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MOTIVIC CLASSES OF DEGENERACY LOCI
AND POINTED BRILL-NOETHER VARIETIES

DAVE ANDERSON, LINDA CHEN, AND NICOLA TARASCA

ABSTRACT. Motivic Chern and Hirzebruch classes are polynomials with K-theory
and homology classes as coefficients, which specialize to Chern-Schwartz-MacPherson
classes, K-theory classes, and Cappell-Shaneson L-classes. We provide formulas to
compute the motivic Chern and Hirzebruch classes of Grassmannian and vexillary de-
generacy loci. We apply our results to obtain the Hirzebruch x,-genus of classical and
one-pointed Brill-Noether varieties, and therefore their topological Euler characteristic,
holomorphic Euler characteristic, and signature.

The study of motivic Chern classes unifies several theories of characteristic classes of
singular varieties [10]. The motivic Chern and Hirzebruch classes are polynomials in a
formal variable y; the motivic Hirzebruch class T}, specializes to the Chern-Schwartz-
MacPherson (CSM) class for y = —1, the K-theoretic Todd class for y = 0, and the
Cappell-Shaneson L-class for y = 1. The top degree term of T}, of a compact variety
gives the Hirzebruch y,-genus which specializes to the topological Euler characteristic
for y = —1, the holomorphic Euler characteristic for y = 0, and the signature for y = 1.

In this article, we compute the motivic Chern and Hirzebruch classes of Grassman-
nian and vexillary degeneracy loci in type A. In particular, our results give formulas
for their CSM classes and L-classes. Several invariants of these degeneracy loci have
been computed, e.g., a determinantal formula for their classes in cohomology [19, 8], in
K-theory [27, 5], and in algebraic cobordism [28]. In the important special case of a
degeneracy locus of a single map between vector bundles, the CSM class was computed
by Parusiriski-Pragacz [34]. However, formulas for their L-classes and for CSM classes of
more general degeneracy loci were not known. CSM classes and motivic Chern classes
have recently been studied for Schubert varieties and Schubert cells in flag manifolds
[1, 29, 2, 3, 4] and matrix Schubert cells [17, 37, 18]. Hirzebruch yx,-genera have also
been computed in other instances, e.g., for Hilbert schemes of points [24, 11] and for
singular toric varieties [32].

We consider maps of vector bundles over a smooth algebraic variety X:

Ey, 5 Fy —» Fpy— F,
with rank (E,) = p and rank (F,) = ¢;. The Grassmannian degeneracy locus corre-
sponding to the partition A = (A > -+ > A\ > 0) with \; := ¢ — p + i is defined

as
Wy :={x € X : dimker (E, = Fy,) |, > i}.

MSC2020. 14N15, 14H51 (primary), 19E99 (secondary).
Key words and phrases. Motivic Chern classes, motivic Hirzebruch classes, Hirzebruch
Xy-genus, CSM classes, degeneracy loci, Brill-Noether varieties, Schubert calculus.
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2 D. ANDERSON, L. CHEN, AND N. TARASCA

More generally, we will consider maps of vector bundles
©
(1) Epy = Epy - = Ep, = Foy = Fop - = Iy,

over a smooth algebraic variety X, with rank (E,,) = p; and rank (F,,) = ¢;. Note
that 0 < py <--- <prand ¢ > -+ > ¢ > 0. Given a (weakly) increasing sequence
k= (k1,..., k) of positive integers, the vezillary degeneracy locus corresponding to the
triple 7 = (k, p, q) is defined as

Wri={z e X : dimker (E,, = F,,) |+ > ki}.

This nomenclature arises because the rank conditions can be described by the wvexillary
permutations from [31] (i.e., permutations avoiding the pattern 2143), see [7, §1]. The
Grassmannian case is recovered when p; = --- = p; and k; = ¢ for each 3.

Our main result gives formulas to compute the motivic Chern and Hirzebruch classes
of vexillary degeneracy loci. We proceed in two steps.

First, we relate the motivic Hirzebruch classes of a vexillary degeneracy locus Wr and
a certain resolution of Wr. As in Kempf-Laksov [30], W, is resolved by ¢: Qr — Wr

where €2, is the variety parametrizing complete flags of sub-bundles V; C --- C V}, such
that rank (V;) =4 and Vj, C ker (E,, — Fy,) for each i, see §3. (In §6 we will also study

a partial resolution Q@ — @ — W, hence the use of the tilde here.) Let ¢:: W; — X

denote the inclusion. We carry out an explicit computation of the class (¢¢). T}, (QT :

Theorem 1. For a triple 7 = (k,p,q) and with assumptions as in §1.4, the class
(19)« T, ((NZ,-) is computed by a universal operator applied to (W] NT,(X), where [W,]
is the determinantal formula for the class of Wy in A*(X) (explicitly, Theorem 3.1).

Second, since the fibers gf ¢ are not constant, in order to compare the motivic Hirze-
bruch classes of W, and 2., we proceed to find the stratification of W, into locally
closed strata on which ¢ is locally trivial.

As reviewed in §1.1.2 after [8], a triple 7 = (k, p, q) can be inflated to a triple 7/ =
(K',p',q') by inflating the sequences k, p, and g of length ¢ to sequences k', p’, and q’
of length k; with k' = (1,2, ..., k) such that

¢ —pPi+1>aq—py+2>- > q, —pp+tk >0
and Wy = Wy The locus W contains the loci W+ for 7+ = (kT,p’,q’) with

kt > Kk’ in componentwise order. For degree reasons, there are only finitely many such
sub-loci W_4+ C W,. The map ¢ is locally trivial precisely on the locally closed strata

W2, C Woq (defined in (3) as expected) — see §5.1. We express the class (1¢). T}, (57)
computed in Theorem 1 in terms of the motivic Hirzebruch classes of the strata of W :

Theorem 2. For a triple T = (k,p, q) and with assumptions as in §1.4, one has
(0., () = (- ¥ o (W)
Et+

where TT (kz+,p’,q’) and the sum is over the set of weakly increasing sequences

kT >k =(1,... k).
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MOTIVIC CLASSES OF DEGENERACY LOCI AND POINTED BRILL-NOETHER 3

For instance, consider the triples 7(i) := ((2), (3),(3)), for ¢ = 1,2, 3, and the triple
7(22) = ((2,2),(2,3),(3,3)). The strata required for the locus W, are W2 for
i = 1,2,3. Since the triple 7(2) is inflated to the triple ((1,2),(2,3),(3,3)), the strata
required for the locus W () are Wﬁ(z), Wﬁ(?’), and W$(22)' Then Theorem 2 gives

(19)- Ty (Qrir) ) = 12Ty (W) =y Ty (W) + 97 Ty (W)
(Ld)+ Ty (ﬁr(Z)) = 1. Ty W) =yt Ty Wri22)) =yt Ty (Wrs))
(¢@)« Ty (ﬁf(g)) = 1Ty (Wrs))

(t0)« Ty (67(22)) =t Ty (W‘r(22)) .

Finally, by the inclusion-exclusion principle, applying Theorem 2 to the (closure of
the) strata of Wi, and then to the strata of the strata, and so on, one can express the

motivic Hirzebruch class of W, in terms of classes (t¢)s Ty (§a> corresponding to a
subset of the finitely many vexillary degeneracy sub-loci W, C W... Thus we have:

Theorem 3. Combining Theorems 1 and 2 allows one to compute the motivic Hirzebruch
class of W for any triple T.

As an example, for the triple 7(1) := ((1), (3), (3)) as above, solving for v, T (Wr(1))
gives

u Ty (Wrary)) = (19)4 T, (Qr(l)> +y (19)« Ty <57(2)> +97 (19). T, <§T(22)> :

Theorem 1 can then be applied to compute the right-hand side as a polynomial in y with
coefficients expressed in terms of the Chern classes of the given vector bundles.

Brill-Noether theory. In §7 we apply our results to classical and pointed Brill-Noether
varieties. Brill-Noether theory studies the geometry of line bundles and linear series on
algebraic curves. For a smooth algebraic curve C, the classical Brill-Noether variety
W} (C) parametrizes line bundles of degree d on C' having at least r+1 independent global
sections [9]. More generally, the pointed Brill-Noether variety W$(C, P) parametrizes
line bundles of degree d on C having at least r + 1 independent global sections with
vanishing orders at the point P at least equal to a = (0 < ap < -+ < a, < d). In §7.3,
we compute the motivic Hirzebruch class of Wj(C') and W2 (C, P) for a general (C, P), as
these are examples of Grassmannian degeneracy loci. This extends the study of the CSM
class of the classical Brill-Noether varieties W) (C) treated by Parusiniski-Pragacz [34].

Similarly, we compute the motivic Hirzebruch class of the Brill-Noether variety G7(C)
parametrizing linear series on C' of degree d and projective dimension r, and its pointed
counterpart G§(C, P) parametrizing linear series on C' of degree d with prescribed van-
ishing a at the point P. For these, we use the result presented more generally about a
degeneracy locus 2 in §6.

For a smooth Brill-Noether-Petri general curve C of genus g, one has: (i) GJ(C) is
smooth and has dimension equal to p(g,r,d) := g — (r +1)(g — d + r); (ii) Wj(C) has
dimension equal to p(g,,d), provided that g —d + r > 0; and (iii) when g — d 4+ r > 0,
the singular locus of W7 (C) coincides with W, (C) c W5 (C) [9, pg. 214].

This article is protected by copyright. All rights reserved.
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4 D. ANDERSON, L. CHEN, AND N. TARASCA

For instance, W} (C) is smooth when C is a smooth Brill-Noether-Petri general curve,
p(g,r,d) <2 and g > 2. Write A = g —d + r, and let 6 be the cohomology class of the
theta divisor in Pic?(C). In the surface case, we prove:

Corollary 4. Fiz g > 2 and r,d such that p(g,r,d) = 2. For a Brill-Noether-Petri
general smooth curve C of genus g, the motivic Hirzebruch class of the surface Wj(C') is

r _ A(T+3)(y_1)
1, (w30 = (14 20 =

Ar+1) (A(r+1)(y — 1)% — 2y) g2 T i
2A+r)A+7+2) 02>'9 QZHO(g—d—i-T—i-i)!

in H* (Picd(C)) [y]. Since the top degree term of T, gives the Hirzebruch x,-genus, one
has

vy ACFD) A+ Dy = 1) = 2y) il
xy (W3 (C)) = ¢! TN+ +2) g(g—d—i—r—i—i)!'

Moreover, with the same hypotheses, one has x, (G5(C)) = xy (WJ(C)).

The formula for x, in Corollary 4 recovers the topological and holomorphic Euler
characteristics for y = —1 and y = 0 (known from [34] and [6], respectively), and gives
a new result on the signature of the surface Wj(C) for y = 1:

2—g - il
o (W5H(C)) = ¢! .
(Wi(©) =g (g—d+2?“)(9—d—|-27‘—|—2)i1_£ (g—d+r+1)!
and similarly for the surface G7(C), since in this case o (G}(C)) = o (W} (C)).

We briefly review the definition of the signature. For a compact oriented manifold
X of real dimension 4k, consider the non-degenerate symmetric bilinear form on the
finite-dimensional vector space H?*(X,R) given by

(o, B) ::/ aUpB, for a, 8 € H?*(X,R).
X

The signature o(X) of X is defined as the number of positive entries minus the number of
negative entries in a diagonalized version of this form. When X is smooth, Hirzebruch’s
signature theorem expresses o(X) as a universal linear combination of the Pontrjagin
numbers of the tangent bundle of X [25]. When X is possibly singular, o(X) is computed
by the top degree term of the L-class of X [12, 10].

When g = 2, then W} (C) = Pic?(C), thus indeed x,, = 0, since Abelian varieties have
trivial tangent bundle. As a further check, o and the topological Euler characteristic xtop
always have the same parity [35, Cor. 64], and this is indeed satisfied by the formulas
resulting from Corollary 4. In fact, we observe the following, perhaps surprising, relations
for the surface W) (C):

=2 6 (WH(E)) = —xa (WH(C)).

(29 = 3) 0 (W5 (C)) = —xtop (W4 (C)),
(9 = 2) Xtop (Wi (C)) = (49 = 6) Xnol (W3 (C)) -

This article is protected by copyright. All rights reserved.
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MOTIVIC CLASSES OF DEGENERACY LOCI AND POINTED BRILL-NOETHER 5

In §7.6 we also compute explicitly the motivic Hirzebruch class of pointed Brill-Noether
surfaces parametrizing pencils (i.e., 7 = 1). Interestingly, we show that the motivic
Hirzebruch classes of Grassmannian degeneracy loci corresponding to a partition A do
not specialize from the case A; > Aj11 to the case \; = Ay, for some ¢ (Remark
7.6). This is in contrast with the K-theory class (the case y = 0) of degeneracy loci
with rank conditions imposed by arbitrary (not only vexillary) permutations, given by
Grothendieck polynomials [22].

Our strategy. Our approach draws a great deal of inspiration from Parusinski-Pragacz
[34]. Indeed, all computations build on three fundamental computations of CSM classes,
treated in [34]:

(a) the CSM class of the zero locus of a regular section of a vector bundle;
(b) the CSM class of a Grassmannian bundle; and
(c) the push-forward of the CSM class via a fibration.

In §2, we compute the motivic refinement of (a), (b), (c), see Lemmata 2.2, 2.3, 2.4.
The CSM classes in cases (a), (b), (c) are recovered by specializing to y = —1. In order
to make the generalization to Grassmannian and vexillary degeneracy loci possible, we
combine (a), (b), (c¢) with the proof strategy introduced in [8] (see §3). Additional care
is needed in dealing with motivic Chern and Hirzebruch classes when one generalizes
methods designed for fundamental classes. Indeed, while the fundamental class coin-
cides with the push-forward of the fundamental class of a resolution, motivic Chern and
Hirzebruch classes are more delicate to handle. To arrive at the motivic Chern class of a
vexillary degeneracy locus Wi, we first compute the push-forward of the motivic Chern
class of a resolution Q, of W, (Theorem 3.1). Furthermore, using (c), we relate the
push-forward of the motivic Chern class of Q, with T = (k,p,q) to the motivic Chern
class of varieties W, 4 with 7% = (k™,p/,¢’), for k* > k’ (Theorem 5.1). Finally, the
motivic Chern class of W follows by the inclusion-exclusion principle.

A key step in our argument is the careful analysis in §5.1 of the stratification of a
degeneracy locus induced from its resolution. We stratify W, with 7 = (k, p, q) by the
loci W2, with 7+t = (kT,p/,q'), for kT > K. These are precisely the strata on which

the resolution Q2 — W is locally trivial.

Theorem 5.1 uses the additivity of the motivic Hirzebruch class T}, as a transformation
from the Grothendieck group Ky(var/X) of algebraic varieties over X. In fact, the
Hirzebruch x,-genus is the most general additive genus [10]. Computation of other
invariants, as the elliptic class and elliptic genus, would thus require new strategies.

Specializing to the case when the ambient variety X is a Grassmannian, our results
give the motivic class of its Schubert varieties in terms of the motivic class of the Grass-
mannian. For instance, when y = —1, using the formula of [1] for the CSM class of
Grassmannians, one can verify that the resulting formulas for the CSM class of Schu-
bert varieties are consistent with the results in [1] after some nontrivial combinatorics
(see §5.2).

Motivic Chern classes of Schubert cells in partial flag varieties have been computed
in [18] via localization; the classes of the Schubert varieties could then be obtained from
[18] by summing over all the strata of the closure of the Schubert cells. In the case of

This article is protected by copyright. All rights reserved.
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6 D. ANDERSON, L. CHEN, AND N. TARASCA

vexillary permutations, our strategy produces the classes of Schubert varieties as a first
outcome; this makes it feasible to arrive at a viable formula in the application to the
Brill-Noether setting (see §7.3).

Open questions. In [6] we study more generally two-pointed Brill-Noether varieties,
and show that they have the structure of determinantal varieties obtained from maps of
flag bundles with rank conditions imposed by 321-avoiding permutations. We compute
in [6] their connective K-theory class and holomorphic Euler characteristic. It would be
interesting to compute their motivic Chern class, extending this work to the two-pointed
case.

The holomorphic Euler characteristic of two-pointed Brill-Noether varieties is ex-
pressed in [14] as the enumeration of certain standard set-valued tableaux. We have
found tableau formulas expressing the Hirzebruch x,-genus of one-pointed Brill-Noether
surfaces. We wonder whether there exist tableau formulas expressing the Hirzebruch
Xy-genus of one- or two-pointed Brill-Noether varieties in general.

Acknowledgements. We are indebted to [19, 8] for the treatment of vexillary degeneracy
loci, to [34] for the treatment of CSM classes and degeneracy loci, and to [10] for inspiring
us to consider motivic Chern and Hirzebruch classes. We would like to thank Jorg
Schiirmann for clarifying some points in an earlier version of §2, and the referee for a
careful reading.

1. VEXILLARY DEGENERACY LOCI

Here we set the notation and collect the assumptions used throughout. We adopt the
notation of triples = from [8, 5].

1.1. Vexillary degeneracy loci. Let X be an irreducible variety over an algebraically
closed field. Given maps of vector bundles over X as in (1) and a (weakly) increasing se-
quence k := (ky, ..., k) of positive integers, the vezillary degeneracy locus corresponding
to the triple 7 = (k, p, q) is defined as

Wr:={z € X : dimker (E,, = F,,) |, > k; for all i}

with inclusion ¢: Wr < X. Such a locus is Cohen-Macaulay when it has the expected
dimension and when X is Cohen-Macaulay. We will compute the motivic Hirzebruch
class of Wi in A, (X)[y|, where A,(X) is the Chow group of X and y is a formal variable.
It will be convenient to consider arbitrary weakly increasing sequences k (see e.g., §5.1).

1.1.1. The reduced triple T. Some of the conditions defining W, may be redundant, and
Wr could be similarly described as the vexillary degeneracy locus corresponding to a
triple consisting of shorter sequences. After [19], a triple 7 = (k,p,q) with p = (0 <
pr<---<p)andqg=(q1 >--->q >0) is called essential if

O<ki<---<ks and qu—p1+ki>-->q—p:+k>0.
Given T = (k,p,q), we denote by T = (E, P, G) the essential triple of shortest sub-

sequences k, p, and q of k, p, and q such that W, = Wx. Necessarily, k is strictly
increasing.

This article is protected by copyright. All rights reserved.
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MOTIVIC CLASSES OF DEGENERACY LOCI AND POINTED BRILL-NOETHER 7

Ezample 1.1. The sequences k = (2,2,3,4), p= (4,5,6,7), and g = (8,7,6,3) and their
subsequences k = (2,3), p = (4,6), and g = (8,6) describe the same degeneracy locus.

1.1.2. The inflated triple /. Assume the flag E, C E,, C --- C E,, extends to a
full flag of sub-bundles Ey C Ey C --- C E,, defined on X, and similarly, the flag
F, — Fy — -+ — F,, extends to a full flag of quotients F,, — --- — Fy, — [}
defined on X. This assumption is indeed not restrictive, see Remark 3.3. Contrary to
the previous subsection, we describe here how to inflate the triple 7T to a triple consisting
of longer sequences defining the same locus Wr. This will be used to define the locus
Q- in §3.1.

Assume the triple 7 is essential, that is, 7 = 7. The triple T can then be inflated to
a triple 7 = (k',p’,q') by inflating the sequences k,p, and g of length ¢ to sequences
E',p', and ¢’ of length k; with k' = (1,2,...,k;) as in [8, §1.4] (see also further details in
[5, §1]). Namely, suppose that k; > k;—1 + 1, for some i. Then necessarily p; > p;—1 or
¢i < @i—1 (otherwise the corresponding conditions defining W, are redundant, and the
triple 7 can be reduced). When p; > p;_1, inflate by inserting the entry k; — 1 between
k;—1 and k; in k, the entry p; — 1 between p;_; and p; in p, and the entry ¢; between
¢i—1 and g; in g. On the geometric side, the condition dimker (E,, — Fy,) |» > k; implies
dimker (Ep,—1 — Fy,) |z > k; — 1 for a point « € W. The case p; = p;—1 and ¢; < g;—1 is
treated similarly. Proceeding in this way, one arrives at sequences k/, p’, and q’ of length
k¢ such that k' = (1,2,..., k) and Wr = W,

1.1.3. Feasibility. For an essential triple 7, in order for the conditions defining the locus
W to be feasible, we assume that the sequence

(2) Ak, = Qi — pi + ki fori=1,...,t,

is weakly decreasing.

1.2. The partition A;. Fix an essential triple 7. Extending (2), define the partition
Ar=(A1,..., A\g,) as

PYRE )\ka for ko1 <1 < k.
For a triple 7 which is not necessarily essential, define A := As, where T is the reduced
triple consisting of the shortest subsequences of k, p, g such that W, = W% (§1.1.1).
The expected codimension of the locus W, in X is

k¢
codimy (Wy) = [Ar|:= > A
i=1
Ezample 1.2. For the triple 7 = (k,p,q) where k = (2,2,3), p = (4,5,6), and q =

(8,7,6), one has A = (6,6, 3).

1.3. The bundles E(i), F(i), classes c(i), and operators T, (i). For an essential
triple 7, define the vector bundles E(i) and F'(i) as

E(i):= E,, and F(i):= Fy, for ko—1 < i < k.
For a triple 7 which is not necessarily essential, define
E(i):=E;, and F(i):=F; for ko1 <i< k.
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8 D. ANDERSON, L. CHEN, AND N. TARASCA

Here k,p,q are the shortest subsequences of k, p, q such that W, = Ws with 7 =
(k:,ﬁ,ﬁ) (see §1.1.1). Let

: : N c(F() "
c(i):=c(F(i)— E(i)) = c(E@) e A" (X).
1.3.1. For each i, the raising operator R; increases the index of the class c(i) by one,
that is,
Ric(i)m = c(i)m+1 and Ric(k)m = c(k)m, for k #i.
Moreover, R; is extended linearly over Q and multiplicatively on monomials in classes
c(j), e Ri (c(f)m c(k)n) = (Ric(i)m) (Ri c(k)n).

1.3.2. For a formal variable R and a vector bundle F of rank e with Chern roots a;, for
1=1,...,e, define

a(l+y)

Ty (RO E) =[] Qy(R+a), with Qy () := T ety ~ Y € Q]
i=1

As in (6), the terms in degree at most two are given by

T,(R®E) = 1+%(1—y)(eR+cl(E))
+ %(1 +9)? (eR? + 2¢1(BE)R + chy(E))
+ i(l —y)? <<§>R2 + (e — 1)01(E)R+02(E)> + ...

where ch(E) = Y ;_, ch;(E) is the Chern character of E. The motivic Hirzebruch class
Ty(X) of a smooth variety X is recovered when R = 0 and E is the tangent bundle of
X (see §2). Similarly, in the absence of E, we set

Ty(R) := Qy(R).
For each i, define the operator
Ty (i) := Ty (R © (F (i) — E(3)))

acting on the classes ¢(j) such that R; acts as in §1.3.1, and the Chern roots of the
virtual bundle F(i) — E(i) act by multiplication.

1.4. Assumptions. We collect here the assumptions used throughout. For a triple
T = (k,p, q), consider the vexillary degeneracy locus W, and a sub-locus W_4+ C W,
where 77 = (k™,p/,¢') with kT > Kk’ in componentwise order. The corresponding
locally closed stratum is

(3) 2y i={we X ¢ dimker (B — Fy) [, =k }.
This is
W, =W_ 4\ U W CX, where 77 = (k™,p/, ¢).

We assume that X is an irreducible smooth algebraic variety over an algebraically closed
field of characteristic zero, and for all weakly increasing sequences kT > k' (i.e., k:f >4
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MOTIVIC CLASSES OF DEGENERACY LOCI AND POINTED BRILL-NOETHER 9

fOI' all ¢ = 1, ey k)t), the stratum W with 7 = (k ,p/, q,) is smooth Of pure dimen-
++
sion dim X — ’A‘r‘f‘ |

Remark 1.3. In [34], Parusinski-Pragacz show that their formula for the CSM class
of the degeneracy locus of a single map between vector bundles holds under a weaker
assumption which allows one to consider a possibly singular analytic variety X as ambient
variety. It seems reasonable to expect that our results hold under a similar weaker
assumption. For this, one needs to upgrade Lemma 2.2 below, for instance by working
in the analytic category with a Whitney stratification of a singular X as in [34]. However,
X will be smooth in all the applications we consider.

2. MOTIVIC CLASSES: FUNDAMENTAL COMPUTATIONS

After briefly reviewing motivic Chern and Hirzebruch classes following [10], we discuss
here three fundamental computations: Lemmata 2.2, 2.3, and 2.4. These will serve as
the cornerstone of the paper.

For an algebraic variety X over a field of characteristic zero, let Ky(var/X) be the
Grothendieck group of algebraic varieties over X, let K,(X) be the Grothendieck group
of coherent sheaves of 0 x-modules, and A, (X) the Chow group. The transformations

Ky(var/X)
K.(X) ® Zly] A.(X) ® Q[y]

are the unique transformations which commute with proper push-down and, for X
smooth, satisfy

(@ mC (idx) = 3 [N 7] ¥ =5 &y ().
i>0
dim X
(5) T, (idx) = H Qy(ai) N[X] =T, (Ix) N [X].

Here, o are the Chern roots of the tangent bundle Jx, and @, («) is the series

Q)= Iy Qo]

starting as
(6) Qy(a)=1+ga(l—y)+ Za™(l+y) +....
The function A, satisfies: A,(a + b) = Ay(a)Ay(b). The function T}, is the motivic
Hirzebruch class function introduced in [25]. One has Ty(a +b) = Ty(a)Ty(b), as well.

For arbitrary X, let {X;};c; be a stratification of X, with X; locally closed and
smooth. By definition, we have
(7) mC (idx) = » _ mC (X; = X), T, (idx) =Y T, (X; = X).

iel iel
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10 D. ANDERSON, L. CHEN, AND N. TARASCA

Since any two such stratifications admit a common refinement, the above is well defined.

Remark 2.1. The transformations mC" and T}, satisty td(,) o mC = T, where

td(14y): Ku(X) © Zly] = A(X) @ Q [y, (1 +)7"]

is Yokura’s generalization [36] of the Todd class transformation from the singular Riemann-

Roch theorem [20].

2.1. Zeros of sections. For a vector bundle F on X, let +: Z < X be the zero locus
of a regular section s of £ — X.

Lemma 2.2. If X is smooth and s: X — E meets transversally the zero section of F,
then

mC (Z < X) = Wmc (idy)
T,(Z < X) = CE/I)((EE))Ty (idx) .

Proof. Since s meets transversally the zero section of F, it follows that Z is smooth. We
claim that

A1 (ElX)

mC (Z — X) = N (B1L)

mC (idx) .

Indeed, we have

mC(Z < X)=umC (idz) = u Xy (7)) = u (%) Ay (YY)

LAy (E‘X( Ay (EB/()

Here, ¢ is the K-theoretic push-forward via (. We have used the projection formula,
and (1) = A_1(E|¥%) in K.(X) (see for instance [21, V, Prop. 4.3]; this also appears in
[18, §8.1]). The statement for mC follows. The same argument together with (1) =
ctop(F) N [X] in A, (X)) prove the statement for T,. O

o (st ) 2 0 = 2 0.

When y = —1, Lemma 2.2 recovers the computation ty cgm(Z) = C“%PS)E) N csm(X)
treated in [34, Proposition 1.3].
2.2. Grassmannian bundles. Given a vector bundle £ on X, let
m: Gr(r,E) - X

be the Grassmannian bundle parametrizing rank r sub-bundles of E. Consider the
tautological exact sequence over Gr(r, E)

0—>S—F—>Q—0.
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MOTIVIC CLASSES OF DEGENERACY LOCI AND POINTED BRILL-NOETHER 11

Lemma 2.3. For arbitrary X, we have

mC (idarr ) = Ay ((8Y ©Q)") - m*mC (idx),
T, (iderrp)) =Ty (SY © Q) - 7* T, (idx) .

Proof. When X is smooth, Gr(r, E) is smooth. From the definition (4), we have

mC (o) =y (Teemy) = (59 @)") 72 (7).

and the statement about the motivic Chern class follows. For arbitrary X, the statement
about the motivic Chern class is an immediate application of the Verdier-Riemann-Roch
formula from [10, Cor. 2.1 (4)]. The proof for T}, is similar using [10, Cor. 3.1 (3)]. O

For y = —1, Lemma 2.3 recovers cgy (Gr(r, E)) = ¢ (SY ® Q) N w*cgm(X), treated in
[34, Proposition 1.5].

2.3. Fibrations. Given a proper morphism p: Y — X, let 2" := {X}}rex be a strat-
ification of X into locally closed strata Xj such that p is locally trivial in the Zariski
topology over each X with smooth fiber Fj. Assume that there exists a unique top-
dimensional stratum Xy in 2. Let py be the K-theoretic push-forward via p.

Lemma 2.4. We have

pmC (Y = X)=> dymC (X = X),
keK

pTy (Y 5 X) =Y e T, (X — X)
keK

with
dj, = (LkAy(ygv))—Zdj, er = (/FkTy(Fk))—Zej

where the sums are over j such that X; C Yj.

Proof. Since p is locally trivial in the Zariski topology over each X with smooth fiber Fj,
factoring p~*(Xz) C Y & X as p~'(X;) & X < X and by multiplicativity of ), one
has

pmC (pfl(Xk) — X) = (/ Ay (ﬂ};)) mC (X — X),
Fi.
for each k € K. Therefore, one has dy = || Fo M (9}0 ). One verifies the formula for the
coefficient dj, by recursion on the codimension of the strata in 2. The proof for T}, is

identical. 0

In the case y = —1, Lemma 2.3 was treated in [34, Proposition 1.6].
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12 D. ANDERSON, L. CHEN, AND N. TARASCA

2.4. Hirzebruch y,-genus. For a compact X, its Hirzebruch x,-genus is

xy(X) 1= /X T,(X) €Q

This invariant recovers the topological Euler characteristic for y = —1, the holomorphic
Euler characteristic for y = 0, and the signature for y = 1 [10]. The Hirzebruch y,-genus
extends to arbitrary X via the additivity in Ko(var/pt).

Ezample 2.5. For the projective space CP", one has

(@)= [ T, =1+ ()4t ()"

Consequently, one has x, (A%) = (—y)".

3. MOTIVIC CLASSES OF A RESOLUTION OF VEXILLARY DEGENERACY LOCI

Since motivic Chern and Hirzebruch classes have an equivalent formalism, as exem-
plified by Lemmata 2.2, 2.3, 2.4, for simplicity we consider only the case of motivic
Hirzebruch classes from this point on. The main result of this section is the follow-
ing Theorem 3.1, computing the motivic Hirzebruch class of a resolution of vexillary
degeneracy loci. This is the explicit version of Theorem 1.

3.1. The locus €2,. Recall the geometric setup of §1.1 defining the vexillary degeneracy
locus Wy in a variety X given maps of vector bundles (1) and a weakly increasing
sequence k = (ki,..., k). We define here a resolution Q. of Wi

As in §1.1.1, we can reduce to the case when the triple 7 = (k, p, q) is essential, that
is, it corresponds to a minimal set of conditions dimker (E,, — Fy,) |, > k; for a point
x € Wr. The triple T could then be inflated to the triple 7/ as in §1.1.2 and W, = W,...

Consider the variety Xj, parametrizing full flags of sub-bundles V; C --- C Vj, with
rank(V;) =i and V; C E,; for each i. The variety Xp, is constructed as a sequence of
projective bundles

X = X &P (Epfl) — X, 2P (Epé/sl) Xy P (Ep;% /skt_l) = X,

where S;/S;_1 is the tautological line bundle on X, for each i. Here, we omit the obvious
pull-backs via the natural projections m; to simplify the notation. Since X is assumed
to be smooth, X; is also smooth, for each i. Let m: X}, — X be the natural projection.
Define

Or = {(@ VI CVh) € Xy, : Vi Cler (B — Fy )

for all 2}

T

with natural inclusion ¢: (~27- — Xi,. (We study a quotient Q — Qin §6, hence the
use of the tilde here.) The restriction ¢ of m to {2, is a resolution of singularities as in
Kempf-Laksov [30]. One has a commutative diagram

Q-,— ‘% th

of I

Weye— X
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MOTIVIC CLASSES OF DEGENERACY LOCI AND POINTED BRILL-NOETHER 13

and the fiber of ¢ over a point x in W is

{(Vlg...gvkt) €' () : V; C ker (Ep; = Fqg)

for all z} .

x
Note that since (7/) = 7/, one has Q, = €0+ by definition.

In general, the locus Q. is not the minimal resolution of Wy. The minimal resolution
of Wr is given by the variety parametrizing flags Vi, C- - - CVj, such that rank(Vy,) = k;
and Vi, C ker (E,, — Fy,) for each i. There is a forgetful map from Q. to the minimal
resolution of W, which is birational. We find a closed formula precisely for the (push-

forward of the) motivic Hirzebruch class of Q.
Define A = A; as in §1.2, and bundles E(i), F'(i), classes ¢(i), and operators R;,
Ty(R;), and Ty (i) as in §1.3. Let ¢(7); be the term of degree j in (7).

Theorem 3.1. With assumptions as in §1.4, the class (m). Ty <§~ZT) is

1 ‘ 1 .
~c(i)y iy NT,(X),
H(i,j)es Ty (R; — R;) | Ty () Aitd 1<i,j<ky Y

where S := {(4,]) : i < kq < j, for some a} and T, (R; — R;) := Qy (R; — R;). Equiva-
lently, this is

1 ke

H(i,j)GS 1y (Rj - R;) g T, (4)
The second expression in the statement follows from the first since

(70)s [0 ] = 10 W) = lensi Dlci jp, € A(X)

v W] T, (X).

by [19]. For y = —1, the class (7¢)« csm (QT) admits a simpler expression, see §4.

Remark 3.2. We emphasize that all raising operators in Theorem 3.1 apply to the Chern
classes in the expansion of [W;], and do not apply to the Chern classes contributed from
the operators Ty, (7).

The first few terms in the expansion of the operator in Theorem 3.1 are given by
multiplying

Ty(le—Ri) - 1+%(y_1)(Rﬂ‘—Rz‘)+é(y2—4y+1)(Rj—Ri)2+‘__
for (i,7) € S, and
1 1 ' .
T — LT3l D(choFi+ @)
— L0 (R + 21 R, + cha)
£y <<cho(i2) + 1) B2 4 (cho(i) + Des (i) R,

+@w@—p@0+”.

This article is protected by copyright. All rights reserved.

85UB017 SUOWWIOD A0 8|t |dde au3 Aq pauienoh a1e S9pe YO ‘8sn J0Ss|n. 10} Areiq1T 3UIUO A8]IM U (SUORIPUOD-PUR-SLBY/LIOO" A3 | IM AteIq 1 BUI|UO//SIY) SUORIPUOD pue SWR L 84} 885 *[7202/T0/0€] U0 AriqiTauluo 8|1 ‘111 8gead N 86800 S10wyems Aq LySZTSW(/ZTTT 0T/I0p/wod A8 | 1M Afelq Ul jUO-00SYTeWIpUO|//SdNY WO} papeojumoa ‘€ ‘2202 ‘05.L69%T



14 D. ANDERSON, L. CHEN, AND N. TARASCA

where ch(i) := ch(F(i) — E(7)), for each i.
As an example for the set S, for k = (2,5), one has

S ={(1,3),(2,3),(1,4),(2,4),(1,5),(2,5)}.

Remark 3.3. The definition of the locus (2, requires flags of vector bundles finer than
the ones given in (1) precisely when k; > i for some i. However, the expression in the
statement only depends on the two given flags in (1), and not on the choice of finer flags
E, C---CEy and Fyp— > Fy used to define the locus (NZT.

1 kot 1 kot

In fact, the flags in (1) can be extended to full flags of vector bundles after passing to
an appropriate projective bundle over X. Namely, suppose that p; > p;_1. To define a
vector bundle Ej,, _; of rank p; —1 such that E,, | C E,,_1 C E,,, consider the projective
bundle

(8) P (Ep/Ep,_,) = X

and set Ep,_1 := Q, where Q/E,,_, is the universal quotient bundle on P (E,, /E,, ) —
here again we omit to denote when a bundle is pulled back for simplicity. Proceeding
in this way, one constructs full flags £y C Fy C --- C Ep, and F;;, — --- = Fy — I}
defined on a space X’ obtained as a tower of projective bundles p: X’ — X.

The theorem then applies to give the class

1 1 '
. i jes Ty (R; — i) [Ty (i) ()i

1<i,j<ks
Factoring p as a composition of projective bundles, A.(X) can be identified as a subring
of A, (X') via p*. After Lemma 2.2, the class (1), T, <S~2.,-> in p* (A«(X)[y]) is recovered

after quotienting (9) by the motivic Hirzebruch class of the consecutive fibers (the fibers
of p are locally constant). Indeed, this has the effect of replacing T, (X') with p* T, (X)
in (9), thus it recovers the formula in the theorem.

To prove the theorem, we distinguish four cases, following the proof strategy from
[8]. In the basic and dominant cases (§§3.2-3.3), we immediately compute the motivic
Hirzebruch class of the corresponding degeneracy loci. In the main and general cases
(8§83.4-3.5), where the degeneracy loci are singular, we compute here the motivic Hirze-
bruch class of the push-forward of the resolution Q of the degeneracy loci. In the last
two cases, the computation of the motivic Hirzebruch class of the actual degeneracy loci
is completed as in Theorem 3 building on Theorem 3.1.

3.2. Basic case. Let L be a line bundle and E a vector bundle of rank e on X.

Lemma 3.4. If the locus v: Z — X where a map p: L — E wvanishes is smooth of
codimension e, its motivic Hirzebruch class is
1

WS TEe R

ce (B —L)NT,(X),

where R is the raising operator acting on ¢ (E — L).
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Proof. From Lemma 2.2, we have

L Ty(Z) = ;Z((?‘;ivv)) T, (X).
The statement follows from the identities c. (E ® L") = ¢, (E — L) and
(10) (a1 (LV))kcl- (E—-L)=ci4x(F—-1L), fork>0andi>e
(see e.g., [8, pg. 3]), so that multiplication by ¢; (L) here coincides with the operator R.

O

3.3. Dominant case. Consider maps of vector bundles on X
Ei— - = E = F, - - —F,

with rank(FE;) = ¢ and rank(F,,) = ¢;. Here, we assume that 7 = (k,p, q) is a triple
with k; = p; = i, for 1 < i <t. Consider the degeneracy locus

Wr:={zxe X : (B = F,,) |y is zero for all i}
with inclusion ¢: W, < X. In this case, k; = ¢ and \; = ¢;, for each i.

Lemma 3.5. When W is smooth of dimension dim X — A, the class i, Ty(W.,-) 18 given
by

Fy, = Ei) N1y (X).

’ 1
1<i,j<t

e
Ty (Ri ® F(h) At (
Proof. From Lemma 3.4, it follows that
¢

Ch; F’Z—E‘Z E,_ 1)NT, (X).
ET qu®(E/Ez 1)) (q / ) y( )

As in (10), one has that ¢ ((E;/E;—1)") acts as R; on cy,(F,, — E;/FE;_1). By means of
the identity

t

(11) H ox (Fg — Eif/Eicy) = |C>\i+j—i (Fg, — Ei)|1§i7j§t )
i=1
valid as in [8, §1.2], the statement follows. O

3.4. Main case. Consider maps of vector bundles on X
Ep = = Epy = Iy > - > Fy,

with rank(E,,) = p; and rank(F,,) = ¢;. Here, we assume that 7 = (k,p, q) is a triple
where k; =4, for 1 <i<t,and gt —p1 +1>--- > q — pt +t. In particular, the triple
7 is essential and 7 = 7/ (notation as in §1.1). We would like to compute the motivic
Hirzebruch class of the locus

Wr:={z € X : dimker (E,, = F,,) |, >i}.

Instead, we compute here the motivic Hirzebruch class of the resolution of W.; this will
be used in §5 to obtain the motivic Hirzebruch class of W...
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16 D. ANDERSON, L. CHEN, AND N. TARASCA
Consider the following sequence of projective bundles
X = Xog <L P(E,) = X1 €2 P(E,,/S)) = X <X P(E,, /Si-1) =: X4,

where S;/S;_1 is the tautological line bundle on X;. The variety X; here parametrizes
flags of sub-bundles V; C --- C V; with rank (V;) =¢ and V; C E,,. Since X is assumed
to be smooth, X; is also smooth, for each 7. Define

Q= {(x,Vi C---C V) € X, : V; Cker(E,, — Fy,)|, for all i}
with natural maps ¢: QT — X;and m: X; — X.

Proposition 3.6. With assumptions as in §1.4, the class (mt)s Ty (ﬁ.,-) is

1 1
CA; '—i(Fi_Ei) ﬂT(X).
Hi<j Ty (Rj - Ri) Ty (Ri @ (qu‘ - Epz)) I ¢ P 1<4,5<t Y
Equivalently, this is
t
W] NTy(X).
Hz<jT( HTZ/R®( )) Y

z:1

Note that for k = (1,...,t), one has E(i) = E,,, F(i) = Fy,, and S = {(i,j) : i < j},
hence the formula in Theorem 3.1 specializes to the one in Proposition 3.6.

Proof. From Lemma 2.3, we have
Ty(Xi) = Ty ((Si/Si—1)" @ By, /Si) N} Ty (Xi—1) -

Combining this with the basic case, one has

~\ 1 Ty ((Si/Si—1)Y ® By, /Si) e .
Ty (9r) = 117 (/5 0 Fy) 0 P =SS TG0

As in (10), one has that ¢1((S;/Si—1)") acts as R; on ¢, (F,

follows since one has

Ty (Ri©@S) =Ty (Ri —c1 (SY)) - Ty (Ri — e1 ((Si/Si-1)"))
T, (Ri — Ri)-- Ty(R Ri_1),

—Si/Si—1). The statement

q;

and
t
I co: (Fo = Si/Sic1) = legij—i (Fy, — Si)li<i <t
as in (11), and

T |Cq1'+j—i (Fth - Si)hgm‘gt = 1C\+j—i (qu' - Epi)|1§¢,j§t

as in [8, §1.3]. O
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MOTIVIC CLASSES OF DEGENERACY LOCI AND POINTED BRILL-NOETHER 17

3.5. General case. We consider here the general case of Theorem 3.1 and thus complete
its proof.

Proof of Theorem 3.1. After §1.1.1, we can restrict to the case of essential triples T =
(k,p,q). Indeed, the formula in the statement remains invariant after replacing a triple
T =(k,p,q) with 7 = (E, P, 6) such that 7 is essential and W, = W5, as in §1.1.1, and
thus Q,- = ?2;.

The case when k = (1,2,...,t) is treated by Proposition 3.6. Otherwise, to define
Q-, the triple 7 is inflated to a triple 7/ = (K',p',q’) such that the sequences k', p’,
and ¢ are of length k; with k' = (1,2,...,k:). One has Ay = A and Qr = Q. by
definition. We can thus apply Proposition 3.6 to compute (7). Ty (ﬁT/) with respect

to the flag Epll cC .- QEP;C refining £, C --- C E,,, and the flag Fqi — e I

t Dy
refining F,, — --- — F,,. After Remark 3.3, we can assume that such finer flags exist

on X. Thus from Proposition 3.6, the class (7). Ty (QT/> is

t )

1 1

[Lic; Ty (R — Ry) T, (Ri ® (Fq; _ Ep;>> ity (

Fy—E ) NT,(X).

by
1<i,j<k:

It remains to verify that this formula is equivalent to the formula in the statement.
As in [8, §1.4] (see also [5, §1]), one has

(12) |C(2.)/\i+j—i|1§i,j§kt = ’C)\r‘rj—i(Fq; - Ep;)

1<ij<ke

Indeed, from the definition of ¢(¢) (see §1.3), the entries of the two determinants in (12)
do not match, but the determinants do. Furthermore, fix ¢ with 1 < ¢ < k;. One has
ka1 <1 <k, for some a. We claim that

1

1 1 1
13 — = :
(1) j};lka Ty (Rj — Ri) T,(i) ]1]1 Ty (Rj— Ri) 1, <RZ- ® (Fqg - Ep;>>

as operators on (12). Recall that Ty (i) := T, (R; ® (F (i) — E(i))), where E(i) = Ep,
and F (i) = F,,, by definition (§1.3). Assume that ¢, = ¢,. Then one has
G=qy1=""=a, =0 and (piPis1,---Pk,) = Pa—ka+1,...,pa — 1,pa)

by construction. It follows that

1 1 Ty (Ri ® (Ep;.a /Ep§>)

L@ 1 (Riw (Fy-By ) T (Reo (Fy-By))

The second equality follows from the multiplicativity of T, on exact sequences. Further-
more, one has

Ty (By, /By) = I T(e(By/By )= T T(-R))

7:11<j<kq J1i<j<kq

This article is protected by copyright. All rights reserved.

85UB017 SUOWWIOD A0 8|t |dde au3 Aq pauienoh a1e S9pe YO ‘8sn J0Ss|n. 10} Areiq1T 3UIUO A8]IM U (SUORIPUOD-PUR-SLBY/LIOO" A3 | IM AteIq 1 BUI|UO//SIY) SUORIPUOD pue SWR L 84} 885 *[7202/T0/0€] U0 AriqiTauluo 8|1 ‘111 8gead N 86800 S10wyems Aq LySZTSW(/ZTTT 0T/I0p/wod A8 | 1M Afelq Ul jUO-00SYTeWIpUO|//SdNY WO} papeojumoa ‘€ ‘2202 ‘05.L69%T



18 D. ANDERSON, L. CHEN, AND N. TARASCA

as operators on (12). The second equality follows from (10): for j such that i < j < kg,
the indices of the Chern class c <Fq; — Ep;) =c (Fq; - Ep§,1 — Ep; /Ep§,1> in the j-th
row of the right-hand side of (12) are at least

P

. _i=d _ —q — 9 = T /
Ni+l—=j=q¢ —p;+1=q —p;, rank(qu E ),

hence from (10), ¢; (Epg /EP}_l) acts as the operator —R; on (12). Then, one has

Ty (Rz@ (Ep;a/Ep;)) = H Ty (Rz' ®c1 (Ep;/Ep;,l)) = ]I T(Ri-R)y

7:11<j<kq Jii<j<kaq
as operators on (12). It follows that
1 1 1

T, (i) j:i£[<ka Ty By~ R, (Ri “ (Fqi - Epé))

as operators on (12), whence the claim (13). When ¢} < ¢, then necessarily p, = p),

and this case is treated similarly. We thus conclude that the formula for (7). T, (Q.,./>
from Proposition 3.6 is equivalent to the formula in the statement. O

4. CSM CLASSES OF A RESOLUTION OF VEXILLARY DEGENERACY LOCI

In the case of the CSM class, the results of the previous section simplify as follows. For
a triple 7, define A = A; as in §1.2, and bundles E(i), F'(i), classes ¢(i), and operators
R; and T)(i) as in §1.3. Let c(7); be the term of degree j in (i), and given a variable ¢,
define c;() := > 50 c(i); 7. We use below the virtual rank ch(i)y = rank(F (i) — E(3)).

Theorem 4.1. With assumptions as in §1.4, the class (7t)x csm (QT) s given by

i N X),
U iz —x ) (i) r; 45 csm (X)
(4,4)€S 1+ R 1<, j<ki

where S :={(i,7) : 1 < kq < j for some a}. Equivalently, this is

t —ch(i)o
1 (14+R;)" ¢
11 — — [Wi] Nesu (X))
(i,5)es L+ R — R i=1 Cl+1Rz‘ (@)

We emphasize that in the above formula all raising operators apply to the Chern
classes coming from the expressions of type ¢(i),+j—i in the expansion of [W;], and do

not apply to the Chern classes contributed from the terms ¢ L (7).
1+R;

The first few terms in the expansion of the operator in Theorem 4.1 are given by
multiplying
1

- 1 _ R _ R2
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MOTIVIC CLASSES OF DEGENERACY LOCI AND POINTED BRILL-NOETHER 19

for (i,5) € S, and

=1

= 1—c(i); +c(@i)1Ri +c(i) —c(i)a+---
for each i, and

ch(i)o(—ch(i)o — 1)

5 R} 4...

(14 R;)~ "o =1 — ch(i)oR; + —

for each 1.
To show Theorem 4.1, we use the following technical lemma:

Lemma 4.2. Let L be a line bundle and E a virtual vector bundle of virtual rank e.
One has

c(E®L)=10+c(L)c_1 (E).

Ter (D)

Here, ¢i(E) := Y~ ¢i(E) t'. The case when E is a vector bundle is [20, Example 3.2.2].
For a virtual vector bundle, the argument is similar.

Proof of Theorem 4.1. Specializing Theorem 3.1 at y = —1, we have that the class

(L) csm (QT) is given by

c(Ri® (F(i) — E@) M7 L

M esm (X),

H 1
(pes | I
where ¢(R; ® (F(i) — E(i))) := T_1(4) is the specialization at y = —1 of the operator
Ty(i) from §1.3. The virtual bundle F(i) — E(i) has virtual rank equal to ch(i)y =
rank (F'(7)) — rank (F(7)). Applying Lemma 4.2, we have

c(R;i @ (F(i) = E()) = (1+ R)" P ¢ 1 (i),

TR,

hence the statement. O

5. MOTIVIC CLASSES OF VEXILLARY DEGENERACY LOCI

For a triple 7, recall the inflated triple 7/ from §1.1.2. The aim of this section is to
prove Theorem 2, here restated:

Theorem 5.1. For a triple T = (k,p,q) and with assumptions as in §1.4, one has

(). T, (@) = S () W T, (W)
k+

where T (kz+,p’,q’) and the sum is over the set of weakly increasing sequences

kT >k =(1,... k).
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20 D. ANDERSON, L. CHEN, AND N. TARASCA

5.1. The stratification. The degeneracy locus W is stratified by the loci W2, C Wr
defined in (3) with 77 = (k™,p’,¢’), for weakly increasing sequences k™ > k'. After
§1.1.3, we set W_+ empty, unless A+ is weakly decreasing. The codimension of W_+
in Wr is |A;+| — |A+]. There is no such stratum of codimension one in W.

Recall the variety Q. from §3, with the following diagram

ﬁ,— ‘#) th

of L

Wy — X.
The fiber of ¢ over a point z in Wi is

{(Vlc--‘Cth) €7 Y (z) : Vi C ker (Ep; = Fq;)

for all z} .

T

The map ¢ is locally trivial on each locally closed stratum W2, C Wo.

Proof of Theorem 5.1. The collection of loci W2, from (3), with 71 = (k:"‘,p’,q’) for
kT > K/, gives a stratification of the locus W, such that ¢ is locally trivial on each We,.
Given kT > k', the generic fiber of ¢ on W_4 is isomorphic to the Schubert variety
associated to a partition v assigned to k*:

S+ = {(Vlg---Qth) EFI(L,.... k;CP) : V; C K+ for alli},

where Ko C---C K, is a fixed complete flag of vector spaces inside CP* with dim(kK;) = .
The vector spaces K+ are meant to be identified with ker(Ep; — Fqg) , for a generic

point x in W+. If kT is strictly increasing, the partition v+ is defined as
vhi= (kL — ke, kT —1).
In general, for k* not necessarily strictly increasing, a coordinate computation shows

that the Schubert cell S7, in S,+ is isomorphic to the affine space AlRTI=IR],
As in Lemma 2.4, one has

(7). Ty () = 3 gy 10 Ty (W)
k+

with dgety = Xy (Sp+) — X_; dyp, where the sum is over the set of weakly increasing

sequences f such that Wy, D W_y for ¢ = (f,p',¢), that is, f < kt and Ay is weakly
decreasing. Clearly dy = 1, and by recursion one finds that d+) s equal to the

Hirzebruch x,-genus of the Schubert cell (S,+)°. Since (S,+)° = AFTI=IF one has
Aty = (—y)‘k-"'_'k/| for each k1 (as in Example 2.5), hence the statement. O

Ezample 5.2. Consider the triple 7 = (k,p,q) where p = (2,3), ¢ = (3,2), and k =
(1,2). One has

(7). Ty (80) = 1Ty (W)~ ya Ty (Wiai) — 1 Ty (Woa) + 01Ty (W)
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Here for simplicity, we use the notation Wy+ := W_4. For each stratum, one has the

-
following configuration over its general point:

W) : dimKer(Ey — F3) =1 and dimKer(Es — Fy) =2
W) : dimKer(Ey — F3) =2 and dimKer(E3 — Fy) =2
W) : dimKer(Ey — F3) =1 and dimKer(E3 — F») =3
Wiapz) : dimKer(Ey — F3) =2 and dimKer(E3 — F) =3

5.2. Example: Schubert varieties in Grassmannians. The Schubert varieties of a
Grassmannian are Grassmannian degeneracy loci for maps from the tautological vector
bundle to a flag of constant bundles. Our results apply to give the motivic Hirzebruch
class of the Schubert varieties in terms of the motivic Hirzebruch class of the Grassman-
nian. For instance, for X = Gs ((C5), consider the Schubert variety Sy associated to
the partition A = (2,1). This is the degeneracy locus W, corresponding to the triple
T = (k,p,q) with k = (1,2), p = (2,2), and g = (3,1). The stratification here consists
of two strata: the stratum with kT = (1,2) and the one with k* = (2,2). For y = —1,
Theorems 5.1 and 3.1 give

o5y = (FP~2F0- 3+ SEEP - 4E) e
- P+ IED RSP R
The last equality uses the formula for cgy(X) from [1], and the resulting formula checks
with the CSM class computation in [1].

6. THE LOCUS ) AND ITS MOTIVIC HIRZEBRUCH CLASS

We discuss here a setting which is particularly relevant in the study of pointed Brill-
Noether varieties (§7). Consider the following maps of vector bundles over a variety X:

©
By = Fyy = Fgy oo = By,
The Grassmann degeneracy locus is

Wy :={z € X : dimker(E, — Fy,)|, > for all i},

with partition A = (A1,..., ;) from §1.2 equal to \; :== ¢; — p +i. The locus W), is the
degeneracy locus W, corresponding to the triple 7 = (k,p,q) with k = (1,...,t), p =
(p,...,p), and ¢ = (q1,...,q). Its motivic Hirzebruch class is computed by Theorems
5.1 and 3.1. Now consider the Grassmannian bundle Gr (¢, £,) on X with tautological
rank ¢ sub-bundle S, and define its subvariety 2y by the conditions

dimker(S — F,,) >i for 1 <i<t.

One has
Qx —t Gr(t,Ep)

‘| Iy

Wy — X,
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22 D. ANDERSON, L. CHEN, AND N. TARASCA

and the fiber of ¢ over a point x is
(14) {V eGr(t,Ey) : dim (V Nker (E, — Fy,) |5) >4 for all i}.

The aim of this section is to describe the (push-forward of the) motivic Hirzebruch
class of (2 in terms of the motivic Hirzebruch class of loci of type Wj. This is achieved in
Proposition 6.4. The (push-forward of the) motivic Hirzebruch class of Q2 then follows
after applying Theorems 5.1 and 3.1 to compute the motivic Hirzebruch class of the
loci Wy.

6.1. The stratification. We start by describing a stratification of Wy induced by the
projection ¢: 2y — Wj. Consider the loci
WS ={x e X : dimker (E, — Fy,) |, > i+ r; forall i} C Wy,
with K = (0 < k1 < -+ < K) such that A+ k is a partition. The map ¢ is locally trivial
precisely on the locally closed strata
(Wg)? :={x € X : dimker (E, = F,,) |, =1+ ; for all i} C Wy.

The fiber of ¢ over a general point z in Wy from (14) coincides with the Schubert
variety Ske in Gr(t, Epl,;) associated with the partition kK¢ complementary to x inside
the t x (p — t) rectangle. For instance, when ¢t = 3, p = 7, and k = (1,1,2), one has
K¢ = (3,3,2).

In the following, it is convenient to identify a weakly increasing sequence xk with the
shape consisting of x; boxes in the ith row, and note that the componentwise order is
compatible with containment of shapes.

Remark 6.1. Fix k = (0 < k1 < -+ < K¢) such that A + K is a partition. We emphasize
that the partition in §1.2 assigned to the degeneracy locus Wy is not A + k, but rather
the partition with 1+ k1 parts equal to A\ + k1, and 1+ ks — k1 parts equal to Ao+ ko, etc.

6.2. The sequence ™. Fix a partition A = (A,...,\) and &k = (0 < k1 < -+ < ky)
such that A 4+ & is weakly decreasing.

Definition 6.2. Given A and k as above, the sequence

K}red _ (0 < Iﬂ?lied <...< K;ed)

is defined as the minimal sequence in componentwise order with /ﬁed = Kkt and
/ilged = K; when ki1 + Aip1 < K + A, for @ < t.

For instance, for A = (4,4,1,1) and & = (1,1,3,3) one has k™4 = (0,1,1,3). See
Example 6.7 for a graphical representation of some sequences k and corresponding ™9,

Lemma 6.3. Given X and k as above, k™9 is the smallest shape inside & which is not
contained in any of the shapes € < k such that X + € is weakly decreasing.

Proof. We first prove that if € contains £ and X + € is weakly decreasing, then € = k.

One has necessarily ¢, = k. Next, fix ¢ < ¢ such that /{?ed < K4, and assume that we
have already settled that ¢; = k; for j > i. By definition, since /f;“ed < K;, one has
Kit1 + XAit1 = RKi + Ai. Since we want that \; + ¢; > Ait+1 + €+1 = Nip1 + Kiy1, then
necessarily €¢; = k;.
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Finally, we show that any smaller shape &’ < k"9 is contained inside some € < k such
that A + € is weakly decreasing. If s} < r; = x5°d, then &’ is contained inside
€ = (min{k1, ke — 1}, ..., min{ki_1, 5t — 1}, k¢ — 1).
Next, fix 7 < t such that /ﬁed > ﬁge_dl, or i =1 and k1 > 0. By the definition of k4, this
implies that xI°¢ = k; and ki1 + \it1 < ki + A;. Consider &' defined as &) = &
and K} = Ii;ed for j # 4. Then &’ is contained inside

red_l

7 9
€ = (min{ky,k; — 1},... omin{K;—1,k; — 1}, ki — L, Kip1, 0o, Ke)-
The condition k;11 + Ajy1 < K; + A; guarantees that A + € is weakly decreasing. O

6.3. The motivic Hirzebruch class of 2.

Proposition 6.4. With assumptions as in §1.4, one has
() Ty (2x) = Z d 1+ Ty (WX)
k>0
where the sum is over kK = (0 < k1 < -+ < K¢) such that A+ K is weakly decreasing and
(15) de= > (=l

k'=(r1 < <KY)

rred SK/ <k

Ezample 6.5. When y = —1, the topological Euler characteristic of the fibers (14) of ¢
and consequently the coefficients d, are computed as follows.

For k = (0 < k1 < -+ < Ky), the topological Euler characteristic of the Schubert
variety Ske in Gr(l,CP) associated with the partition complementary to k inside the
[ x (p — 1) rectangle can be computed as

(10 XS =)= | (7T

Indeed, x (Ske) coincides with the number of partitions inside (ki,..., K1), or equiv-
alently, the number of shapes inside the shape k. This equals the number of non-
intersecting lattice paths

from the points (0,0),(1,0),...,(Il —1,0)
to the points (Likg+1—1),2,k-1+1—2),...,(l, K1)

1<i,5<l

(see e.g., [26]). From the Gessel-Viennot formula [23], this number equals the above
p(kK), hence the first equality in (16).

By definition (15), when y = —1 the coefficient d,; counts the number of shapes inside
the shape k and containing the shape ™9, that is, the number of shapes in & ~ &9,
Now Lemma 6.3 implies that x ~ &9 is a disjoint union of shorter weakly increasing
sequences, say k), k(® ... The number of shapes in & ~ k™4 is equal to the product
of the number of shapes inside each x(9. It follows that d, can be computed as the
product of the quantities p (n(i)).

For instance, when A = (4,4,1,1) and k = (1, 1,3,3), one has k™4 = (0,1, 1, 3), hence

k ~ k"4 is the disjoint union of the length one sequences (1) and (2) (see also how the
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white tiles representing & ~ k™4 are indeed union of disjoint shapes in Example 6.7) and
indeed d, = p((1)) -p((2)) =2-3 =6.

FEzample 6.6. When \; = --- = X4, one has necessarily k; = --- = Ky, hence we have
k= (K,...,k). For k& = (k,...,k) =: k', one has k™4 = (0,...,0,x) and thus Kk~ k' =

k!~1. For y = —t2, the right-hand side of (15) is t2|”red|P(,{,t_1+,$) (t), hence we have

dy = t2KP(n,t71+n) (t)v

where P, ;_144)(t) is the Poincaré polynomial of the Grassmannian Gr(k, C!=1+%). Since
Plict—144)(t) is given by the t2-binomial coefficient

L—1+4k [Tis ™ (1 —#%)
P(n,t71+/<) (t) = K = s 2\ TTt—1 2\’
t2 [T A=) [Tz (1 —¢%)
we have
t—1+k
(0.1, 00) = X | 1L en o)
k>0 )
where k = k!. For y = —1, the coefficients in the sum specialize to the binomial

coefficients (til:”{).

Example 6.7. When X = (4,4,1,1), one has that (7). T}, (£2x) equals

1—y(1—y)ﬂ+y2(1—y+y2) m—y3(1—y+y2—y3)ﬁ

—y3(1—y)i+y4(1—y)2&—y5 (1-y+v7) (1—y)ﬂ

+yt (1 —y+ 207 - 3y° + 3y* — 20° +¢) ﬂ

+y° (1—y+v?) i—’tf(l—y) (1-y+v°) i
+y8(1—y+y2)2&
—y5(1—y+2y2—3y3+4y4—5y5+5y6—4y7+2y8—y9)ﬂ-“

Here for simplicity, the shape & with s; boxes in the ith row stands for ¢, T, (W§).

Inside each k, the shape k"9 is shaded. Note how the complement of k™4 in each k is

a disjoint union of shapes.

Proof of Proposition 6.4. Write
(m)«Ty (2x) = Z dy 1Ty (WYX)

k>0
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MOTIVIC CLASSES OF DEGENERACY LOCI AND POINTED BRILL-NOETHER 25

for some coefficients d,.. One has W5 D WY exactly when € is contained inside &, that
is, €; < k; for all 4. From §6.1, the fiber of ¢ over a general point in W5 is the Schubert
variety Ske in Gr(t, CP) associated with the partition k¢ complementary to k inside the
t x (p —t) rectangle. Hence from Lemma 2.4, we have

dy, = Xy(SRC) - Zde
e<K
where the sum is over € such that A + € is weakly decreasing, and ¢; < k; for all 4, with
at least one strict inequality.

The Schubert variety Ske is the union of the Schubert cells corresponding to (weakly
decreasing) partitions contained inside (¢, ..., k1), or equivalently, shapes inside the
shape k. The sum

D> de

<k
is the sum of the Hirzebruch y,-genera of Schubert cells corresponding to shapes con-
tained inside some € < k such that A + € is weakly decreasing. From Lemma 6.3, it
follows that d, is the sum of the Hirzebruch x,-genera of Schubert cells corresponding
to shapes contained inside & and containing £™d. Since a Schubert cell corresponding
to a shape k' is isomorphic to the affine space A'Hl‘, its Hirzebruch x,-genus is (—y)"“/‘
(Example 2.5). The statement follows. O

7. POINTED BRILL-NOETHER VARIETIES

For a smooth pointed curve (C,P) and a sequence a:0<ay<---<a, <d, the
pointed Brill-Noether variety of line bundles W§(C, P) is defined as

We(C, P) := {L € Pic?(C) | hO(C, L ® Oc(—a;P)) > r+1—i for all z} .
The pointed Brill-Noether variety of linear series G§(C, P) is defined as

L € Picd(C), V C HY(C, L), dim(V) =7 + 1, and }

Gd(C, P) = {(L,V) dim (VQHO(C,L@) ﬁc(_aip))) >r+1—94 forall:

The variety W(C, P) has the structure of a Grassmannian degeneracy locus in
Pic?(C), and the variety G9(C, P) is of type Qy, as in §6. We briefly review this in
§7.1, we verify the assumptions from §1.4 in §7.2, and apply Theorems 5.1 and 3.1 to
compute the motivic Hirzebruch class of pointed Brill-Noether varieties in §7.3. Finally,
we conclude with some examples.

7.1. The construction. Choose a positive integer n large enough so that line bundles
of degree d + n are non-special, that is, n > 2¢g — 1 — d. Fix a Poincaré line bundle . on
C x Pic?(C), normalized so that .Z| (P}xPici(c) I8 trivial. Consider the following vector

bundles on Pic?(C):
& = (m2), (£ @ mOc(nP)),
F; = (7[‘2)* (‘iﬂ@ﬂ'{ﬁ(n—&-a“_l_i)P) for1<i<r+1.
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Here 71 and my are the projections from C' x Pic?(C) to C' and Pic?(C), respectively.
One computes

p:=rank (&) =d+n—g+1,

17
(17) gi :=rank (%) =n+ ary1-i for1 <i<r+1.

There are natural maps

g%yl—»ﬂg"'—»yqurl
and W§(C, P) is the Grassmannian degeneracy locus with partition A = (A1,..., A\py1)
from §1.2 equal to

(18) Ni=g—d+r+ar41-;— (r+1—1) for1 <i¢<r+1.

One has ¢(.%;) = 0 for all i, and all classes c(i) from §1.3 are equal to ¢ = ¢(—¢&) = ¢’

in H*(Pic?(C)), where 6 is the cohomology class of the theta divisor [9, §VIII]. Finally,
note that T, (Picd(C)) = 1, as Abelian varieties have trivial tangent bundles.

7.2. Dimension and singular locus. The one-pointed Brill-Noether Theorem [15, §1]
says that for a general smooth pointed curve (C,P): (i) the varieties W$(C, P) and
G%(C, P) are non-empty if and only if g > 7" jmax{0,g — d + r + a; — i}, and (ii)
when non-empty, G(C, P) has dimension equal to the one-pointed Brill-Noether number
plg,r.d,a) :=g—> 7 ((9g—d+r+a;—i) = g—|A|; the same holds for W$(C, P) when
plg,r,d,a) <g.

The proof in [15] uses degenerations to singular curves. However, explicit examples
of smooth pointed curves of any genus verifying the one-pointed Brill-Noether Theorem
and defined over Q were provided in [16].

Furthermore, the one-pointed Gieseker-Petri Theorem [13] characterizes the smooth
locus of G§(C, P) for a general smooth pointed curve (C, P), and implies that the singular
locus of G§(C, P) is contained in the locus of linear series with excess vanishing at P.
Since for p(g,7,d,a) < g the forgetful map w: G$(C, P) — W3(C, P) is an isomorphism
when restricted over the locus

We(C, P)° = {L € Picd(C) | h(C, L ® Oc(—a;P)) =+ 1 — i for all z} C We(C, P)

and the smooth locus of G%(C, P) as described in [13] includes 7! (W(C, P)°), it
follows that W¢(C, P)° is smooth for a general (C, P) and p(g,7,d,a) < g.

The stratification of W$(C, P) from §5.1 consists of strata whose closures are them-
selves pointed Brill-Noether varieties of line bundles inside Pic?(C). Namely, the strata
are

(19) wat(c, P) = {L € Pich(C) | K%(C, L ® Oo(~a;P)) > kit |, for all 2}

for kT >k =(1,...,7+1). (Note that some of the conditions defining Wcjﬁ (C, P) may
be redundant.)

In particular, W§(C, P) satisfies the transversality assumption from §1.4 for a general
(C,P) and p(g,r,d,a) < g.

While in this paper we only treat the one-pointed case, these results are also known
more generally for two-pointed Brill-Noether varieties with appropriate changes, see
[15, 33, 13].
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7.3. Motivic Hirzebruch class of pointed Brill-Noether varieties. For the pointed
Brill-Noether variety W$(C, P) with p(g,7,d,a) < g, the (push-forward of the) motivic
Hirzebruch class of its resolution from Theorem 3.1 equals

’ﬁ et Quon + R)

(20) Qy(R R ) (Qy(Ri))_qi |C>\i+j—i|1§i7jgr+1
where oy, ..., qp are the Chern roots of the vector bundle &. These satisfy
p P
(21) Zak:—ﬁ and 204620 fori>1
k=1 k=1

[9, pg. 336]. The expression (20) is symmetric in the ay, hence after expanding and
using (21), can be rewritten as a polynomial in 6 with coefficients in H* (Picd(C')) [y].
For instance, the first terms of [[{_, Q,(ax + R;) are

Qy(R)” — 1_Ty 00, (R - U +6y) 0 R, Q,(R)" + (1_89)2 6% Q,(R)" 2 + ...
When y = —1, the expression Ay reduces as follows:
1 (1+ Ry~ Nt
g 1+ R, — R;j e%m i 1<i,j<krin

Theorems 5.1 and 3.1 imply:

Corollary 7.1. For a general smooth pointed curve (C, P) of genus g and for a sequence
a:0<ap<---<a, <d such that p(g,r,d,a) < g, one has

Ay = Y)W (Wet e p)) i e (Pie(C)) (o)
kt+

where the sum is over the set of weakly increasing sequences k™ > k = (1,...,r + 1),
and for a given k¥, the locus VVC‘;Jr (C,P) CWE(C,P) is as in (19).

By the inclusion-exclusion principle, this determines the class v, T, (W$(C, P)) in
H* (Picd(C)) [y] in terms of classes of type Ax.

Similarly, Proposition 6.4 implies:

Corollary 7.2. For a general smooth pointed curve (C, P) of genus g and for a sequence
a:0<ap<---<a, <d such that p(g,r,d,a) < g, one has

(7). T, (GH(C.P) = S dp i T, ( we) (¢, P)) in H* (Pic?(C)) [y,
k>0

where the sum is over k = (0 < k1 < -+ < Kpy1) such that X + K is weakly decreasing,
the coefficients dy, are as in (15), and a(k) is the strictly increasing sequence

a(k) = (ag,a0+1,...,a60 + Krs1 — Kry .oy @pryar + 1,000 a0 + K1)

The expression for a(k) is obtained from (18) using the partition A assigned to
W;(”)(C, P) as in Remark 6.1. Examples are studied below.
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7.4. The curve case. When (C, P) is general of genus g > 1 and W(C, P) is one-
dimensional, the stratification from §5.1 consists of only the stratum with k¥ = (1,...,r+

1). Hence the curve W§(C, P) is necessarily smooth. Expanding formula (20), one has
that T, (W$(C, P)) is

1 r+1
(22) (1 + 3 ((r +1)0 + Z(/\k —r =2+ k)Tk> (y — 1)) |exitj—i 1<, j<r+41"

k=1
One computes

1
Oleniti-ili<ijcrsr = 9 ‘(/\HFJ—Z)'

)

1<i,j<r+1

1
Ai + i+ —1)!

Tis lextj—ili<ij<rsn = 9" ) (
1<i,j<r+1

where ;5 is the Kronecker delta: 0;; = 1 for ¢ = k, and ;) = 0 otherwise. The
determinants can be computed via the following application of the Vandermonde identity:

1

 Jh<icjarpi =4 +5—19)
(li+7—1)! '

1<i,j<r+1 H;ill(li +r+1—1)!

Using the combinatorial identity

r+1
1
(1"—|—1)‘.. = ()\k—I—T—I-Q—k)‘ — )
(Ai +7 —)! 1<, j<r+1 ; it i +7 = 1) 1stgsrtl

the top degree part in (22) gives

r+1
1
xy WH(C,P)=(y—1)g' > A — .
! ; N +0ik +7 =D jcra

For the curve G§(C, P), the stratification in §6.1 consists of a single non-empty stratum,
thus x, (G$(C, P)) = xy (W$(C, P)). As a check, for y = 0 one recovers the holomorphic
Euler characteristic computed in [6, §4.2].

7.5. The surface case when \; = --- = A,41. Let us consider the surface case in
the classical Brill-Noether setting, that is, with no special ramification required at the
marked point. Thus one has a; =i for 0 <i<r,and \y =---= A1 =g—d+r =\
In this case, one simplifies the notation as Wj(C) := W$(C, P), and similarly, G%(C) :=
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G9(C, P). The degree-two operators with non-zero action are:

. G+
tlexti=hsis<rn = 5051 1) Orri2)

r(r+1
Rl leati-ili<ijeri = 20\ +7)( >\+7" +1) g'H A +4)!

2
(23) Ry lextj-ili<ijartn = ~BiR2lextj-ilic joi

T

r+1 1!
OB lexti-ilicijeren = 5 rr1? 11 (A+1i)!
1=0

|
) _ 2.
0" lexti-ili<ijerir = 9! H A+
1=0

We are now ready to prove Corollary 4:

Proof of Corollary 4. The stratification from §5.1 consists of two strata: the full-dimen-
sional stratum with k* = k = (1,2,...,7 + 1), and the codimension two stratum with
kT =(2,2,...,7+1) whose class is equal to R1R» ‘Ckﬂ'*i‘lgi,j‘grﬂ' From Corollary 7.1,
the motivic Hirzebruch class is given by

(24) T, (Wi(C)) = Ax — Xy (A(lc) R Ry ’c>\+j*i’1§i7j§r+1 .

As in the proof of Theorem 5.1, the affine space A<1c here coincides with the maxi-

mal Schubert cell inside the Schubert variety given by the generic fiber of Q. over the
codimension-two stratum in W} (C).

One has x, (A¢) = (—y)" (Example 2.5). On a surface, the power series Qy(«)
restricts as:

Qy(a)zl—l—%a(l—y)—i—l%a (1+y)>

The resulting expansion of (24) is
T, (Wi(C) = (1 F (=7 DRi+ (A= )Ra+ (r + 1)) (y — 1)
1
T3
+8(1—r— )\)y)R%
+2(BA=r)A=7—1)=1)(y — 1)* + 20y) R1 Ry
+BA=y -1+ A+r—2)((y—1)* = 8y)) R
+2((BA(r+1) = 3r(r+2) —2)(y — 1) — 8y) OR,
+2((BA(r+1) = 3r(r +1) + 1)(y — 1) — 8y) OR>

+3(r+1)%(y - 1)292>> [exti=ihicijcri

Using (23), this gives the statement.

(((3(A—r)2+7r—5A+2) (y —1)2
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For the surface G7;(C), as the stratification in §6.1 consists of a single non-empty stra-
tum, Corollary 7.2 implies 7, T, (G3(C)) = Ty, (W} (C)), hence x,(G5(C)) = xy(W;(C)).
O

Remark 7.3. We emphasize how the stratification from §5.1 for W7 (C) is finer than
the one considered in [34]. Indeed, for this example we have two strata, while the
stratification used in [34] for the same locus consists of only one stratum, as W} (C) is a
smooth surface.

7.6. The surface case when r = 1. Here we consider the surface case when r = 1.
The case A1 = Ay being treated in §7.5, we assume here A\; > Ao. The stratification from
§5.1 consists of the single full-dimensional stratum with k* = (1,2), contrary to the case
A1 = Ag. From Corollary 7.1, the motivic Hirzebruch class is given by

(25) T, (W§(C, P)) = Ax.
Formula (20) gives

T, (Wi, P)) = <1 + % (M —2)R1+(N—1)Ra+20) (y — 1)

+ i ( ((3AF — 111 +12)(y — 1)* — 8y\1) R}

+2((3(M1 —2)A2 = 3M\ +5) (y — 1) + 8y) R1 Ry
+ (A2 —1)((BN\2—2) (y — 1)* — 8y) R

+2((6A1 — 11) (y — 1)* — 8y) OR,

+2((6A2 —5) (y — 1)* — 8y) OR,

+12(y — 1)292>> |C)\¢+j—i‘1§¢,j§2 :

The degree-two operators are:

R} ‘c/\¢+j*i‘1§i,j§2 = g!m’
RiRa[exitj-ili<ijco = 9! (/\11++2;\!1(/\_2)f Y’
Rj [exiti-ili<ijco = 9! (,\1)\Jlr I)')Ez)\;rl 2)!”

0 Ry lex+j—ili<; j<n = 9!m’
0 Ry [exitj-ili<i j<o = 9! (M +>\11)!_()f\22+ ny

92 .. = '1 + )\1 _ AQ
|C)\i+J_Z|1§i7jS2 o gm

Using these, the motivic Hirzebruch class is:
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Corollary 7.4. Fiz g > 2 and a = (0 < ap < a1 < d) with p(g,1,d,a) = 2. For a
general smooth pointed curve (C, P) of genus g, one has

(0P = LEN 0 oy O3 a2 42)
Ty (Wd (C7P)) - ()\1+1)!)\2[0 <1+ ()\1+2)(>\2+1)

+ (@200 +2)+ 12 = (o = 920 (e +2) + 1A
+ (A2(10 = X2 (6X2 + 5)) + 3)A1 — Bha(he +1)%) (y — 1)?
M+ 2) Mo+ 1) (A2 4+ 40 — A2 — 225+ 3) y>

1 92)
A+ M -2+ +3)e+ D) +2) )

We deduce the Hirzebruch x,-genus:

(y—1)0

Corollary 7.5. Fix g > 2 and a = (0 < ag < a1 < d) with p(g,1,d,a) = 2. For a
general smooth pointed curve (C, P) of genus g, one has

xy (Wi (C,P)) = <((2/\2(>\2 +2) + DA = (h2 = 4)(2X2(A2 +2) + 1)AT

+ (A2(10 = Ag(6X2 +5)) + 3)A1 — 3Aa (Ao + 1)) (y — 1)
g!
(A1 +3)!(A2 +2)17

The stratification in §6.1 consists of a single non-empty stratum, hence x,(G(C, P)) =
xy(Wi(C, P)).

M+ 2 1) (A2 +4M — A2 —2X +3) y)

Remark 7.6. Interestingly, the above formula for x, (W$(C, P)) in the case A\; > X2 (i.e.,
a1 > ap) does not specialize to the formula for the case \; = Ay from §7.5, unless y = 0.

The discrepancy arises from the fact that the stratification in the surface case with
r = 1 consists of two strata when A1 = Ao, while there is only one stratum when A\; > Ao.
Indeed, the stratum with kT = (2,2) has codimension two when A\; = \o, while it has
codimension at least three when A1 > A, hence it is empty on surfaces. Consequently,
the motivic Hirzebruch class T, (W§(C, P)) in the surface case with r =1 and Ay > Xo
given by (24) does not specialize to the surface case with A\ = Ay given by (25), unless
y=0.

This is in contrast with the case y = 0, corresponding to the holomorphic Euler
characteristic of a surface W$(C, P), which following [6], does specialize from the case
Ai > Aiy1 to the case A; = A\j41, for any 7. When r = 1, this can be seen here since the
second summand in (24) vanishes for y = 0.
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