549

Synaptic classification by Fisher’s linear discriminant 550

As conceptual support for how to understand the coincidence detection computation performed 551

by NL neurons, we considered how in-phase and out-of-phase inputs could be linearly separated 552

(Fig 3A). Specifically, for every period of the 4 kHz stimulus, we measured the mean and 553

amplitude (half the maximum-to-minimum range of g(t)) of synaptic input currents for 554

one-second-long samples of the biophysically-based synaptic input model (see above). We then 555

used Fisher’s linear discriminant to find the direction w along which to project these data in 556

order to maximally separate them in-phase from out-of-phase synaptic inputs. Let xn be the 557

vector containing the mean and amplitude of g(t) on each period of an in-phase input, yn the 558

corresponding vector for out-phase inputs, and denote the means of these values (over all 559

periods of the input) as ⟨x⟩ and ⟨y⟩, respectively. Then Fisher’s Linear Discriminant for 560

optimally separating the in-phase and out-of-phase inputs on a cycle-by-cyle basis is to project 561

these data onto any vector w in the direction of Σ−1
W (m1 −m2) [31], where ΣW is the 562

within-class covariance matrix 563

ΣW =
∑
n

(xn − ⟨x⟩)T (xn − ⟨x⟩) +
∑
n

(yn − ⟨y⟩)T (yn − ⟨y⟩).
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Nonlinear integrate-and-fire model 564

Two features of nonlinear dynamics in the axon that we found could impact coincidence 565

detection sensitivity are the quickness of spike initiation and the extent to which sodium 566

current in the axon amplifies subthreshold voltages in the soma (causing the input region to 567

deviate from linear, passive dynamics). We developed a nonlinear integrate-and-fire mode to 568

investigate these two features. The dynamics of this model were governed by separate rules for 569

subthreshold and suprathreshold (spike initiation) behavior to investigate these two mechanisms 570

with direct parameter control. 571


τ dx

dt = −x− f(x) + a+ b sin(2πft) if x < xthresh

τ dx
dt = q(x− xthresh) + a+ b sin(2πft) if xthresh ≤ x < xmax

x = 0 if x ≥ xmax

where the function f(x) has the form 572

f(x) =

{
x if x ≤ 0

(1− p)x+ p
(

x
1+x

)
if 0 ≤ x < xthresh, with 0 ≤ p ≤ 1

.

We view the piecewise-nonlinearity in f(x) as a caricature of the amplifying effect that 573

sodium current in the axon can have if there is sufficient backpropagation from axon to soma 574

(strong backward coupling), as shown in Fig 4A and B. In particular, the parameter p 575

interpolates between linear subthreshold dynamics (p = 0) and supralinear subthreshold 576

dynamics (p = 1). 577

Spike generation in the model in two phases. First, if x(t) exceeds the spike initiation 578

threshold xthresh, then x(t) increases with the exponential growth rate q. Second, spike 579

generation occurs at the instant at which x(t) exceeds xmax = 50, at which point the value of 580

x(t) resets to xreset = −5. We use the exponential growth parameter q to characterize the slope 581

of spike upstroke, which we observed could change with coupling configuration (Fig 4C). The 582

integrate-and-fire model was simulated in Matlab with code available at 583

https://github.com/jhgoldwyn/TwoCompartmentNL. 584
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