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AN AFFINE APPROACH TO PETERSON COMPARISON

LINDA CHEN, ELIZABETH MILIĆEVIĆ, AND JENNIFER MORSE

Abstract. The Peterson comparison formula proved by Woodward relates the three-pointed

Gromov-Witten invariants for the quantum cohomology of partial flag varieties to those for the

complete flag. Another such comparison can be obtained by composing a combinatorial version

of the Peterson isomorphism with a result of Lapointe and Morse relating quantum Littlewood-

Richardson coefficients for the Grassmannian to k-Schur analogs in the homology of the affine

Grassmannian obtained by adding rim hooks. We show that these comparisons on quantum

cohomology are equivalent, up to Postnikov’s strange duality isomorphism.

1. Introduction

The study of quantum cohomology emerged from physics, and connections to enumerative

geometry drew attention to the mathematical ideas being employed by the superstring theorists

[Wit91]. The axiomatic and functorial development of Gromov-Witten theory [KM94, GK95]

then paved the way for algebraic geometers to reformulate these problems from the moduli

space perspective [FP97]. The resulting combinatorial pursuit of quantum Schubert calculus,

which is the topic of the present paper, aims to explicitly describe the product structure in

the (small) quantum cohomology ring QH∗(G/P), where G is a connected complex reductive

group, and P is a parabolic subgroup containing a fixed Borel B.

1.1. Comparing quantum cohomology rings. Unlike classical cohomology, quantum coho-

mology is not functorial. More precisely, the natural projection G/B → G/P does not give

rise to a map on quantum cohomology QH∗(G/P) → QH∗(G/B), as it does in the classical

case. Nevertheless, scattered throughout the literature are several methods for relating the

structure constants for these two rings, in an effort to partially restore functoriality. The struc-

ture constants are given by three-pointed Gromov-Witten invariants, or quantum Littlewood-

Richardson coefficients. One such result is the Peterson comparison formula [Pet97], which

was proved by Woodward [Woo05] using the geometry of principal bundles.

Another celebrated result of Peterson [Pet97], proved by Lam and Shimozono [LS10], equates

the studies of the quantum cohomology of the homogeneous space G/P and the homology of

the affine Grassmannian GrG. In [Lam08], Lam showed that the Schubert basis for the ring

H∗(GrSLn
) is represented by the k-Schur functions of [LM07]. Combining this quantum-to-

affine correspondence of Peterson with results of Lapointe and Morse from [LM08] then yields

a method for using k-Littlewood-Richardson coefficients to compare the quantum cohomology

rings for complete and partial flag varieties in type A.

The goal of this paper is to explain the precise relationship between these different means for

comparing products in QH∗(G/P) and QH∗(G/B), in the special case where G = SLn and G/P
is the Grassmannian. A critical component of this connection arises from an unexpected sym-

metry on QH∗(G/P) discovered by Postnikov for the Grassmannian [Pos05], and generalized

to other (co)miniscule homogeneous spaces by Chaput, Manivel, and Perrin [CMP07]. The

Main Theorem provides an affine approach to the Peterson comparison formula via this strange

duality isomorphism.

LC was partially supported by Simons Collaboration Grant 524354. EM was partially supported by NSF

Grant DMS-1600982 and Simons Collaboration Grant 318716. JM was partially supported by NSF Grants DMS-

1855804 and DMS-1833333.
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1.2. Statement of the Main Theorem. The Schubert basis for the quantum cohomology

QH∗(Grm,n) is indexed by partition shapes contained in a fixed rectangle, whereas the Schu-

bert basis for QH∗(Fln) is indexed by permutations. The primary goal of quantum Schubert

calculus is to provide combinatorial formulas for the quantum Littlewood-Richardson coeffi-

cients describing the product of two Schubert classes; see Sections 2.1 and 2.2 for more details.

The Peterson comparison formula [Woo05] relates the quantum Littlewood-Richardson co-

efficients for G/P to those for G/B, where G is any connected, simply connected, semisimple

complex reductive group. We specialize this comparison in Section 2.2.1 as ΨPC, which ex-

presses every quantum Littlewood-Richardson coefficient for QH∗(Grm,n) in terms of certain

ones for QH∗(Fln). This statement is formalized in Theorem 3, and several related ingredi-

ents appeared in the work of Leung and Li on graded filtrations of subspaces in QH∗(Fln); see

[LL10, LL12]. To keep our paper self-contained, we provide an independent proof of Theorem

3 in Section 3.

For G = SLn, the affine Grassmannian is Grn = G(C((t))/G(C[[t]]). The Schubert basis for

the homology H∗(Grn) is represented by k-Schur functions, which are indexed by k-bounded

partitions. A primary goal of affine Schubert calculus is to provide combinatorial formulas for

the k-Littlewood-Richardson coefficients, which determine the product on k-Schur functions.

The Peterson isomorphism implies that all quantum Littlewood-Richardson coefficients are

encoded as k-Littlewood-Richardson coefficients, and so this affine Schubert problem strictly

contains the quantum one; see Section 2.3 for more details.

In [LM08], Lapointe and Morse show that the quantum Littlewood-Richardson coefficients

for QH∗(Grm,n) are equal to those k-Littlewood Richardson coefficients obtained by adding rim

hooks to the corresponding k-bounded partition. We review this result as ΦGr in Theorem 7

from Section 2.3.1. Directly from the Peterson isomorphism, every product in QH∗(Fln) can

be expressed in many ways using the k-Littlewood-Richardson coefficients, one of which is

reviewed in Theorem 9, rephrased from [LS12] following the treatment in [BMPS20]. Impor-

tantly for our purposes, this correspondence from Theorem 9 is invertible on the image of ΦGr.

We make this claim precise in Section 4, the primary goal of which is to prove Theorem 26

formalizing ΦFl.

The Main Theorem describes the precise connection between the Peterson comparison for-

mula ΨPC and the composition of the quantum-to-affine correspondences ΦFl ◦ ΦGr, both of

which provide a means for directly relating the rings QH∗(Grm,n) and QH∗(Fln) in the absence

of functoriality. Though not identical, these comparisons differ by exactly two duality iso-

morphisms, one of which is the standard flag transpose ΓT reviewed in Section 2.2.2. The

more subtle discrepancy arises from the strange duality isomorphism ΓSD on QH∗(Grm,n) from

[Pos05], which we review in Section 2.1.1 in the special case recorded as Theorem 1. These

various comparisons QH∗(Grm,n)→ QH∗(Fln) are related as follows.

Main Theorem. For any m, n, r ∈ N such that m+ r = n, the following diagram on Littlewood-

Richardson coefficients commutes:

QH∗(Grm,n) QH∗(Fln)

QH∗(Grm,n)

H∗(Grn) QH∗(Fln)

ΨPC

ΓT

ΓSD

ΦGr ΦFl

e.g. for any partitions λ, µ, ν ⊆ (r)m and any d ∈ Z≥0 such that |λ| + |µ| = |ν| + nd, given the

quantum Littlewood-Richardson coefficient c
ν,d
λ,µ in QH∗(Grm,n), we have

ΓT ◦ ΨPC ◦ ΓSD

(

cν,dλ,µ

)

= ΦFl ◦ ΦGr

(

cν,dλ,µ

)

.
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The Main Theorem is made precise in Section 2, which provides self-contained statements

for each of the five correspondences that appear in the diagram above, illustrated by a common

running example. The two relationships original to this paper are ΨPC which is the subject of

Section 3, and ΦFl which is formalized in Section 4. The proof of the Main Theorem is largely

combinatorial in nature and follows in Section 5.

1.3. Discussion of related and future work. We conclude by highlighting several similar

results which equate certain quantum and/or affine Littlewood-Richardson coefficients, dis-

cussing their relationship to our Main Theorem, and mentioning some related open problems.

The quantum cohomology ring QH∗(Grm,n) has been well-studied, with Pieri and Giambelli

formulas established using geometric techniques of Bertram [Ber97], an elementary linear-

algebraic approach of Buch [Buc03], and various other formulations which followed. However,

there is still much work to be done towards understanding the combinatorics of more general

Littlewood-Richardson coefficients; even the classical coefficients for H∗(Fln) remain elusive.

It would be interesting to attack this problem with the connection to k-Littlewood-Richardson

coefficients via the correspondence ΦFl. A natural starting point would be to capitalize on the

well-developed case of QH∗(Grm,n). Formulas for these quantum Littlewood-Richardson coef-

ficients could be traced through ΦGr, and the outcome compared to combinatorics supporting

k-Schur functions. The correspondence ΦGr identifies these quantum Littlewood-Richardson

coefficients with the k-Littlewood-Richardson coefficients arising in the k-Schur expansion of

a product of ordinary Schur functions. From there, similar comparisons with known special

cases for QH∗(Fln) to those obtained from ΦFl and its inverse could be made.

In [BCFF99], Bertram, Ciocan-Fontanine, and Fulton give a rim hook algorithm for comput-

ing quantum Littlewood-Richardson coefficients for QH∗(Grm,n) in terms of (signed) classical

Littlewood-Richardson coefficients. The rim hooks occurring in the correspondence ΦGr are a

special case of those in [BCFF99], though the comparisonΦGr is a quantum-to-affine one, rather

than quantum-to-classical. That is, the correspondence ΦGr expresses the quantum Littlewood-

Richardson coefficients for QH∗(Grm,n) in terms of certain (positive) k-Littlewood-Richardson

coefficients. As shown in Theorem 1.1 of [CM19], the rim hooks in ΦGr correspond precisely

to translation elements which are localized in the parabolic Peterson isomorphism comparing

H∗(Grn) to QH∗(Grm,n), suggesting an approach to generalizing ΦGr to other partial flag vari-

eties.

In [BKT03], Buch, Kresch, and Tamvakis identify the quantum Littlewood-Richardson co-

efficient c
ν,d
λ,µ for QH∗(Grm,n) with a classical Littlewood-Richardson coefficient for the two-step

flag variety whose Schubert classes are indexed by permutations with descents in positions

m ± d. In [LL12, Section 2], Leung and Li show that this “quantum-to-classical” formula of

[BKT03] can be recovered from the Peterson comparison formula. Although the third permu-

tation indexing the quantum Littlewood-Richardson coefficient in QH∗(Fln) under the image

of ΨPC as formulated in Theorem 3 also has descents in positions m ± d, this does not give

a direct relation between ΨPC and the comparison to two-step flag varieties in [BKT03] and

[LL12]. In particular, quantum Littlewood-Richardson coefficients for QH∗(Grm,n) of nonzero

degree always compare via ΨPC to quantum Littlewood-Richardson coefficients in QH∗(Fln)

with nonzero degree, and conversely, the Peterson comparison formula applied to the classical

two-step Littlewood-Richardson coefficients arising in [BKT03] gives degree zero Littlewood-

Richardson coefficients in QH∗(Fln).

Lam and Shimozono observe in Proposition 11.10 of [LS10] that at q = 1, the correspon-

denceΦGr of Lapointe and Morse is the composition of the parabolic Peterson isomorphism and

Postnikov’s strange duality ΓSD. Another perspective on the Main Theorem is that it completes

this story for arbitrary q, using the fact that the relation ΦFl is invertible. It would be natural to
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explore analogs of these relationships in other types, where one would expect the strange dual-

ity of Chaput, Manivel, and Perrin [CMP07] to be the critical link. In type A, the Main Theorem

also suggests a roadmap for possible generalizations of ΓSD to partial flag varieties beyond the

Grassmannian, for which there is no known analog of strange duality. An alternative path to ex-

ploring generalizations of the Main Theorem would be to work on the level of Schubert classes

following Cookmeyer and Milićević, using the parabolic Peterson isomorphism directly as in

Theorem 1.2 of [CM19].

Acknowledgements. EM gratefully acknowledges the support of the Max-Planck-Institut für

Mathematik, which hosted two long-term sabbatical visits in 2016 and 2020, during which

significant portions of this this work were completed. The authors wish to thank the anonymous

referee for pointing out several additional references.

2. Background on Quantum and Affine Schubert calculus

The purpose of this section is to formally state each of the five different equalities of quan-

tum and/or affine Littlewood Richardson coefficients appearing in the Main Theorem, and to

develop the combinatorial background for the corresponding quantum and affine Schubert cal-

culus; see references such as [Ful97, FGP97, Buc03, LLM+14] for more details. Each cor-

respondence is illustrated by a common running example, and the relationships among these

comparisons as stated in the Main Theorem is then demonstrated at the end of the section.

Throughout the paper, we fix integers m, n, r ∈ N such that m + r = n and define k = n − 1.

2.1. Quantum Littlewood-Richardson coefficients for the Grassmannian. The Grassman-

nian of m-dimensional subspaces of Cn shall be denoted by Grm,n. The cohomology ring

H∗(Grm,n) has a basis of Schubert classes, indexed by partitions λ = (r ≥ λ1 ≥ · · · ≥ λm ≥ 0). A

partition λ is typically represented in French notation as a Ferrers shape with λi boxes or cells

in the ith row, where the indexing is inherited from the embedding of λ in the N ×N plane; row

1 is the lowest row and row m is the highest. The number of rows of the partition is denoted by

l(λ) = m. We use this correspondence between partitions and Ferrers shapes without comment.

Any two partitions can be added coordinate-wise, inserting trailing zeros as necessary in order

that the number of parts is equal.

The Schubert basis for H∗(Grm,n) is then indexed by partitions which lie inside the rectangle

Rr := (rm) having r columns and m rows; we use rm to represent m copies of a row of size r

throughout. For λ ⊆ Rr, the corresponding Schubert class σλ ∈ H2|λ|(Grm,n), where |λ| is the

total number of boxes in λ. When λ ⊆ Rr, its complement is the partition

(1) λ∨ = (r − λm, . . . , r − λ1) .

If there is any ambiguity about the underlying rectangle containing λ ⊆ Rr, we use the notation

λ∨r . The Schubert classes σλ∨ form a Poincaré dual basis, meaning σµ ·σλ∨ = δµ,λ in H∗(Grm,n).

The quantum cohomology ring QH∗(Grm,n) is a commutative and associative graded algebra

over Z[q], where q is a parameter of degree n. As a Z[q]-module, the quantum cohomology

QH∗(Grm,n) := Z[q] ⊗ H∗(Grm,n), and thus also has a basis of Schubert classes indexed by

partitions λ ⊆ Rr, which we again denote by σλ since the context should always be clear; i.e.

QH∗(Grm,n) =
⊕

λ⊆Rr

Z[q]σλ.

The quantum product ∗ is a deformation of the classical product · in H∗(Grm,n). Given partitions

λ, µ ⊆ Rr, the quantum Littlewood-Richardson coefficients c
ν,d
λ,µ for the Grassmannian are defined

by

σλ ∗ σµ =
∑

ν,d

cν,dλ,µ qd σν,
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where the sum ranges over ν ⊆ Rr and d ∈ Z≥0. By degree considerations, cν,dλ,µ = 0 unless

|λ| + |µ| = |ν| + nd. Note that the quantum Littlewood-Richardson coefficient cν,dλ,µ equals the

three-point Gromov-Witten invariant 〈σλ, σµ, σν∨〉d.

2.1.1. Strange duality for the Grassmannian. There is a strange duality isomorphism on the

quantum cohomology ring, first proved by Postnikov for Grassmannians [Pos05], and then

generalized by Chaput, Manivel, and Perrin to all (co)miniscule homogeous spaces [CMP07].

This duality inverts the quantum parameter q, and thus curiously places rational curves on Grm,n

of high degree in bijection with those of low degree. We review a version of this strange duality

isomorphism ΓSD from [Pos05] in Theorem 1 below.

To state this result, one required statistic on partitions is the length of the the main diagonal

diag0(λ), which denotes the number of boxes of λwith equal row and column index. In addition,

each partition λ ⊆ Rr can be uniquely identified with a bit string bλ ∈ {0, 1}
n having m zeros and

r ones. To construct bλ, trace the boundary of the shape λ, starting from the upper left corner of

Rr, recording each vertical step as 0 and each horizontal step as 1; each 0 and 1 in the resulting

string is referred to as a bit. We also use this bijective correspondence between shapes and bit

strings freely without comment.

For any integer 1 ≤ a ≤ n, define the cycling map φa to act on the bit string bλ by cycling the

first a bits of bλ to the end of the string. Note that φn is the identity map, and that the inverse of

the map φa is given by φ−a = φn−a.

Theorem 1. [Pos05, Corollary 6.8] For any partitions λ, µ, ν ⊆ Rr and any integer d ∈ Z≥0, we

have

c
ν,d
λ,µ

ΓSD
==== c

φr(ν)∨,t

λ∨,µ∨
,

where t = diag0(ν∨) − d.

Proof. For any partition η ⊆ Rr, the bit string bη = b1b2 · · · bn relates to its complement by

reversing the bits bη∨ = bn · · · b2b1. Therefore, the bit strings of φr(ν)∨ and φ−r(ν∨) = φm(ν∨)

coincide, and the result now follows immediately from the equality cν,dλ,µ = c
φm(ν∨),t

λ∨,µ∨
in Corollary

6.8 of [Pos05]. �

We now consider an example which we will use to illustrate each of the theorems in this

section, as well as their relationship as stated in the Main Theorem.

Example 2. Let n = 5 and r = 2, and consider the partitions λ = (2, 2, 1) and µ = (1, 1, 0).

Using the quantum Pieri formula [Ber97], we can calculate the following product in QH∗(Gr3,5):

σ ∗ σ = qσ + qσ .

For the partition ν = (2, 0, 0) ⊂ R2 indexing the second summand and d = 1, we see that

c
ν,d
λ,µ = 1. To apply ΓSD, we compute that bν = 00110 so that φ2(ν) = 11000 ↔ (2, 2, 2).

Therefore φ2(ν)∨ = (0, 0, 0) is the empty shape. In addition, ν∨ = (2, 2, 0) so that diag0(ν∨) = 2

and d′ = 2 − 1 = 1. Finally, λ∨ = (1, 0, 0) and µ∨ = (2, 1, 1). Theorem 1 then says that

c
, 1

,

ΓSD
==== c

∅ , 1

,
.

2.2. Quantum Littlewood-Richardson coefficients for the flag variety. The complete flag

variety for Cn shall be denoted by Fln. The cohomology ring H∗(Fln) has a basis of Schubert

classes indexed by elements of the symmetric group S n, which are permutations on the set

[n] := {1, . . . , n}. The one-line or window notation for a permutation records the action of

w ∈ S n on the elements of [n] as w = [w1 · · ·wn], where wi = w(i). Given w ∈ S n, the
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corresponding Schubert class σw ∈ H2ℓ(w)(Fln), where the length of w ∈ S n is the number of

inversions

ℓ(w) = #{i < j | w(i) > w( j)}.

There is a unique element of greatest length in S n; this longest element is denoted by w0 and is

defined as a permutation by w0(i) = n + 1 − i for all i ∈ [n]. The Schubert classes σw0w form a

Poincaré dual basis, meaning σv · σw0w = δv,w in H∗(Fln).

The quantum cohomology ring QH∗(Fln) is a commutative and associative graded algebra

over Z[q] := Z[q1, . . . , qk], where each qi is a parameter of degree 2. As a Z[q]-module,

the quantum cohomology QH∗(Fln) := Z[q] ⊗ H∗(Fln), and thus also has a basis of Schubert

classes, which we again denote byσw. Given permutations u, v ∈ S n, the (generalized) quantum

Littlewood-Richardson coefficients cw,d
u,v for the flag variety are defined by

σu ∗ σv =
∑

w,d

cw,d
u,v qd σw,

where the sum ranges over w ∈ S n and d = (d1, . . . , dk) ∈ Z
k
≥0

, and we denote by qd = q
d1

1
· · · q

dk

k
.

By degree considerations, cw,d
u,v = 0 unless ℓ(u) + ℓ(v) = ℓ(w) + 2|d|, where |d| =

∑k
i=1 di. Note

that the quantum Littlewood-Richardson coefficient cw,d
u,v equals the three-point Gromov-Witten

invariant 〈σu, σv, σw0w〉d.

2.2.1. The Peterson comparison formula. The Peterson comparison formula stated by Peterson

[Pet97] and proved by Woodward [Woo05] relates the quantum Littlewood-Richardson coef-

ficients for the homogeneous space G/P to those of G/B, where G is any connected, simply

connected, semisimple complex reductive group. In Theorem 3, we specialize the Peterson

comparison formula for G = SLn to equate the quantum Littlewood-Richardson coefficients for

the Grassmannian to certain ones for the complete flag variety via ΨPC.

Every partition λ ⊆ Rr can be uniquely identified with a permutation wλ ∈ S n defined by

(2) wλ(i) = λm−i+1 + i

for 1 ≤ i ≤ m, and then ordering the remaining values wλ(m + 1) < · · · < wλ(n). A permutation

w ∈ S n has a descent at i if w(i) > w(i + 1), and w is called a Grassmann permutation if it has

at most one descent. The map λ 7→ wλ gives a bijection between partitions in Rr and the set of

Grassmann permutations with a descent at m, which we denote by S m
n (and the empty partition

maps to the identity permutation). The inverse map is defined by w 7→ λw, where

(3) λw = (w(m) − m, . . . ,w(1) − 1) ⊆ Rr.

The subgroup S m × S r is the Weyl group WP for the maximal parabolic subgroup P such that

Grm,n � SLn(C)/P, and the longest element of this subgroup is

(4) wP
0 = [m · · · 1 | n · · ·m + 1].

Note that Poincaré duality in QH∗(Grm,n) can also be realized via the relation

(5) wλ∨ = w0wλw
P
0 .

We specialize the Peterson comparison formula from [Woo05] to compare the quantum

Littlewood-Richardson coefficients for QH∗(Grm,n) and QH∗(Fln) in Theorem 3; the proof of

Theorem 3 follows in Section 3. We remark that the key combinatorial identities in the proof

of Theorem 3 appeared in the work of Leung and Li, albeit using somewhat different language;

see [LL10, Lemma 3.6] and [LL12, Section 2.3].

Theorem 3. Let u, v,w ∈ S m
n , and fix any integer 0 ≤ d ≤ min{r,m}. Then

c
λw, d
λu,λv

ΨPC
===== c

wwP
0

w
P′

d
0
,d

u,v
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where

d = (0m−d, 1, 2, . . . , d − 1, d, d − 1, . . . , 2, 1, 0r−d) ∈ Zk
≥0, and(6)

w
P′

d

0
= [m − d · · · 1 | m · · ·m − d + 1 | m + d · · ·m + 1 | n · · ·m + d + 1].(7)

Example 4. To illustrate the statement of the Main Theorem, we continue by applying Theorem

3 to the result of Example 2 illustrating ΓSD. We thus have λu = (1, 0, 0) and λv = (2, 1, 1) ⊂ R2.

Applying (2), we recover the permutations u = [12435] and v = [23514], each of which has

a single descent in position n − r = 3. The empty shape λw = (0, 0, 0) produces the identity

permutation w = [12345].

Specializing formula (4) for the longest element of S 3 × S 2, we have wP
0 = [32154], and

applying formula (7) for w
P′

d

0
with d = 1 gives us w

P′
d

0
= [21345]. Composing, we obtain

wwP
0
w

P′
d

0
= [23154]. Finally, we have d = (03−1, 1, 02−1) = (0, 0, 1, 0) by Equation (6). There-

fore, Theorem 3 says that

c∅,1
,

ΨPC
===== c

[23154] , (0,0,1,0)

[12435] , [23514]
.

2.2.2. Permutations and the transpose map. The natural map Fln → Fln which identifies an

r-dimensional subspace of V = Cn with an m-dimensional subspace of V∗ induces an iso-

morphism on QH∗(Fln), which acts on Schubert classes as conjugation by w0. We denote this

induced map by

ΓT : QH∗(Fln)→ QH∗(Fln)

σw 7→ σw′ ,

where for a permutation w = [w1 · · ·wn] ∈ S n in one-line notation, the conjugate permutation

w′ = w0ww0 is given by w′(n + 1 − i) = n + 1 − w(i) for all i ∈ [n]. We then have the following

equality of quantum Littlewood-Richardson coefficients

(8) cw,d
u,v

ΓT
==== cw′,d′

u′,v′ ,

where the vector d′ ∈ Zk
≥0

is defined by d′
i
= dn−i for 1 ≤ i ≤ k. We refer to an application of ΓT

as the flag transpose.

The notation ΓT is derived from the fact that the corresponding map on QH∗(Grm,n) acts on

a Schubert class by σλ 7→ σλ′ , where λ′ is the transpose obtained by exchanging the rows and

columns of λ. Note that

(9) wλ′ = w0wλw0 = w′λ.

Example 5. Consider u = [12435], v = [23514],w = [23154] ∈ S 5 and d = (0, 0, 1, 0)

from Example 4 illustrating ΨPC. Applying the flag transpose on QH∗(Fl5) and recalling that

π′(n + 1 − i) = n + 1 − π(i) for any π ∈ S n gives us

c
[23154] , (0,0,1,0)

[12435] , [23514]

ΓT
==== c

[21534] , (0,1,0,0)

[13245] , [25134]
.

We now collect some facts relating the transpose to the bijection between partitions and

Grassmann permutations that we will use in Section 5.

Lemma 6. For λ = (λ1, . . . , λ j) ⊆ Rn− j, write λ′ = (λ′1, . . . , λ
′
n− j) ⊆ R j for the transpose

partition to λ, and consider the transpose dual partition (λ′)∨ j = (λ∨n− j)′ ⊆ R j. Then

wλ = [λ j + 1 · · ·λ1 + j | j + 1 − λ′1 · · · n − λ
′
n− j],

w(λ
∨n− j )′ = [ j + 1 − λ′1

. . . n − λ′n− j | λ j + 1 · · ·λ1 + j].
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Proof. Recall from (2) that for λ ⊆ Rn− j, the first j entries of the one-line notation of its corre-

sponding permutation wλ = [w1 · · ·w j | w j+1 · · ·wn] ∈ S
j
n are

(10) wλ = [w1 · · ·w j | · · · ] = [λ j + 1 . . . λ1 + j | · · · ].

Consider (λ∨n− j)′, the dual to the transpose of the partition λ. Combining (9) with (5) applied to

the parabolic subgroup P j such that Gr j,n � SLn(C)/P j, we have

w(λ
∨n− j )′ = w0wλ∨n− j w0 = w0(w0wλw

P j

0
)w0 = wλw

P j

0
w0,

where w
P j

0
= [ j · · · 1 | n · · · j + 1] so that w

P j

0
w0 = [ j + 1 · · · n | 1 · · · j], and therefore

(11) w(λ
∨n− j )′ = [w j+1 · · ·wn | w1 · · ·w j].

The complement to λ′ in R j is given by (λ′)∨ j = ( j− λ′
n− j
, . . . , j− λ′

1
) ⊆ R j, so by (2), we obtain

the first n − j entries of the one-line notation of its corresponding permutation

(12) w(λ′)
∨ j = [( j − λ′1) + 1 · · · ( j − λ′n− j) + (n − j) | · · · ] = [w j+1 · · ·wn | · · · ].

Since w(λ′)
∨ j = w(λ

∨n− j )′ , comparing (11) with the values of w1, . . . ,wn identified in (10) and (12)

gives the result. �

2.3. Affine Littlewood-Richardson coefficients. For G = SLn, the affine Grassmannian is

defined as Grn = G(C((t))/G(C[[t]]). The homology ring H∗(Grn) has a basis of affine Schubert

classes, indexed by the set Pk of k-bounded partitions consisting of those partitions having

parts no larger than k. Let Λ denote the ring of symmetric functions over Z in the variables

(x) = (x1, x2, . . . ), and denote by hi(x) the homogeneous symmetric function of degree i. By

[Bot58], there is an isomorphism H∗(Grn) � Λn, where Λn denotes the subring of Λ generated

by hi(x) for 0 ≤ i ≤ k. Theorem 7.1 of [Lam08] then says that the Schubert classes are

represented by the k-Schur functions of [LM07] under Bott’s isomorphism.

Given a k-bounded partition λ ∈ Pk, the corresponding k-Schur function is denoted by s
(k)

λ .

For λ, µ ∈ Pk, the k-Littlewood-Richardson coefficients C
η,(k)

λ,µ , also called affine Littlewood-

Richardson coefficients, are defined by

s
(k)

λ s(k)
µ =

∑

η

C
η,(k)

λ,µ s(k)
η ,

where the sum ranges over η ∈ Pk. Note that C
η,(k)

λ,µ = 0 unless |µ| + |λ| = |η|. Whenever

ℓ(λ)+λ1 ≤ n, the k-Schur function s
(k)

λ equals the usual Schur function sλ by [LM07, Prop. 39],

and so C
η,(k)

λ,µ equals the classical Littlewood-Richardson coefficient c
η
λ,µ in this case.

2.3.1. Quantum-to-affine correspondence for the Grassmannian. The Peterson isomorphism

implies that all quantum Littlewood-Richardson coefficients arise as affine ones [LS10]. As

such, the k-Schur functions provide a powerful tool for quantum Schubert calculus. In The-

orem 7, we review the correspondence ΦGr of Lapointe and Morse which specifies precisely

which quantum and affine Littlewood-Richardson coefficients coincide in the case of the Grass-

mannian.

Given partitions µ ⊆ λ, the skew shape λ/µ is the set of cells which are in λ, but not in µ. A

skew shape is connected provided that any cells which share a vertex also share a full edge. An

n-rim hook is a connected skew shape which contains n cells, but does not contain any 2 × 2

subdiagrams. The head of an n-rim hook is its southeasternmost cell. Given λ ⊆ Rr and any

d ∈ N, we define λ⊕ d to be the partition in Pk obtained by adding d different n-rim hooks to λ
so that all d heads lie in column r.
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Theorem 7. [LM08, Theorem 18] For any partitions λ, µ, ν ⊆ Rr and any d ∈ Z≥0 such that

|λ| + |µ| = |ν| + nd, we have

cν,dλ,µ
ΦGr
==== C

ν⊕d,(k)

λ,µ .

Example 8. To illustrate the Main Theorem, we now instead apply Theorem 7 to the original

quantum Littlewood-Richardson coefficient from Example 2. Recall that n = k + 1 = 5 and

r = 2, and consider λ = (2, 2, 1), µ = (1, 1, 0), ν = (2, 0, 0) ⊂ R2. When d = 1, we have

ν ⊕ 1 =

×

×

×

× ×

,

where the cells of the original shape appear in bold, and we add the single 5-rim hook indicated

by the cells containing an ×, with the head lying in column r = 2. Theorem 1 then says that

c , 1

,

ΦGr
==== C

ν⊕1 , (k)

,
.

2.3.2. Quantum-to-affine correspondence for the flag variety. Every quantum Littlewood-Richardson

coefficient for the flag variety also arises as an affine one, as a direct consequence of the Pe-

terson isomorphism; see [LS10, Corollary 9.3]. We conclude this section by reviewing a com-

binatorial interpretation of this fact which follows from [LS12, Theorem 1.1], rephrased in a

special case as Φ−1
Fl

in Theorem 9 below, following the treatment in [BMPS20, Sec. 7].

Recall that Ri is the partition defined as Ri = (in−i), and note that for i ∈ [k], the rectangle Ri

is a k-bounded partition, which we refer to as a k-rectangle. Given λ ∈ Pk, denote by λ∪Ri the

weakly decreasing arrangement of the parts of λ and the parts of Ri. Conversely, if µ ∈ Pk can

be written as µ = λ ∪ Ri for some λ ∈ Pk, we say that the k-rectangle Ri is removable from µ,
and the result of removing the k-rectangle Ri from µ is the partition λ. Given any µ ∈ Pk, there

is a unique irreducible k-bounded partition, denoted µ↓, obtained from µ by removing as many

k-rectangles as possible.

Given a permutation w = [w1 · · ·wn] ∈ S n, its inversion sequence Inv(w) is defined by

Invi(w) := #{ j > i : wi > w j}. Following [BMPS20], we define an injection

λ̃ : S n → P
k by

w 7→ ζ(w)′, where

ζi(w) := Invi(w0w) +

(

n − i

2

)

, for i ∈ [k].(13)

For any w ∈ S n, set λ̃w := λ̃(w), similar to our notation for associating a Grassmann permutation

u with the partition λu. The descent set of w ∈ S n is defined as D(w) = {i ∈ [k] | wi > wi+1},

and the descent vector of w is defined to be D(w) =
∑

i∈D(w) εi, where εi ∈ Z
k denotes the ith

standard basis vector; we set ε0 = εn = 0 by convention. Given any d = (d1, . . . , dk) ∈ Z
k, we

define an associated vector by

(14) d̃ :=
∑

i∈[k]

di(εi−1 − 2εi + εi+1) ∈ Zk.

Theorem 9 ([LS12, BMPS20]). For any permutations u, v,w ∈ S n and any d ∈ Zk
≥0

such that

d̃ = D(w) − D(u) − D(v), we have

cw,d
u,v

Φ−1
Fl
===== C

λ̃↓w,(k)

λ̃
↓
u , λ̃
↓
v

.
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As the notation suggests, the correspondence presented in Theorem 9 is inverse to ΦFl from

the Main Theorem. We elect to present here the version of this relationship which is both some-

what familiar from the literature on the Peterson isomorphism, and requires fewer technicalities

to formally state. See Theorem 26 in Section 4 for the precise definition of ΦFl.

Example 10. To conclude our illustration of the Main Theorem, we now apply Theorem 9

to the quantum Littlewood-Richardson coefficient from Example 5 illustrating ΓT. Denote the

resulting permutations in S 5 by u = [13245], v = [25134],w = [21534], and set d = (0, 1, 0, 0).

We see that D(u) = D(v) = ε2 and D(w) = ε1 + ε3, while d̃ = ε1 − 2ε2 + ε3 by (14), so that

indeed d̃ = D(w) − D(u) − D(v).

We illustrate the construction λ̃↓w on the permutation w = [21534] in detail. Compute that

w0w = [45132], in which case Inv(w0w) = (3, 3, 0, 1), and so λ̃(w) = ζ(w)′ where ζ(w) =

(3, 3, 0, 1)+(6, 3, 1, 0) = (9, 6, 1, 1) by formula (13). Transposing, λ̃w = (4, 2, 2, 2, 2, 2, 1, 1, 1) =

(2, 2, 1, 1, 1) ∪ R4 ∪ R2 ∈ P
4, where we have colored the parts of the removable k-rectangles

R4 and R2 in red and blue, respectively. Since no further k-rectangles are removable, we have

λ̃↓w = (2, 2, 1, 1, 1) ∈ P4. In like manner, λ̃↓u = (2, 2, 1) and λ̃↓v = (1, 1). Theorem 9 then says that

(15) c
[21534] , (0,1,0,0)

[13245] , [25134]

Φ−1
Fl
===== C

, (4)

,
.

In particular, observe that the resulting affine Littlewood-Richardson coefficient is identical to

the output from Example 8 illustrating ΦGr.

2.4. Illustrating the Main Theorem. To conclude this section, we unify the examples used

to illustrate the results in a single diagram, in order to more clearly demonstrate the Main

Theorem. Given the quantum Littlewood-Richardson coefficient c
ν,d
λ,µ for QH∗(Gr3,5) indexed by

λ = (2, 2, 1), µ = (1, 1, 0), ν = (2, 0, 0) and d = 1, the following quantum and affine Littlewood-

Richardson coefficients are equal:

c
∅ , 1

,
c

[23154] , (0,0,1,0)

[12435] , [23514]

c , 1

,

C
, (4)

,
c

[21534] , (0,1,0,0)

[13245] , [25134]

ΨPC

ΓT

ΓSD

ΦGr

Φ−1
Fl

Note that we have visualized each equality in the diagram above using an arrow to indicate

the direction in which we have chosen to apply the stated correspondence in this particular

example. Many of these relationships are reversible, of course, the most important of which for

our purposes is Φ−1
Fl

; see Theorem 26 in Section 4, and compare Examples 10 and 27.

3. The Peterson comparison formula for the Grassmannian

The goal of this section is to prove Theorem 3 by specializing the Peterson comparison for-

mula proved by Woodward [Woo05] to the case of the type Ak Grassmannian. After reviewing

the required root system preliminaries in Section 3.1, we state the type-free version of the Peter-

son comparison formula in Section 3.2. We then specialize to the context of the Grassmannian

Grm,n in Section 3.3, where we prove Theorem 3.

3.1. Root system preliminaries. Let G be a connected, simply connected, semisimple com-

plex reductive group of rank k. Fix a Borel subgroup B and a split maximal torus T , and denote

the Weyl group by W. The Weyl group is a Coxeter group (W, S ), where the generators are
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denoted by si ∈ S . Fix a Cartan subalgebra h of the Lie algebra g = Lie(G). Denote by R the

set of roots, and denote by R+ those roots which are positive with respect to B. Fix an ordered

basis ∆ = {αi}
k
i=1

of simple roots in h∗, each of which corresponds to a unique simple reflection

si ↔ αi. There is a basis ∆∨ = {α∨i } for R∨ of simple coroots in h, and these bases are dual with

respect to the pairing 〈·, ·〉 : h × h∗ → Z. Denote the coroot lattice by Q∨ =
⊕

Zα∨i . For an

element γ =
∑

ciα
∨
i ∈ Q∨, we define the support of γ to be the subset Supp(γ) ⊆ [k] of indices

i such that ci , 0.

Denote by P a standard parabolic subgroup of G, equivalently P ⊇ B, and recall that the

standard parabolics are in bijection with subsets ∆P ⊆ ∆. We denote the corresponding coroot

lattice by Q∨P =
⊕

αi∈∆P
Zα∨i . The positive roots for P, denoted by R+P, are those roots in R+

which are formed as nonnegative linear combinations of the roots in ∆P. The Weyl group WP

for the parabolic P is generated by those simple reflections si which correspond to the roots in

∆P, and its longest element is denoted by wP
0 . The set of minimal length coset representatives

in the quotient W/WP will be denoted by WP.

3.1.1. Maximal parabolic subgroups in type Ak. In this paper, we focus on the case in which

G = SLn, the standard Borel is the subgroup of upper-triangular matrices, and the torus is the

subgroup of diagonal matrices. In this case, the Weyl group is the symmetric group S n, and

each simple transposition si for i ∈ [k] can be identified with a reflection in the k-dimensional

subspace V = {~v ∈ Rn |
∑n

i=1 vi = 0} of Rn. In particular, the generator si reflects across the

hyperplane orthogonal to the simple root αi = ei − ei+1 ∈ ∆, which corresponds to acting on

~v ∈ Rn by interchanging entries vi and vi+1. The positive roots are then of the form αi j := ei − e j

where i < j. Since G = SLn is simply-laced, the roots and coroots coincide, and so the basis of

simple coroots is again given by α∨
i
= ei − ei+1. In addition, the pairing 〈·, ·〉 between coroots

and roots is the standard Euclidean inner product.

For the majority of Section 3, we further specialize to the situation in which P is a maximal

parabolic subgroup of G = SLn. In this case, ∆P = ∆\{αm} for a single index m ∈ [k], and

the quotient G/P � Grm,n. The Weyl group WP � S m × S r, which has longest element wP
0
=

[m · · · 1 | n · · ·m + 1]. The positive roots for P are given by

R+P = {ei − e j | 1 ≤ i < j ≤ m − 1 or m + 1 ≤ i < j < n},

so that the quotient Q∨/Q∨
P
� Zα∨m. The minimal length coset representatives in WP are those

permutations in S m
n , and are thus in bijection with partitions in the rectangle Rr.

3.2. The Peterson comparison formula for G/P. We now review the Peterson comparison

formula relating the quantum Littlewood-Richardson coefficients for any homogeneous space

G/P to certain ones for G/B, with the goal of specializing to the case of the Grassmannian

and providing a proof of Theorem 3. We largely follow the treatment of Lam and Shimozono

[LS10], though this formula was originally stated by Peterson [Pet97] and proved by Woodward

[Woo05].

To any vector d = (d1, . . . , dk) ∈ Z
k , we can associate a unique coroot γd = d1α

∨
1
+· · ·+dkα

∨
k
∈

Q∨, and vice versa. Since H2(G/B) � Q∨, the degree of any curve on G/B can be associated

with an element of Q∨, and we use this isomorphism to identify a degree with a coroot γd ∈ Q∨

or a vector d ∈ Zk interchangeably. Similarly, H2(G/P) � Q∨/Q∨P, and so the degree of a curve

on G/P can be identified with an element in the quotient γdP
∈ Q∨/Q∨

P
, or interchangeably with

a vector dP ∈ Z
p, where p = #∆\∆P.

We now state the Peterson comparison formula as it appears in Theorem 10.15 from [LS10],

originally proved in Lemma 1 and Theorem 2 of [Woo05].

Theorem 11. [Woo05, LS10] Fix a parabolic subgroup P, and denote by πP : Q∨ → Q∨/Q∨P
the natural projection.
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(1) For every γdP
∈ Q∨/Q∨

P
, there exists a unique γdB

∈ Q∨ such that both πP(γdB
) = γdP

and 〈γdB
, α〉 ∈ {0,−1} for all α ∈ R+

P
.

(2) For any u, v,w ∈ WP and a fixed degree dP, we have

c
w0wwP

0
,dP

u,v = c
w0wwP′

0
, dB

u,v

where P′ is the parabolic subgroup defined by ∆P′ = {α ∈ ∆P | 〈γdB
, α〉 = 0}.

Woodward’s original proof of Theorem 11 uses the geometry of principal bundles over al-

gebraic curves arising in [AB83, Ram96], but these arguments unfortunately do not provide an

explicit means for directly computing dB or wP′

0 . We illustrate Theorem 11 in the following

example, which shows that, in principle, one can calculate the vector dB and the element wP′

0

using this version of the theorem.

Example 12. Suppose that G/P � Gr3,5, which means that P is the maximal parabolic in

G = SL5 corresponding to ∆P = {α1, α2, α4}. From Example 2, we know that c
λw,1
λu,λv
= 1,

where λu = (1, 0, 0), λv = (2, 1, 1), λw = (0, 0, 0) are the partitions in R2 corresponding to the

Grassmann permutations u = [12435], v = [23514],w = [12345] in S 3
5
.

Any lift of the degree dP = 1, which corresponds to the coroot γdP
= α∨

3
∈ Q∨/Q∨

P
, is

necessarily of the form γdB
= d1α

∨
1
+ d2α

∨
2
+ 1α∨

3
+ d4α

∨
4
. For this parabolic, R+

P
= {α1, α2, α1 +

α2, α4}, and we can compute directly that

〈α∨3 , α1〉 = 0 and 〈α∨3 , α2〉 = 〈α
∨
3 , α1 + α2〉 = 〈α

∨
3 , α4〉 = −1.

Therefore, in fact γdB
= α∨

3
itself satisfies 〈γdB

, α〉 ∈ {0,−1} for all α ∈ R+
P
. By the uniqueness

in part (1) of Theorem 11, we must then have dB = (0, 0, 1, 0).

The same calculation illustrates that ∆P′ = {α1} so that the longest element of the parabolic

subgroup WP′ = 〈s1〉 equals wP′

0
= s1. Therefore, by part (2) of Theorem 11, we have

c
∅,1

,
= c

[23154] , (0,0,1,0)

[12435] , [23514]
,

where the quantum Littlewood-Richardson coefficient on the righthand side is for the complete

flag variety Fl5; compare Example 4 obtained via ΨPC.

3.3. The Peterson comparison formula for the Grassmannian. Any individual calculation

comparing a particular quantum Littlewood-Richardson coefficient for G/P to one from G/B
using the Peterson comparison formula from Theorem 11 can be carried out in a manner similar

to Example 12. Theorem 3 provides a closed formula for both the degree dB and the element

wP′

0
occurring in Theorem 11, in the special case where P is a maximal parabolic subgroup of

G = SLn. We remark that formulas for both dB and wP′

0 in this case were obtained by Leung

and Li, though using somewhat different language; see [LL10, LL12].

For the remainder of Section 3, we specialize to the situation of G = SLn and P the maximal

parabolic subgroup such that ∆P = ∆\{αm} for some m ∈ [k]. For G/P � Grm,n, a degree dP is a

single nonnegative integer, and so we typically omit both the subscript and vector notation and

write d for the degree.

We now define some auxiliary notation which will be useful in describing the parabolic

subgroup arising in part (2) of Theorem 11. Denote by

∆Pi j
:= {αi, αi+1, . . . , α j},

where by convention ∆Pi j
= ∅ if i > j. We then have the corresponding Weyl group

WPi j
= 〈si, si+1, . . . , s j〉,

where WPi j
is trivial if i > j. We can express the window for the longest element in WPi j

maximizing the number of inversions as follows:

(16) w
Pi j

0
= [1 · · · i − 1 | j + 1 · · · i | j + 2 · · · n].
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Of course, if WPi j
is trivial, then w

Pi j

0
is simply the identity in S n.

We can now state the key proposition from which Theorem 3 follows; compare [LL10,

Lemma 3.6] and [LL12, p. 3718]. Since the parabolic subgroup P′ in Theorem 11 depends

on the fixed degree d, we indicate this dependence by denoting P′
d

:= P′ henceforth.

Proposition 13. Suppose that ∆P = ∆\{αm}, and fix an integer d such that 0 ≤ d ≤ min{m, r}.
Then

(17) dB = (0m−d, 1, 2, . . . , d − 1, d, d − 1, . . . , 2, 1, 0r−d).

In addition, ∆P′
d
= ∆\{αm−d, αm, αm+d}, and so we can write

(18) w
P′

d

0
= w

P1,m−d−1

0
· w

Pm−d+1,m−1

0
· w

Pm+1,m+d−1

0
· w

Pm+d+1,k

0
.

Before proving a proof, we provide an example which illustrates how to easily compute the

values of dB and w
P′

d

0
using Proposition 13.

Example 14. Consider Gr4,9 so that m = 4 and r = 5. We use Proposition 13 to compute both

dB and w
P′

d

0
for any degree 0 ≤ d ≤ 4. The degree dB has a palindromic nature, and is easily

derived by placing the value d in the mth entry and decreasing in both directions.

d dB w
P′

d

0

0 (0, 0, 0, 0, 0, 0, 0, 0) [4321 ||| 98765]

1 (0, 0, 0, 1, 0, 0, 0, 0) [321 | 4 | 5 | 9876]

2 (0, 0, 1, 2, 1, 0, 0, 0) [21 | 43 | 65 | 987]

3 (0, 1, 2, 3, 2, 1, 0, 0) [1 | 432 | 765 | 98]

4 (1, 2, 3, 4, 3, 2, 1, 0) [| 4321 | 9765 | 9]

Note that each of the elements w
Pi j

0
occurring in (18) acts on a disjoint subset of [n]. We may

thus record the window for the permutation w
P′

d

0
using the following algorithm:

(1) Draw the window for the identity permutation.

(2) Draw one blue line at position m; i.e. between m and m + 1.

(3) Draw two red lines at positions m ± d; note that 0 ≤ m ± d ≤ n since by hypothesis

0 ≤ d ≤ min{m, r}, which means that both of these red lines fit in the window.

(4) Reverse the numbers within each of the groups separated by these colored lines.

For the proof of Proposition 13, it will be helpful to first calculate several of the inner prod-

ucts which will arise in the course of the proof, which we record in the following lemma.

Lemma 15. Fix an integer d such that 0 < d ≤ min{m, r}. If dB is the palindromic vector

defined in (17), then γB := γdB
satisfies

(19) 〈γB, α j〉 =























2, if j = m,

−1, if j = m ± d,

0, otherwise.

In particular, 〈γB, α j〉 ∈ {0,−1} for all α j ∈ ∆P.

Proof. Start by expressing γB explicitly as

(20) γB = α
∨
m−d+1 + 2α∨m−d+2 + · · ·+ (d − 1)α∨m−1 + dα∨m + (d − 1)α∨m+1 + · · ·+ 2α∨m+d−2 + α

∨
m+d−1.

We thus see that

Supp(γB) = {m − d + 1, . . . ,m + d − 1}.
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Note that the hypothesis 0 < d ≤ min{m, r} guarantees that m − d + 1 ≤ m + d − 1, so that

Supp(γB) is a set containing exactly 2d − 1 consecutive integers in [k].

We now fix any α j ∈ ∆ and directly compute 〈γB, α j〉. Recall that in type Ak we have

(21) 〈α∨i , α j〉 =























2, if i = j,

−1, if |i − j| = 1,

0, otherwise.

The proof thus naturally divides into cases, depending on the relationship between j and

Supp(γB).

Case (1): j < m − d. Since j ≤ m − d − 1, then for any i ∈ Supp(γB), we have |i − j| ≥ 2.

Therefore, by linearity of the pairing and Equation (21) we have 〈γB, α j〉 = 0.

Case (2): j = m−d. If j = m−d, then there exists a unique i ∈ Supp(γB) such that |i− j| = 1;

namely i = m− d + 1, for which |i− j| = 1. For all other p ∈ Supp(γB), we have |p− j| ≥ 2, and

so these each contribute 0 to 〈γB, α j〉. By Equation (21), we then have 〈γB, α j〉 = −1.

Case (3): m − d + 1 ≤ j ≤ m − 1. Here it is natural to further divide into two subcases. First

suppose that j = m − d + 1, in which case there are exactly two indices i ∈ Supp(γB) such that

|i − j| ≤ 1; namely i = m − d + 1 and i = m − d + 2. Therefore, by linearity and Equation (21)

applied to (20), we have 〈γB, α j〉 = 1(2) + 2(−1) = 0 when j = m − d + 1.

Now suppose that m − d + 1 < j ≤ m − 1. For all such j, there are exactly three values for

i ∈ Supp(γB) such that |i − j| ≤ 1; namely i ∈ { j − 1, j, j + 1}. The coefficients of the coroots

α∨
j−1
, α∨j , and α∨

j+1
in γB are always three consecutive increasing positive integers a − 1, a, a + 1

for some a ∈ {2, . . . , d − 1}. Combining Equations (20) and (21), we have 〈γB, α j〉 = (a −

1)(−1) + a(2) + (a + 1)(−1) = 0 for all m − d + 1 < j ≤ m − 1.

Case (4): j = m. In this case, there are only three values for i ∈ Supp(γB) such that

|i − j| ≤ 1; namely i ∈ {m − 1,m,m + 1}. Therefore, by Equations (20) and (21), we see that

〈γB, α j〉 = (d − 1)(−1) + d(2) + (d − 1)(−1) = 2, as claimed.

All remaining cases in which j > m follow by the symmetry of γB. �

We are now prepared to prove Proposition 13, from which the proof of Theorem 3 then

directly follows.

Proof of Proposition 13. Fix an integer 0 ≤ d ≤ min{m, r}, and define the vector dB as in

Equation (17). We first verify that d 7→ dB under the Peterson comparison formula of Theorem

11. Under the projection map πP : Q∨ → Q∨/Q∨
P

we clearly have πP(dB) = d, since the value

d is placed in the mth entry of dB and thus corresponds to the coefficient of α∨m in γB := γdB
.

Regarding γB, it thus remains only to check that 〈γB, α〉 ∈ {0,−1} for all α ∈ R+P.

We first observe that if d = 0, then dB = (0, . . . , 0) as well, in which case we automatically

have 〈γB, α〉 = 0 for all α ∈ R+
P
. Now suppose that 0 < d ≤ min{m, r}, and recall that Lemma 15

calculates 〈γB, α j〉 for any simple root α j ∈ ∆P. Suppose now that α ∈ R+
P

is not a simple root,

say α = αi j = αi + · · ·+ α j. Since R+P is spanned by ∆P = ∆\{αm}, then either 1 ≤ i < j ≤ m − 1

or m + 1 ≤ i < j ≤ k. Either way, by Equation (19) of Lemma 15, we see that 〈γB, αi j〉 is the

sum of at most one −1 and 0’s otherwise. Therefore, for any 0 ≤ d ≤ min{m, r}, we have shown

that 〈γB, α〉 ∈ {0,−1} for any α ∈ R+
P
. By the uniqueness of dB in Theorem 11, we thus have

that d corresponds to dB under the Peterson comparison formula.

We now verify our formula for w
P′

d

0
, for which we must compute∆P′

d
= {α ∈ ∆P | 〈γB, α〉 = 0}.

First suppose that d = 0, in which case dB = (0, . . . , 0) so that γB = 0 ∈ Q∨ as well. Therefore,

〈γB, α〉 = 0 for all α ∈ ∆P, and so ∆P′
d
= ∆P. Now suppose 0 < d ≤ min{m, r}, in which case

Equation (19) of Lemma 15 says that

∆P′
d
= {α ∈ ∆P | 〈γB, α〉 = 0} = ∆P\{αm−d, αm+d} = ∆\{αm−d, αm, αm+d}.
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Moreover, note that this formula also matches ∆P′
d
= ∆P when d = 0. Therefore, for any 0 ≤ d ≤

min{m, r}, we see that WP′
d

is generated by the simple roots corresponding to∆\{αm−d, αm, αm+d};

namely the generators of the parabolic subgroups WP1,m−d−1
, WPm−d+1,m−1

, WPm+1,m+d−1
, and WPm+d+1,k

.

(Recall that WPi j
is defined to be trivial if i > j, so in the d = 0 case we really only have

two nontrivial parabolic subgroups, namely WP1,m−1
and WPm+1,k

. A similar comment applies

when d = min{m, r}.) Finally, observe that each of the subgroups WPi j
listed above acts on

a disjoint subset of [n]. Therefore, the longest element in WP′
d

will equal the product of the

longest elements in each of these WPi j
, as claimed in (18). �

We remark that the hypothesis 0 ≤ d ≤ min{r,m} on the degree d appearing in Theorem 3,

which is formally necessary in the proof of the key Proposition 13, does not impose any actual

constraints on the quantum Littlewood-Richardson coefficients to which Theorem 3 applies.

Indeed, by degree considerations, if cν,dλ,µ , 0 for some λ, µ, ν ⊆ Rr and d ∈ Z, then in fact

0 ≤ d ≤ min{r,m}.
The proof of Theorem 3 now follows directly from Proposition 13.

Proof of Theorem 3. Let u, v,w ∈ S m
n , and fix an integer 0 ≤ d ≤ min{m, r}. Apply Proposition

13 to obtain the stated formula for d = dB in Theorem 3. Recall from Proposition 13 that

w
P′

d

0
= w

P1,m−d−1

0
· w

Pm−d+1,m−1

0
· w

Pm+1,m+d−1

0
· w

Pm+d+1,k

0
. Applying Equation (16) to these w

Pi j

0
, each of

which acts on a disjoint subset of [n], we thus have

w
P′

d

0
= [m − d · · · 1 | m · · ·m − d + 1 | m + d · · ·m + 1 | n · · ·m + d + 1],

which is the stated formula for w
P′

d

0
in Theorem 3. The equality of quantum Littlewood-

Richardson coefficients via ΨPC then follows directly from part (2) of Theorem 11. �

4. Composing the affine Littlewood-Richardson comparisons

In this section, we formalize the correspondence ΦFl on those affine Littlewood-Richardson

coefficients in the image of ΦGr. In the Main Theorem, we apply the correspondence ΦGr

to quantum Littlewood-Richardson coefficients indexed by partitions of the form λu for some

Grassmann permutation u ∈ S m
n . The partial inverse to the map λ̃↓ from Section 2.3.2, which we

define on Grassmann permutations in Section 4.1, will thus be useful for studying the compo-

sition ΦFl ◦ΦGr. As we will see in Section 4.3, however, the third k-bounded partition indexing

the affine Littlewood-Richardson coefficients appearing in the image of ΦGr corresponds to a

permutation with two descents. In Section 4.2, we thus extend the results from Section 4.1 to

permutations having two descents. The main result of this section is then Theorem 26 in Sec-

tion 4.3, which formally defines ΦFl and provides an inverse to the relation Φ−1
Fl

from Theorem

9.

4.1. The map λ̃↓ on Grassmann permutations. Recall the function λ̃↓ : S n → Pk from

Section 2.3.2, which maps w 7→ λ̃↓w by first transposing the k-bounded partition ζ(w) defined in

(13) to obtain λ̃w, and then removing all possible k-rectangles to yield the irreducible k-bounded

partition λ̃↓w.

Lemma 16. [BMPS20, Lemma 7.5] If u ∈ S
j
n, then

(22)
(

λ̃↓u
)′

=
(

n − j − Inv1(u), . . . , n − j − Inv j(u)
)

⊆ Rn− j.

For any u ∈ S
j
n, comparing Equations (2) and (3) with m = j, one sees that an alternate

formula for the partition λu ⊆ Rn− j is given by

(23) λu = (Inv j(u), . . . , Inv1(u)).
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Momentarily denote by λ := λu = (λ1, . . . , λ j), so that λ j−i+1 = Invi(u) as in formula (23).

Comparing the righthand sides of Equations (1) and (22) with m = j, we thus see that the

complement of λu in Rn− j is given by λ
∨n− j

u =
(

λ̃↓u
)′

.We rewrite this expression as

(24) λ̃↓u =
(

λ′u
)∨ j ,

where we have used the fact that (µ∨n− j)′ = (µ′)∨ j for any µ ⊆ Rn− j.

Although in general many different permutations in S n can map onto the same k-bounded

partition via the map λ̃↓, observation (24) provides a partial inverse for λ̃↓ when restricted to

Grassmann permutations.

Remark 17. Transposing (22) from Lemma 16, the image of the restriction

λ̃↓ : S j
n → P

k

is the set of k-bounded partitions contained in the rectangle R j. Moreover, when restricted to

this image, the map λ̃↓ is invertible by (24). That is, given any η ∈ Pk such that η ⊆ R j, the

inverse ϕ j of λ̃↓ is defined by

(25) ϕ j (η) = w(η
∨ j )′ = w′

η
∨ j
∈ S j

n

using the notation from (2), and where the second equality follows from (9). When the ambient

rectangle containing the given k-bounded partition η ⊆ R j is understood from context, we

simply write ϕ(η).

We demonstrate the inverse relationship of λ̃↓ and ϕ in the example below.

Example 18. Consider the permutation v = [25134] ∈ S 2
5

from Example 10, in which case

j = 2 and n = 5. To review the construction of λ̃↓v from Section 2.3.2, compute via (13)

that ζ(v) = (3, 0, 2, 1) + (6, 3, 1, 0) = (9, 3, 3, 1) so that λ̃v = ζ(v)′ = (4, 3, 3, 1, 1, 1, 1, 1, 1) =

R4 ∪ R3 ∪ R1 ∪ (1, 1) which then reduces to λ̃↓v = (1, 1, 0) ⊂ R2, as claimed in Example 10.

Alternatively, computing Inv(v) = (1, 3) and applying Lemma 16 with n − j = 3, we have
(

λ̃↓v
)′

= (3 − 1, 3 − 3) = (2, 0) ⊂ R3, which indeed agrees with our calculation directly from the

definition of λ̃↓.
Conversely, given the 4-bounded partition µ = (1, 1, 0) ⊂ R2, taking the complement yields

µ∨2 = (2, 1, 1), and then transposing we have (µ∨2)′ = (3, 1) ⊂ R3. Recording the permutation

corresponding to the partition (3, 1) ⊂ R3 via (2) then gives w(µ∨2 )′ = [25134] ∈ S 2
5
. We thus see

that indeed ϕ(µ) = v, illustrating Remark 17.

4.2. The map λ̃↓ on permutations with two descents. Although the inverse ϕ in Remark 17

is only defined when λ̃↓ is applied Grassmann permutations, in this section we extend the results

from Section 4.1 to permutations having two descents. We begin by recording an algorithm for

writing a permutation with two descents as the product of two Grassmann permutations; see

also [Ric12, Lemma 2.1].

Lemma 19. Fix a pair of integers 1 ≤ a < b < n. A permutation w ∈ S n satisfies D(w) = {a, b}
if and only if w = w2w1 for two Grassmann permutations w2 ∈ S a

n and w1 ∈ S b
n such that

w1(i) = i for all i ∈ [a].

Proof. If w = [w1 · · ·wn] ∈ S n has exactly two descents, say in positions 1 ≤ a < b < n, then

we can write w as a product of two Grassmann permutations w = w2w1 where w2 ∈ S a
n and

w1 ∈ S b
n, as follows. The window for w2 is obtained by keeping entries w1, . . . ,wa from the

window for w, and then arranging the entries wa+1, . . . ,wn into increasing order. To construct

the window for w1, define w1
i = i for all 1 ≤ i ≤ a so that w1 = [1 · · · a | w1

a+1 · · ·w
1
n]. Define the

remaining n − a entries of w1 using the values {a + 1, . . . , n}, but maintaining the same relative

order from the window for w. Precisely, taking entries wa+1, . . . ,wn from the window for w and
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re-indexing them in increasing order wi1 < · · · < win−a
, define w1

i j
:= a + j for all 1 ≤ j ≤ n − a.

It is then straightforward to verify that w = w2w1.

Conversely, the given conditions on w1 ∈ S b
n imply that w1

a+1
< · · · < w1

b
and w1

b+1
< · · · < w1

n,

in addition to the fact that w1(i) = i for all i ∈ [a]. Since D(w2) = {a} for a < b, we find that

D(w2w1) = {a, b}. �

We illustrate Lemma 19 with the following example.

Example 20. Consider the permutation w = [592467813] ∈ S 9, which has two descents in

positions a = 2 and b = 7. Using Lemma 19, define w2 ∈ S 2
9

by rearranging the last 9 − 2 = 7

entries of the window for w, and so w2 = [591234678]. To define w1 ∈ S 7
9
, by Lemma 19 we

first set w1
i
= i for i ∈ {1, 2}, and then place the elements of {3, . . . , 9} according to the same

relative ordering as the last 7 entries of the window for w to obtain w1 = [124678935]. Indeed

w = w2w1, confirming Lemma 19.

The following lemma from [BMPS20] counting the number of parts in the partition λ̃↓w will

be useful in the proof of Proposition 22 below.

Lemma 21. [BMPS20, Lemma 7.3] Let w ∈ S n. Denote by Inv(w0w) = (I1, . . . , Ik), and by ni

the number of parts of size i in λ̃↓w. Then for any 1 ≤ i ≤ k − 1, we have

(26) ni =















k − i + Ii − Ii+1 if i ∈ D(w),

Ii − Ii+1 − 1 if i < D(w).

We are now able to prove the main result of this subsection, which will be critical in the

proof of Theorem 26.

Proposition 22. Given 1 ≤ a < b < n and two Grassmann permutations w2 ∈ S a
n and w1 ∈ S b

n

such that w1(i) = i for all i ∈ [a], define w = w2w1 ∈ S n. Then
(

λ̃↓w
)′

=
(

λ̃↓
w2

)′

+
(

λ̃↓
w1

)′

.

Proof. Given w = w2w1 as described, let η = λ̃↓w. Denote by ni the number of parts of size i in

the partition η, and note that

(27) ni = (η′)i − (η′)i+1.

Since η is irreducible, we also have l(η′) < k. Lemma 19 implies that D(w) = {a, b} and thus

Invi(w) = 0 for all i > b. If we denote by Inv(w0w) = (I1, . . . , Ik), then Ii = n − i − Invi(w) for

all i ∈ [k].

Combining these observations with Equation (26) from Lemma 21 gives

ni =



























k − a + Ia − Ia+1 = n − a − Inva(w) + Inva+1(w) if i = a,
k − b + Ib − Ib+1 = n − b − Invb(w) if i = b,
Ii − Ii+1 − 1 = Invi+1(w) − Invi(w) if a , i < b,
Ii − Ii+1 − 1 = 0 if i > b.

(28)

Combining (27) and (28) for i ≥ b, we see that (η′)i = 0 for all i > b, and

(29) (η′)b = n − b − Invb(w).

Comparing (27) and (28) for i = b − 1, we see that nb−1 = (η′)b−1 − (η′)b = Invb(w) − Invb−1(w),

in which case we can use (29) to obtain (η′)b−1 = n − b − Invb−1(w). Iterating this argument, we

obtain

(30) (η′) j = n − b − Inv j(w)
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for all a + 1 ≤ j ≤ b. Now combining (27) with i = a and (30) with j = a + 1, we have

na = (η′)a − (η′)a+1 = (η′)a − n + b + Inva+1(w). Equivalently, comparing this expression for na

with (28) for i = a, we have

(η′)a = 2n − a − b − Inva(w).

Now iterating this argument instead, we obtain

(31) (η′) j = 2n − a − b − Inv j(w)

for all 1 ≤ j ≤ a.

Putting Equations (30) and (31) together, we have

(32) η′ = (2n−a−b− Inv1(w), . . . , 2n−a−b− Inva(w), n−b− Inva+1(w), . . . , n−b− Invb(w)).

Since w1(i) = i for all i ∈ [a], we also have Invi(w
1) = 0 for all i ∈ [a]. Since a < b, we may

express (32) as a sum

η′ = (n − a − Inv1(w2), . . . , n − a − Inva(w2))

+ (n − b − Inv1(w1), . . . , n − b − Invb(w1)).(33)

Lemma 16 applied to (33) now says that
(

λ̃↓w
)′

= η′ =
(

λ̃↓
w2

)′

+
(

λ̃↓
w1

)′

, as desired. �

We illustrate Proposition 22 on the permutation from Example 20.

Example 23. Recall from Example 20 that w = [592467813] = w2w1 for w2 = [591234678] ∈

S 2
9 and w1 = [124678935] ∈ S 7

9
. By Lemma 16,

(

λ̃↓
w2

)′

= (7 − 4, 7 − 7) = (3, 0) ⊂ R7 and

similarly,
(

λ̃↓
w1

)′

= (2, 2, 1, 0, 0, 0, 0) ⊂ R2. Taking the sum (and omitting all trailing zeros), we

have
(

λ̃↓
w2

)′

+
(

λ̃↓
w1

)′

= (5, 2, 1) ∈ P8.

Now compute
(

λ̃↓w
)′

directly from the definition as follows. Since w0w = [518643297],

then Inv(w0w) = (4, 0, 5, 3, 2, 1, 0, 1) and so ζ(w) = Inv(w0w) + (28, 21, 15, 10, 6, 3, 1, 0) =

(32, 21, 20, 13, 8, 4, 1, 1). Transposing and removing the k-rectangles R1∪R3∪R4∪R5∪R6∪R8,

we obtain
(

λ̃↓w
)

= (3, 2, 1, 1, 1). Therefore,
(

λ̃↓
w2

)′

= (5, 2, 1) =
(

λ̃↓
w2

)′

+
(

λ̃↓
w1

)′

, confirming

Proposition 22.

4.3. The correspondence ΦFl. The goal of this section is to provide an inverse to the corre-

spondence from Theorem 9 on the image of ΦGr. We begin by formalizing some notation that

will be useful both in Theorem 26 defining ΦFl below, as well as later in Section 5.

Given ν ⊆ Rr and d ∈ Z≥0, recall that ν ⊕ d is defined to be the partition obtained by adding

d different n-rim hooks to ν such that all d heads lie in column r.

Definition 24. Let ν ⊆ Rr and d ∈ Z≥0.

(1) Define t := diag0((ν ⊕ d)∨r ). Note that the partition ν ⊕ d may not be a subset of the

rectangle Rr, so (ν ⊕ d)∨r here denotes the complement of the portion of the shape ν⊕ d

which is contained in Rr, by abuse of notation.

(2) Subdivide ν ⊕ d = (η1
t , η

2
t ) into a pair of partitions such that η1

t consists of the bottom

m− t rows of ν⊕d; that is, l(η1
t ) = m− t. When t is understood, we simply write (η1, η2).

Remark 25. For ν ⊆ Rr and d ∈ Z≥0, let δ := diag0(ν∨r ) and t := diag0((ν ⊕ d)∨r ). Since δ is the

diagonal distance from the upper right corner of Rr to the boundary of ν, and t is the distance

from the same corner to the boundary of ν ⊕ d, we have that δ = d + t and 0 ≤ t ≤ δ.

The integer t and partition ν ⊕ d = (η1, η2) are illustrated in Examples 27 and 29 below. We

are now prepared to state and prove the main result of Section 4.
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Theorem 26. For any partitions λ, µ, ν ⊆ Rr and any d ∈ Z≥0 such that |λ| + |µ| = |ν| + nd, we

have

(34) C
ν⊕d,(k)

λ,µ

ΦFl
==== c

ϕr−t(η
2)ϕr+t(η

1),t

ϕr(λ),ϕr(µ)
,

where t = diag0((ν⊕d)∨r ) and ν⊕d = (η1, η2), and t = (0r−t, 1, 2, . . . , t, . . . , 2, 1, 0m−t).Moreover,

this correspondence is inverse to Φ−1
Fl

from Theorem 9.

Proof. By definition of η and t, we have η1 ⊆ Rr+t and η2 ⊆ Rr−t. Denote the corresponding

Grassmann permutations by w1 := ϕr+t(η
1) and w2 := ϕr−t(η

2), where the descents are in posi-

tions r + t and r − t, respectively, according to Remark 17. By the definition of t, the partition

η1 ⊆ Rr+t has at least r − t columns of full height m − t. Applying (2) to η1 ⊆ Rr+t, we thus see

that w1(i) = i for all 1 ≤ i ≤ r − t. Therefore, the permutation w := w2w1 has two descents by

Lemma 19; namely D(w) = {r− t, r+ t}. For the given partitions λ, µ ⊆ Rr, denote by u := ϕr(λ)
and v := ϕr(µ), and note that D(u) = D(v) = {r} by Remark 17.

We aim to apply Theorem 9, which requires verifying a hypothesis on the relationship among

these descent vectors. Defining t := (0r−t, 1, . . . , t − 1, t, t − 1, . . . , 1, 0m−t), recall from (14) that

t̃ =
∑

i∈[k] ti(εi−1 − 2εi + εi+1), where ti denotes the ith entry of t. Due to the palindromic nature

of t, we may compute directly that t̃ = εr−t − 2εr + εr+t. In addition, we have shown above that

D(w) − D(u) − D(v) = (εr−t + εr+t) − εr − εr, in which case t̃ = D(w) − D(u) − D(v). Therefore,

Theorem 9 and Remark 17 imply that

cw,t
u,v = c

w,t
ϕr(λ),ϕr(µ) = C

λ̃↓w,(k)

λ̃↓(ϕr(λ)),λ̃↓(ϕr(µ))
= C

λ̃↓w,(k)

λ,µ .

It thus remains to prove that λ̃↓w = ν ⊕ d. Since w1 ∈ S r+t
n and w2 ∈ S r−t

n satisfy the conditions

of Proposition 22, we have that
(

λ̃↓w
)′

=
(

λ̃↓
w2

)′

+
(

λ̃↓
w1

)′

.

Since w1 = ϕr+t(η
1) and w2 = ϕr−t(η

2) by definition, applying the inverse relationship from

Remark 17 then gives us

(35)
(

λ̃↓w
)′

= (η2)′ + (η1)′.

Since the sum of partitions is taken coordinate-wise on parts, then in fact (η2)′+(η1)′ = (η1, η2)′.

Transposing (35) thus yields

λ̃↓w = (η1, η2) = ν ⊕ d,

as required. In particular, given Grassmann permutations u, v ∈ S r
n, a permutation w ∈ S n with

two descents in positions r ± t, and a palindromic degree t so that t̃ = D(w) − D(u) − D(v), the

correspondence (34) provides an inverse to Φ−1
Fl

from Theorem 9. �

To illustrate Theorem 26, we reconsider the affine Littlewood-Richardson coefficient C
ν⊕d,(k)

λ,µ

resulting from the application of ΦGr in Example 8.

Example 27. Recall from Example 8 that n = 5 and r = 2 with λ = (2, 2, 1), µ = (1, 1, 0), ν =
(2, 0, 0) ⊂ R2 and d = 1. Adding one n-rim hook to ν with its head in column r = 2, and

overlaying the rectangle R2, we see that (ν ⊕ 1)∨2 = (1, 0, 0), and so t = diag0(1, 0, 0) = 1.

Splitting the partition ν ⊕ d = (η1, η2) such that η1 has 3 − 1 = 2 parts, we obtain

ν ⊕ 1 =

×

×

×

× ×

=⇒ (η1, η2) =

(

× × ,
×

×

×

)

.

With η1 = (2, 2) and η2 = (1, 1, 1), viewing η1 ⊂ R2+1 = R3 and applying Remark 17 with j = 3,

we have ϕ3(η1) = [12534] ∈ S 3
5
. Similarly, viewing η2 ⊂ R1 and applying Remark 17, we have

ϕ1(η2) = [21345] ∈ S 1
5
. Taking the product, we obtain ϕ1(η2)ϕ3(η1) = [21534].
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Having already computed that ϕ2(µ) = [25134] in Example 18, in like manner ϕ2(λ) =
[13245] via Remark 17. Applying Theorem 26, where t = (02−1, 1, 03−1) = (0, 1, 0, 0), we then

have the following equality

C
, (4)

,

ΦFl
==== c

[21534] , (0,1,0,0)

[13245] , [25134]
.

Note that this equality is identical to (15) from Example 10, illustrating that Theorem 26 pro-

vides an inverse to the correspondence Φ−1
Fl

on the image of ΦGr.

5. Proof of theMain Theorem

This goal of this section is to prove the Main Theorem, by unifying the combinatorics index-

ing the third permutations resulting from the two different compositionsΦFl◦ΦGr andΨPC◦ΓSD.

This third indexing permutation originates from ΦGr via addition of rim hooks, and so Section

5.1 provides explicit formulas for this partition ν ⊕ d. The correspondence ΦFl then involves

a separation of ν ⊕ d = (η1
t , η

2
t ) into a pair of partitions, which we recognize in Section 5.2

as a pair of partitions naturally obtained from the cycled image φr(ν) which occurs in ΓSD. In

Section 5.3, we connect the product of permutations appearing in ΦFl to the element w
P′t
0

from

ΨPC. The proof then immediately follows in Section 5.4.

5.1. Rim hooks and pairs of partitions. We begin by giving an explicit description of the

shape ν ⊕ d, as well as the pair of partitions ν ⊕ d = (η1
t , η

2
t ). Recall that the transpose of

partition ν = (ν1, . . . , νm) ⊆ Rr is the partition ν′ = (ν′1, . . . , ν
′
r) where ν′j = #{i ∈ [m] | νi ≥ j}.

Lemma 28. For any ν = (ν1, . . . , νm) ⊆ Rr and d ∈ Z≥0 with ad := ν′
r−d

, we have

(36) ν ⊕ d = (rd+ad , νad+1 + d, . . . , νm + d, ν1 − r + d, . . . , νad
− r + d) .

Moreover, separating ν ⊕ d = (η1
t , η

2
t ) as in Definition 24 with t = diag0((ν ⊕ d)∨r ),

η1
t = (rd+ad , νad+1 + d, . . . , νm−δ + d),

η2
t = (νm−δ+1 + d, . . . , νm + d, ν1 + d − r, . . . , νad

+ d − r),

where δ := diag0(ν∨).

Proof. In order to prove (36), we proceed by induction on d. For d = 0, the equality holds since

νi = r for i ∈ [a0] = [ν′r]. Assuming (36) for ν ⊕ d, adding a rim hook to ν ⊕ d gives

ν ⊕ (d + 1) = (rd+ad+1, νad+1 + d + 1, . . . , νm + d + 1, ν1 − r + d + 1, . . . , νad
− r + d + 1).

Let b = ad+1 − ad = ν
′
r−d−1

− ν′
r−d

and observe our claim holds trivially at b = 0. When b > 0,

then ν′
r−d−1

> ν′
r−d

which implies that

(37) νad+1
= νν′

r−d−1
= r − d − 1 = νad+1 = νad+2 = · · · = νad+b.

Therefore, for all i ∈ [b], we have νad+i + d + 1 = r and so

ν ⊕ (d + 1) = (rd+ad+1, rb, νad+1+1 + d + 1, . . . , νm + d + 1, ν1 − r + d + 1, . . . , νad
− r + d + 1) .

We can transform this to precisely the form of identity (36) at d + 1 using ad+1 = ad + b, and by

noting via (37) that νad+1 − r + d + 1 = · · · = νad+1
− r + d + 1 = 0.

The explicit form (36) for ν⊕d immediately implies expressions for (η1
t , η

2
t ) since η1

t consists

of the first m − t rows, and δ := diag0(ν∨) = d + t by Remark 25. �

We now illustrate the formulas for ν ⊕ d = (η1
t , η

2
t ) from Lemma 28 for several values of d.
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Example 29. Let n = 15 and ν = (8, 7, 5, 2, 1) ⊂ R10, in which case m = 5. Here δ =
diag0(ν∨) = 3, and so m − δ = 2.

For d = 0, we have t = diag0(ν∨) = 3 and ad = 0. Equation (36) in the case d+ad = 0 simply

returns ν ⊕ 0 = (ν1, . . . , νm), which we separate as

ν ⊕ 0 = 7→ (η1
3, η

2
3) =













,













.

For d = 2, we have t = diag0((ν ⊕ 2)∨) = 1 and ad = 1. Equation (36) then says that

ν ⊕ 2 = (102+1, 7 + 2, 5 + 2, 2 + 2, 1 + 2, 8 − 10 + 2) = (10, 10, 10, 9, 7, 4, 3, 0), which is then

separated as

ν ⊕ 2 =

2 2 2

1 1 2 2

1 1 2 2 2 2

1 1 1 1 2 2 2

1 1 1 2 2

1 1 2

1 1

7→ (η1
1, η

2
1) =















1 1 1 1 2 2 2

1 1 1 2 2

1 1 2

1 1

,
2 2 2

1 1 2 2

1 1 2 2 2 2















.

In the figure above, the boxes containing 1’s denote the cells of the first rim hook added, and

the second rim hook is denoted by those cells containing 2’s.

5.2. Cycling and pairs of partitions. In order to prove the Main Theorem, we relate ν ⊕ d =

(η1
t , η

2
t ) to pairs of partitions constructed after applying the cycling map to ν. Throughout the

rest of the paper, we thus denote by ρ := φr(ν) the partition which results from cycling the first

r bits of bν to the end of the string. It is helpful to start by formulating ρ in terms of ν.

Lemma 30. Let ν = (ν1, . . . , νm) ⊆ Rr, and denote by ρ = φr(ν). For δ := diag0(ν∨), we have

ρ = (νm−δ+1 + δ, . . . , νm + δ, ν1 − r + δ, . . . , νm−δ − r + δ) .

Furthermore, δ = diag0(ρ).

Proof. Recall from Definition 24 that η1
δ and η2

δ are defined as the bottom m − δ and top δ rows

of ν, respectively, so that

η1
δ = (ν1, . . . , νm−δ)(38)

η2
δ = (νm−δ+1, . . . , νm),

Write the bit string bν = br
ν bm
ν as the concatenation of the substring br

ν containing the first r bits

of bν, and the substring bm
ν containing the last m bits of bν. Defining the southwest corner of

Rr as the origin, the substring br
ν traces the boundary of ν from the northwest corner of Rr to

position (r − δ,m − δ), since δ = diag0(ν∨); i.e. br
ν traces the shape η2

δ. The substring bm
ν then

traces the remainder of the boundary of ν from position (r − δ,m− δ) to the southeast corner of

Rr; i.e. bm
ν traces the shape η1

δ − (r − δ)m−δ.

r − δ

m
−
δ

δ

δ

η2
δ

ρRδ = η2
δ

δ

δ

η1
δ − (r − δ)m−δ = ρLδ

ν

ρ

Figure 1. The partition ν ⊆ Rr and its cycled image ρ = φr(ν).
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Now cycling to obtain ρ = φr(ν), we have bρ = bm
ν br
ν. By our previous observations, ρ can be

constructed by beginning at the northwest corner of Rr and tracing the partition η1
δ − (r − δ)m−δ

to position (δ, δ), and then tracing the partition η2
δ from there to the southeastern corner of Rr;

see Figure 1. That is,

(39) ρ =
(

η2
δ + δ

δ, η1
δ − (r − δ)m−δ

)

.

From this description, we observe that diag0(ρ) = δ as claimed. Finally, comparing (39) to

(38), we obtain the result. �

Given a partition containing a t × t rectangle, we now define an associated pair of partitions.

Definition 31. Given ρ ⊆ Rr and t ∈ Z≥0 such that (tt) ⊆ ρ, let a := ρ′t and define a pair of

partitions (ρLt

, ρRt

) by

(1) ρLt

= (ta−t, ρa+1, . . . , ρm) is the upper lefthand portion of ρ lying above the rectangle

(tt) ⊆ ρ, or equivalently,
(

ρLt
)′

= (ρ′
1
− t, . . . , ρ′t − t), and

(2) ρRt

= (ρ1 − t, . . . , ρa − t) is the righthand portion of ρ from columns t + 1, . . . , r, or

equivalently,
(

ρRt
)′

= (ρ′
t+1, . . . , ρ

′
r).

We continue by illustrating the construction of (ρLt

, ρRt

) for several different values of t.

Example 32. From Example 29 with n = 15 and ν = (8, 7, 5, 2, 1) ⊂ R10, consider the partition

ρ = φ10(ν) by first converting ν to its bit string bν. Cycling the first 10 bits (shown below in

blue) of bν to the end of the string, we have

ν = (8, 7, 5, 2, 1) ←→ bν = 101011101101011,

ρ = (8, 5, 4, 1, 0) ←→ bρ = 010111010111011.

Recall from Example 29 that when d = 2, we have t = diag0((ν ⊕ 2)∨) = 1. Applying

Definition 31 with t = 1, we have a = ρ′1 = 4, so that ρL1

= (14−1, ρ4+1) = (1, 1, 1, 0) and

ρR1

= (ρ1 − 1, . . . , ρ4 − 1) = (7, 4, 3, 0). We visualize this pair of partitions lying above and to

the right of the embedded 1 × 1 rectangle as follows:

ρ = 7→ (ρL1

, ρR1

) =













,













.

Recall from Example 29 that when d = 0, we have t = diag0((ν ⊕ 0)∨) = 3. Applying

Definition 31 with t = 3, we have a = ρ′
3
= 3 , and so a − t = 0. Therefore, ρL3

= (∅, ρ3+1, ρ5) =

(1, 0) and ρR3

= (ρ1 − 3, . . . , ρ3 − 3) = (5, 2, 1), which we visualize as follows:

ρ = 7→ (ρL3

, ρR3

) =













,













.

We pause to make one key observation from Lemma 30. Given any ν ⊆ Rr with cycled

partition ρ := φr(ν), for any d ∈ Z≥0, let t := diag0((ν ⊕ d)∨). By Remark 25, we have

0 ≤ t ≤ δ = diag0(ν∨). Since δ = diag0(ρ) by Lemma 30, for any such t we also have (tt) ⊆ ρ.

Thus the pair of partitions (ρLt

, ρRt

) is defined for ρ with this value of t, and is related explicitly

to the earlier pair of partitions (η1
t , η

2
t ) obtained from adding rim hooks as follows.

Proposition 33. Let ν ⊆ Rr and ρ = φr(ν). Let d ∈ Z≥0 and t = diag0((ν ⊕ d)∨r). Then,

(40) (η1
t , η

2
t ) = (ρLt

+ (r − t)m−t, ρRt

),

where the partition ν ⊕ d = (η1
t , η

2
t ) is separated as in Definition 24.
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Proof. For ν = (ν1, . . . , νm) ⊆ Rr and δ = diag0(ν∨) = diag0(ρ), Lemma 30 gives that

(41) ρ = (νm−δ+1 + δ, . . . , νm + δ, ν1 − r + δ, . . . , νm−δ − r + δ) .

Since 0 ≤ t ≤ δ by Remark 25, we have that a := ρ′t ≥ ρ
′
δ. In turn, ρ′δ ≥ δ since (δδ) ⊆ ρ. In

particular, since a ≥ δ, writing ρ = (ρ1, . . . , ρm) gives us

(ρ1, . . . , ρa) = (νm−δ+1 + δ, . . . , νm + δ, ν1 − r + δ, . . . , νa−δ − r + δ).

We can thus write

ρRt

= (νm−δ+1 + δ − t, . . . , νm + δ − t, ν1 − r + δ − t, . . . , νa−δ − r + δ − t)(42)

= (νm−δ+1 + d, . . . , νm + d, ν1 + d − r, . . . , νa−δ + d − r),

using that δ = d + t by Remark 25.

Having identified the first a parts of ρ to construct ρRt

above, using (41) we also have

ρLt

= (ta−t, νa−δ+1 − r + δ, . . . , νm−δ − r + δ).

Since ρLt

has exactly m − t parts by definition, we compute that

ρLt

+ (r − t)m−t = (ra−t, νa−δ+1 + δ − t, . . . , νm−δ + δ − t)(43)

= (ra−δ+d, νa−δ+1 + d, . . . , νm−δ + d),

where again we have used the relation δ = d + t.

r − δ

t d

δ

δ

ρ′t = δ + ν
′
r−δ+t

δ

ν

ρ

Figure 2. The columns of ν ⊆ Rr and its cycled image ρ = φr(ν).

Comparing (43) and (42) to the respective formulas for η1
t and η2

t in Lemma 28, we now see

that (40) directly follows, provided that ad := ν′
r−d
= a − δ. Figure 2 illustrates the relationship

between the columns of ν and ρ. In particular, note that the t-th column of ρ and the (r−δ+ t)-th

column of ν are aligned. Thus by comparing their heights, we obtain ρ′t = δ+ ν
′
r−δ+t. Therefore,

using δ = d + t, we have ad = ν
′
r−d
= ν′r−δ+t = ρ

′
t − δ = a − δ. �

We continue Example 32 below to illustrate the statement of Proposition 33.

Example 34. Recall that in our running example we have n = 15 and ν = (8, 7, 5, 2, 1) ⊂ R10,

in which case ρ = φ10(ν) = (8, 5, 4, 1, 0). Comparing Examples 29 and 32, we see that when

t = 3, equivalently d = 0, we have

(η1
3, η

2
3) = ((8, 7), (5, 2, 1)) = ((1, 0) + (7, 7), (5, 2, 1)) = (ρL3

+ (7, 7), ρR3

).

In the case t = 1, equivalently d = 2, again from Examples 29 and 32 we have

(η1
1, η

2
1) = ((10, 10, 10, 9), (7, 4, 3, 0)) = (ρL1

+ (9, 9, 9, 9), ρR1

),

demonstrating the statement of Proposition 33 for two different values of t, equivalently d.
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5.3. Cycling and pairs of permutations. Our final step in the proof of the Main Theorem is

to then express the third permutation in the correspondence ΦFl from Theorem 26 in a form

which more naturally relates to the Peterson comparison ΨPC.

Proposition 35. Let ν ⊆ Rr and ρ = φr(ν). Let d ∈ Z≥0, and write ν ⊕ d = (η1
t , η

2
t ) with

t = diag0((ν ⊕ d)∨r ). Then

ϕr−t(η
2
t )ϕr+t(η

1
t ) = wρw

P′t
0

w0,

where w
P′t
0

is the permutation defined in (7) with d = t.

In the proof of the Main Theorem, Proposition 35 is the most important result from this

section. We first demonstrate the statement of Proposition 35 for a pair of partitions arising

from Example 34 , since this verification also illustrates the method of proof.

Example 36. Let n = 15, and consider the partition ρ = (8, 5, 4, 1, 0) ⊂ R10 with t = 3. We

illustrate Proposition 35 in the same manner in which the proof of the general case proceeds.

Applying Theorem 3 with d = t = 3, we have

w
P′

3

0
= [2, 1 | 5, 4, 3 | 8, 7, 6 | 15, 14, 13, 12, 11, 10, 9],

where we have marked position m = 5 in blue and positions m ± t = 5 ± 3 in red. Right

multiplication by w0 then records the one-line notation for w
P′

3

0
in reverse order:

w
P′

3

0
w0 = [9, 10, 11, 12, 13, 14, 15 | 6, 7, 8 | 3, 4, 5 | 1, 2].

Using the bijection between partitions and Grassmannian permutations from (2), we have

wρ = [1, 3 | 7, 9, 13 | 2, 4, 5 | 6, 8, 10, 11, 12, 14, 15] ∈ S 5
15.

Note here that we also artificially view wρ as having four “bins”, created by the same separations

in positions m and m ± 3. The effect of right multiplying wρ by the permutation w
P′

3

0
w0 is thus

simply to reverse the ordering of these four bins in wρ; that is,

wρw
P′

3

0
w0 = [6, 8, 10, 11, 12, 14, 15 | 2, 4, 5 | 7, 9, 13 | 1, 3],

where the four bins in this product now occur in positions r and r ± t.

To compare this resulting product to the right-hand side, recall from Example 34 that η1
3
=

(8, 7) and η2
3 = (5, 2, 1). Then applying ϕ10±3 as in (25) gives the following correspondences

between permutations and partitions:

ϕ10−3(η2
3)←→

(

(η2
3)∨7

)′

= = (8, 8, 7, 7, 7, 6, 5) ,

ϕ10+3(η1
3)←→

(

(η1
3)∨13

)′

= = (2, 2, 2, 2, 2, 1, 07) .

From (2), the one-line notation of these permutations can be written as

ϕ7(η2
3) = [6, 8, 10, 11, 12, 14, 15 | 1, 2, 3, 4, 5 | 7, 9, 13]

ϕ13(η1
3) = [1, 2, 3, 4, 5, 6, 7 | 9, 11, 12 | 13, 14, 15 | 8, 10] ,

where we have again artificially separated each permutation into several “bins”. Composing

these two permutations then gives

ϕ7(η2
3)ϕ13(η1

3) = [6, 8, 10, 11, 12, 14, 15 | 2, 4, 5 | 7, 9, 13 | 1, 3] = wρw
P′

3

0
w0,
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confirming Proposition 35 in this example.

The proof of Proposition 35 follows the same approach as the calculations in Example 36.

Proof of Proposition 35. Write the permutation wρ = [w1 · · ·wn] in one-line notation, where

recall that ρ = (ρ1, . . . , ρm) ⊆ Rr, so that wρ ∈ S m
n . We will start by dividing wρ into four “bins,”

which we denote by B1, B2, B3, B4, created by placing a separation at the location of the descent

m, as well as two artificial separations at m ± t as follows:

wρ = [w1 · · · wm−t | wm−t+1 · · · wm | wm+1 · · · wm+t | wm+t+1 · · · wn] =: [B1 B2 B3 B4].

In some degenerate cases the number of distinct bins could be strictly less than four, of course,

but we provide the details for the generic case in which there are four bins since the other cases

follow by the same argument.

We now calculate the permutation wρw
P′t
0

w0. Recall from Theorem 3 with d = t that

w
P′t
0
= [m − t · · · 1 | m · · ·m − t + 1 | m + t · · ·m + 1 | n · · ·m + t + 1],

where the separations occur in positions m and m± t as above. The effect of right multiplication

by w0 is to record the one-line notation for w
P′t
0

in reverse order, and so

w
P′t
0

w0 = [m + t + 1 · · · n | m + 1 · · ·m + t | m − t + 1 · · ·m | 1 · · ·m − t],

where now the separations occur in positions r and r± t. The composition wρw
P′t
0

w0 thus simply

reverses the ordering of the four bins in wρ, meaning that

wρw
P′

0 w0 = [B4 B3 B2 B1].

It thus suffices to prove that the one-line notation for

ϕr−t(η
2
t )ϕr+t(η

1
t ) = [B4 B3 B2 B1] .

To this end, since φr(ν) = ρ = (ρ1, . . . , ρm) ⊆ Rr, we use Lemma 6 to express the bins in terms

of ρ with wρ = [ρm + 1 · · ·ρ1 + m | m + 1 − ρ′1 · · · n − ρ
′
r] = [B1 B2 B3 B4]. In particular,

B1 = [ρm + 1 · · ·ρt+1 + m − t], B2 = [ρt + m − t + 1 · · ·ρ1 + m],

B3 = [m + 1 − ρ′1 · · ·m + t − ρ′t], B4 = [m + t + 1 − ρ′t+1 · · · n − ρ
′
r].

To determine the product ϕr+t(η
2
t )ϕr+t(η

1
t ), we first study the two permutations separately.

Recall that ϕr−t(η
2
t ) is the permutation corresponding to

(

(η2
t )∨r−t

)′

. For the pair of permutations

(ρL, ρR) := (ρLt

, ρRt

) described by Definition 31, viewing η2
t ⊆ Rr−t, by Proposition 33, we have

η2
t = ρ

R = (ρ1 − t, . . . , ρa − t, 0m−a+t) ⊆ Rr−t,

(η2
t )′ = (ρR)′ = (ρ′t+1, . . . , ρ

′
r) ⊆ Rm+t,

where a := ρ′t . Therefore, Lemma 6 applied to η2
t with j = m + t gives the description

ϕr−t(η
2
t ) = [m + t + 1 − ρ′t+1 · · · n − ρ

′
r | 1 · · ·m − a + t | ρa + m − a + 1 · · ·ρ1 + m],

or equivalently, since (tt) ⊆ ρ implies that a = ρ′t ≥ t,

(44) [B4 | 1 · · ·m − a + t | · · · | B2] .

A similar study applies to ϕr+t(η
1
t ), the permutation corresponding to

(

(η1
t )∨r−t

)′

. By Proposi-

tion 33 and Definition 31, we have

η1
t = ρ

Lt

+ (r − t)m−t = (ra−t, r − t + ρa+1, . . . , r − t + ρm) ⊆ Rr+t,

(η1
t )′ = (ρLt

+ (r − t)m−t)′ = ((m − t)r−t, ρ′1 − t, . . . , ρ′t − t, 0t) ⊆ Rm−t.
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Therefore, by Lemma 6 applied to η1
t with j = m − t, we have

ϕr+t(η
1
t ) = [1 · · · r − t | n − t + 1 − ρ′1 · · · n − ρ

′
t | n − t + 1 · · · n | · · · ]

= [1 · · · r − t | B3 + (r − t) | n − t + 1 · · · n | · · · ],(45)

where B3 + (r − t) denotes the string obtained by adding r − t to each entry of B3.

We can see immediately from (44) and (45) that

(46) ϕr−t(η
2
t )ϕr+t(η

1
t ) = [B4 | · · · | B2 | · · · ] .

To compute the values between B4 and B2 in the product, we must identify the image of {r −

t + 1, . . . , r} under the composition ϕr−t(η
2
t )ϕr+t(η

1
t ). Since the entries of B3 are increasing with

maximum entry wm+t = m+t−ρ′t = m+t−a, the values wm+ j of bin B3 satisfy 1 ≤ wm+ j ≤ m−a+t,

for 1 ≤ j ≤ t. Now considering the image of r − t + i for 1 ≤ i ≤ t under ϕr+t(η
1
t ), we have

ϕr+t(η
1
t )(r − t + i) = wm+i + (r − t) by (45), and in particular,

1 + r − t ≤ ϕr+t(η
1
t )(r − t + i) ≤ (m − a + t) + (r − t) = n − a

for all 1 ≤ i ≤ t. From (44), note that ϕr−t(η
2
t )( j) = j − (r − t) for all r − t + 1 ≤ j ≤ n − a, since

B4 has r − t entries. We thus obtain, for any 1 ≤ i ≤ t,

ϕr−t(η
2
t )ϕr+t(η

1
t )(r − t + i) = (wm+i + (r − t)) − (r − t) = wm+i.

In other words, the entries in the product (46) which occur between B4 and B2 are given pre-

cisely by B3; that is, ϕr−t(η
2
t )ϕr+t(η

1
t ) = [B4 B3 B2 · · · ].

Finally, since ϕr+t(η
1
t ) ∈ S r+t

m and ϕr−t(η
2
t ) ∈ S r−t

m and ϕr+t(η
1
t )(i) = i for all i ∈ [r − t], then

Lemma 19 says that D(ϕr−t(η
2
t )ϕr+t(η

1
t )) = {r− t, r+ t}. Note, however, that D ([B4 B3 B2 · · · ]) ⊆

{r ± t}. Since [n] is the disjoint union of the values in B1, B2, B3, B4, the remaining entries of

ϕr−t(η
2
t )ϕr+t(η

1
t ) necessarily consist of precisely the entries of the ordered sequence B1. There-

fore, ϕr−t(η
2
t )ϕr+t(η

1
t ) = [B4 B3 B2 B1] = wρw

P′t
0

w0, as required. �

Before proceeding to the proof of the Main Theorem in the final subsection, we conclude by

illustrating the key propositions from this section, as they apply to our more complete running

example from Section 2.

Example 37. From Example 27, with n = 5 and r = 2 so that m = 3, we have ν = (2, 0, 0) ⊂ R2,

and d = 1. Further recall that t = 1 and η1 = (2, 2) ⊂ R2+1 and η2 = (1, 1, 1) ⊂ R2−1,

and from Example 27, we have ϕ2−1(η2) = [21345] and ϕ2+1(η1) = [12534]. Now define

ρ = φ2(ν) = (2, 2, 2) so that ρL1

= (1, 1) and ρR1

= (1, 1, 1) by Definition 31. We thus see

that η1 = ρL1

+ (1, 1) and η2 = ρR1

, illustrating Proposition 33. Finally, w
P′

1

0
= [21345] so that

w
P′

1

0
w0 = [54312]. Since wρ = [34512], we then see that

ϕ2−1(η2)ϕ2+1(η1) = [21534] = wρw
P′

1

0
w0 ,

demonstrating Proposition 35, the crucial step equating the third permutations indexing the

output Littlewood-Richardson coefficients from Example 5 and Example 27.

5.4. Proof of the Main Theorem. The proof of the Main Theorem now follows by applying

each of the five comparisons in the order suggested by the diagram in the statement, plus

Proposition 35 and two direct applications of the correspondence (25).

Proof of the Main Theorem. Given any partitions λ, µ, ν ⊆ Rr and any integer d ∈ Z≥0 such that

|λ| + |µ| = |ν| + nd, combining the quantum-to-affine correspondences from Theorem 7 and

Theorem 26, we have

(47) c
ν,d
λ,µ

ΦGr
==== C

ν⊕d,(k)

λ,µ

ΦFl
==== c

ϕr−t(η
2)ϕr+t(η

1),t

ϕr(λ),ϕr(µ)

where t = diag0((ν ⊕ d)∨) and t = (0r−t, 1, . . . , t − 1, t, t − 1, . . . , 1, 0m−t).
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On the other hand, combining strange duality from Theorem 1 and the Peterson comparison

formula from Theorem 3, we have

c
ν,d
λ,µ

ΓSD
==== c

φr(ν)∨,t

λ∨,µ∨
ΨPC
===== c

wφr (ν)∨wP
0

w
P′t
0
,t′

wλ∨ ,wµ∨

where t = diag0(ν∨) − d = diag0((ν ⊕ d)∨) and t′ = (0m−t, 1, 2, . . . , t − 1, t, t − 1, . . . , 2, 1, 0r−t).

Note in particular that t′
i
= tn−i for all i ∈ [k]. Applying the flag transpose ΓT as in (8), we thus

have

(48) ΓT ◦ ΨPC ◦ ΓSD

(

c
ν,d
λ,µ

)

= c
w0wφr (ν)∨wP

0
w

P′t
0

w0,t

w′
λ∨
,w′
µ∨

= c
wφr (ν)w

P′t
0

w0 ,t

w′
λ∨
,w′
µ∨

,

where we have used the fact that wφr(ν)∨ = w0wφr(ν)w
P
0 to simplify the third permutation.

Comparing the resulting quantum Littlewood-Richardson coefficients for QH∗(Fln) in Equa-

tions (47) and (48), the first two permutations are equal using the correspondence in (25),

which says that ϕr(λ) = w′
λ∨

and ϕr(µ) = w′
µ∨

. The Main Theorem thus follows immediately by

applying Proposition 35 to the third permutations, since ρ = φr(ν). �
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