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New insights into binocular rivalry
from the reconstruction of
evolving percepts using model
network dynamics

Kenneth Barkdoll, Yuhua Lu and Victor J. Barranca*

Department of Mathematics and Statistics, Swarthmore College, Swarthmore, PA, United States

When the two eyes are presented with highly distinct stimuli, the resulting visual

percept generally switches every few seconds between the two monocular

images in an irregular fashion, giving rise to a phenomenon known as binocular

rivalry. While a host of theoretical studies have explored potential mechanisms

for binocular rivalry in the context of evoked model dynamics in response to

simple stimuli, here we investigate binocular rivalry directly through complex

stimulus reconstructions based on the activity of a two-layer neuronal network

model with competing downstream pools driven by disparate monocular stimuli

composed of image pixels. To estimate the dynamic percept, we derive a linear

input-output mapping rooted in the non-linear network dynamics and iteratively

apply compressive sensing techniques for signal recovery. Utilizing a dominance

metric, we are able to identify when percept alternations occur and use data

collected during each dominance period to generate a sequence of percept

reconstructions. We show that despite the approximate nature of the input-output

mapping and the significant reduction in neurons downstream relative to stimulus

pixels, the dominant monocular image is well-encoded in the network dynamics

and improvements are garnered when realistic spatial receptive field structure

is incorporated into the feedforward connectivity. Our model demonstrates

gamma-distributed dominance durations and well obeys Levelt’s four laws for

how dominance durations change with stimulus strength, agreeing with key

recurring experimental observations often used to benchmark rivalry models.

In light of evidence that individuals with autism exhibit relatively slow percept

switching in binocular rivalry, we corroborate the ubiquitous hypothesis that

autism manifests from reduced inhibition in the brain by systematically probing

our model alternation rate across choices of inhibition strength. We exhibit

su�cient conditions for producing binocular rivalry in the context of natural scene

stimuli, opening a clearer window into the dynamic brain computations that vary

with the generated percept and a potential path toward further understanding

neurological disorders.

KEYWORDS

neuronal networks, binocular rivalry, stimulus encoding, compressive sensing, non-linear

dynamics, input-output mapping, autism

1. Introduction

A rich history of experiments demonstrate that when dissimilar constant visual stimuli
are presented to each eye, humans typically perceive one of the monocular stimuli for a small
period of time and then the other, with stochastic transitions between the two percepts as
time advances (Dutour, 1760;Wheatstone, 1838). This phenomenon, referred to as binocular
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rivalry, has garnered numerous studies exploring its intricacies
and emergence, from both psychophysics and neuroscience
perspectives (Breese, 1909; Blake and Fox, 1974; Leopold and
Logothetis, 1996; Polonsky et al., 2000; Tong and Engel, 2001;
Wilke et al., 2003). A diverse range of explanations have been
hypothesized (Levelt, 1965; Tong, 2001; Blake and Logothetis,
2002), with various mathematical models probing the efficacy of
different proposed mechanisms (Matsuoka, 1984; Dayan, 1998;
Wilson, 2003; Said and Heeger, 2013). Collectively, these studies
have primarily underlined internally-generated noise, a slow
adaptation mechanism, and cross-column inhibition as potentially
pivotal, though a completely parsimonious framework for the
irregular percept switching and underlying stimulus encoding is
still an active interdisciplinary area of inquiry (Kovacs et al., 1996;
Logothetis et al., 1996; Tong et al., 2006; Sterzer et al., 2009).

Since the percept evolves while the monocular inputs remain
constant, binocular rivalry offers unique insight into the structure-
function relationship in the visual system. Binocular rivalry also
provides an informative vantage point for studying internal
computations in the brain, and it has been broadly applied in
studying consciousness as well as cognition (Wilson, 2013; Koch
et al., 2016; Vattikuti et al., 2016). Perceptual alternations are
well-documented across many non-human mammals (Sengpiel
et al., 1994; Carter et al., 2020) and outside the domain of vision
as well, including in olfaction (Zhou and Chen, 2009), audition
(Hupe et al., 2008), and touch (Holcombe and Seizova-Cajic, 2008),
suggesting perceptual multistability results from relatively universal
organizing principles.

Theoretical investigations thus far have often well-replicated
key experimental observations, but they have either utilized
idealized rate models (Shpiro et al., 2009; Li et al., 2017) or relatively
simple stimuli (Laing and Chow, 2002; Cohen et al., 2019; Wang
et al., 2020), such as those distinguished by one parameter, akin
to the orientation of a grating. These phenomenological models
largely do not seek to estimate the stimulus information encoded
by the network dynamics, rather focusing instead on winner-
take-all behavior and multistability properties to probe the neural
substrates of perceptual inference in binocular rivalry (Gershman
et al., 2012). Considering that sequentially alternating percepts
are relatively rarely encountered outside of laboratory settings yet
robustly occur for disparate complex stimuli in experiments (Baker
and Graf, 2009; Miller, 2013), with dominance characteristics often
modulated by higher order image features (Alais and Melcher,
2007), it is of significant interest to address the retention of complex
monocular stimuli in the network dynamics and the possible role of
network structure in rivalry as well as potential information loss.

In this work, we provide a new verifiable framework for
characterizing the interplay between visual system connectivity,
non-linear network dynamics, and stimulus encoding in binocular
rivalry, utilizing a multi-layer neuronal network model with two
competing ocular dominance columns driven by disparate realistic
monocular image inputs. This study is among the first to explicitly
use stimulus reconstructions based on spiking neuronal network
activity to investigate binocular rivalry and provides a direct
method of testing theories regarding its neural substrates. Our two-
layer mechanistic network model reflects the effective connectivity
between the retina and V1 (Barlow, 1981; Spear et al., 1996).

In the second layer, we introduce two pools of neurons with
individually balanced dynamics driven by different images, cross-
column competition via long-range connections from excitatory
to inhibitory neurons, and spike-frequency adaptation to account
for the common mechanisms believed to together be necessary for
binocular rivalry. Each of these key assumptions is addressed in
turn in this introduction.

We assume that the two downstream pools compete for
dominance and each corresponds to a different attractor, such that
when the network-averaged firing rate of one pool is significantly
larger than that of the other pool, the percept corresponding
to the more active pool is selected. Systems demonstrating
competition among clusters of nodes display useful computational
characteristics beyond decision making, such as sequence learning
(McKinstry et al., 2016), classification (Krizhevsky et al., 2017),
and signal restoration (Rutishauser et al., 2011). Competition in
our model network stems from mutual inhibition between the
pools that is facilitated by long-range connections from excitatory
neurons in one pool to inhibitory neurons in the other, agreeing
with experimental evidence that such long-range connections likely
originate from excitatory neurons (Stettler et al., 2002; Douglas and
Martin, 2004; Tamamaki and Tomioka, 2010; Binas et al., 2014).

Without slow adaptation or noise, a single percept may be
selected for all time and the system would thus display winner-
take-all behavior. In phenomenological models of binocular
rivalry, adaptation is commonly implemented by either synaptic
depression, in which neurotransmitters or vesicles are depleted over
time, or spike-frequency adaptation (Freeman, 2005; Kilpatrick and
Bressloff, 2010). There are two main slow currents that promote
spike-frequency adaptation through gradual negative feedback,
namely the non-inactivating muscarinic potassium current and
the after-hyperpolarization (AHP) current, which together largely
determine the firing threshold and slope of the neuronal voltage
trace (Yamada et al., 1989; Ermentrout et al., 2001). Since the
two main adaptation mechanisms both successfully decrease the
excitability of the dominant pool after continued firing activity to
help facilitate a switch in percept and there is no clear consensus
regarding which mechanism is most closely implicated in binocular
rivalry, we incorporate spike-frequency adaptation into our model
for concreteness.

To account for the irregular nature of the percept switching
in binocular rivalry, we assume each pool in the second layer
demonstrates balanced dynamics in isolation (van Vreeswijk and
Sompolinsky, 1996; Troyer andMiller, 1997), such that fluctuations
in activity are internally generated. While here we assume irregular
dynamics are the result of a chaotic attractor, noise is often instead
explicitly incorporated into models of binocular rivalry and serves
an analogous role in breaking symmetry to facilitate a new percept.
Though either mechanism can provide an effective contribution to
the stochastic switching, our choice of balanced dynamics reflects
compelling experimental evidence that strong excitatory and
inhibitory inputs into a given neuron are dynamically counteracted
in time such that input fluctuations result in irregular spiking
activity (Haider et al., 2006; Miura et al., 2007; London et al., 2010).
Such balanced dynamics are theorized to have diverse functional
benefits, facilitating robust spatial working memory (Lim and
Goldman, 2014), effective predictive coding (Boerlin et al., 2013),
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efficient food source selection for honeybees (Borofsky et al., 2020),
and successful mammalian learning (Fiete et al., 2007; Ingrosso and
Abbott, 2019).

While our model exhibits highly non-linear and irregular
dynamics with complex network structure, we nonetheless use
coarse-graining techniques to derive an approximate linear
input-output mapping. Linking the pixels composing the image
stimuli to the evoked network dynamics, this map furnishes
the reconstruction of the evolving dominant monocular image
inputs and demonstrates the successful retention of stimulus
information during binocular rivalry. We utilize a dominance
metric based on the firing rates of the two downstream pools
to identify the dominant pool during each period of dominance,
exhibiting persistent bistability and irregular switching in themodel
dynamics. Using only the time-averaged activity data collected
during a physiologically realistic dominance period, we are able
to generate accurate dynamic percept reconstructions for both
simple gratings as well as natural scene monocular inputs. The
efficacy of these reconstructions is further improved when more
biologically realistic spatial receptive fields are incorporated into
the feedforward connectivity for the two pools, agreeing with the
evolutionary selection of this network structure.

It is important to note that these reconstructions succeed
despite our assumption that the monocular input images contain
significantly more pixels than downstream neurons in the two
pools, reflecting the compressive nature of the early visual system
that is typically unaccounted for in model-based studies of
binocular rivalry (Barlow, 1981; Barranca et al., 2014b). In the
human visual system, for example, 150 million photoreceptors are
processed downstream by only about 1.5 million retinal ganglion
cells. Further downstream, information encoded by the millions of
neurons in the lateral geniculate nucleus (LGN) is later expanded
in the primary visual cortex (V1), which is composed of roughly
40 times as many neurons as the LGN (Spear et al., 1996).
Compressive pathways are exhibited in most other sensory systems
(Welker, 1976; Knudsen and Konishi, 1978; Mori et al., 1999;
Brecht and Sakmann, 2002), and are hypothesized to play a central
role in efficient coding in the brain (Barlow, 1961). Reflecting
information loss through the sensory bottleneck and the initial
time necessary for a monocular stimulus to dominate, our model
demonstrates the experimentally documented transient period in
the first few hundred milliseconds of binocular rivalry, resulting
in heavily diminished percept reconstruction quality and likely
reflecting the superposition of the monocular stimuli in the percept
often reported during this period (Blake et al., 1991; Pearson and
Brascamp, 2008).

By methodically varying the strengths of the monocular
stimuli presented to the two pools, we establish agreement
with Levelt’s four laws, which commonly serve as a benchmark
for theoretical investigations of perceptual bistability due to
their ubiquity across years of experiments (Levelt, 1965).
We additionally show that the dominance durations in our
model are right-skewed and gamma distributed, agreeing with
standard experimental observations (Kovacs et al., 1996). In
exploring perturbations to the model dominance durations, we
provide further insight into the precise mechanisms for the
percept switching and how rivalry dynamics crucially depend on
stimulus strength.

Finally, we utilize the flexible nature of our model network
connectivity and our ability to directly probe its parameters
to better understand neurological disorders. There is evidence
that individuals with autism demonstrate a relatively slow rate
of percept alternations in binocular rivalry (Robertson et al.,
2013; Spiegel et al., 2019), and experiments also indicate that
an imbalance in inhibitory and excitatory neuronal inputs may
underlie autism spectrum disorders (Gao and Penzes, 2015;
Nelson and Valakh, 2015; Rosenberg et al., 2015). Based on
these two findings, we systematically scale down the strength
of inhibition in our model, reflecting the potentially reduced
inhibition in the autistic brain, and consequently produce
increasingly long dominance durations. Providing new credence
to the excitation/inhibition hypothesis for autism, this result
strengthens the possibility of restoring balanced inhibition and
excitation as a potential avenue for treating autism.

2. Results

2.1. Mathematical model of binocular
rivalry with direct monocular image drive

The two-layer network model we consider has two competing
pools of downstream neurons that are each driven by distinct
monocular image inputs, as represented by the schematic in
Figure 1A. In light of several lines of experimental evidence
indicating a link between percepts reported in binocular rivalry
and the activity in both V1 (Logothetis et al., 1996; Polonsky
et al., 2000) and other parts of the visual system (Haynes et al.,
2005), we view the feedforward architecture of our model as a
phenomenological reflection of the effective connectivity between
photoreceptor output in the retina and V1, abstracting over the
detailed connectivity structure and diverse neuron types in between
these areas (Field and Chichilnisky, 2007; Anderson et al., 2011).
Since it may potentially be the case that a hierarchy of several
network layers are all partially responsible for various features
of binocular rivalry (Wilson, 2003), we aim to include more
general characteristics in our network connectivity and focus on
dynamic percept encoding in the context of the key mechanistic
contributing factors.

Each downstream pool is composed of N neurons, such
that NE are excitatory and NI are inhibitory, with each neuron
exhibiting pulse-coupled integrate-and-fire (I&F) dynamics.
Though relatively idealized, the I&F model has been shown to well
replicate experimentally observed subthreshold voltage dynamics
and has been utilized to great effect in numerous large-scale
model-based studies (Abbott, 1999; Rauch et al., 2003; Burkitt,
2006; Rangan and Cai, 2006; Mather et al., 2009; Barranca et al.,
2014a). In formulating the detailed recurrent network connectivity
and resultant dynamical regime, we utilize a balanced network
configuration within each pool (van Vreeswijk and Sompolinsky,
1996; Miura et al., 2007; Barranca and Zhou, 2019; Barranca et al.,
2019), producing the asynchronous dynamics in the dominant
pool that underlies the stochastic switching phenomenon and our
derivation of the network input-output transformation. While
there may be other plausible noise-based mechanisms for the
variability observed in dominance durations (Freeman, 2005),
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FIGURE 1

Network model and balanced dynamics. (A) Two-layer network with competing downstream pools schematic. Pool 1 and pool 2 are composed of

integrate-and-fire neuronal networks driven by distinct monocular stimuli via feedforward connectivity matrices, F1 and F2, respectively (orange).

Recurrent interactions between neurons within pool 1 and pool 2 are given by matrices R1 and R2, respectively (green). Long-range connections

between neurons in the two pools (purple) originate at excitatory neurons (red, E) and terminate at inhibitory neurons (blue, I). (B) Time-evolving

excitatory (red), inhibitory (blue), and total (green) inputs into a sample excitatory neuron in a balanced network. (C) The corresponding percentage

of excitatory neurons firing (red) and inhibitory neurons firing (blue) as a function of time. (D) Histogram of the ratio between total excitatory input

and total inhibitory input across neurons in the balanced network. (E) Gain curves depicting the population-averaged firing rates across a pool of

downstream neurons as a function of the external input strength scaling. The excitatory population is plotted in red, the inhibitory population in blue,

and the theoretical firing rate from Equation (8) in dashed purple. Note parameters are chosen such that theoretically the excitatory and inhibitory

populations should have the same average firing rate. Panels (B–E) consider the balanced network dynamics of an isolated single downstream pool

in the model prescribed by schematic (A) in the absence of both long-range connections between pools and spike-frequency adaptation.

Parameters utilized are REE = RIE = 1,RII = −1.8,REI = −2,NE = 1000,NI = 1000, fE = 1, fI = 0.8,m0 = 0.5,K = 40, θE = 1, and θI = 0.8.

balanced networks have recently been incorporated into the
study of binocular rivalry (Cohen et al., 2019; Wang et al., 2020)
and largely produce dynamics that agree with core experimental
findings on both the distribution of dominance durations and the
variability of neuronal activity more broadly.

The voltage (membrane-potential) of the ith neuron in the kth

population of the first downstream pool in the network, v1ik, has
activity dictated by the dynamical system below (subscripts k = E

and k = I denote excitatory and inhibitory neurons, respectively)

dv1
i
k

dt
=− gL(v1

i
k − VRe)+

NE
∑

j=1
j 6=i

R1
ij

kE

∑

l

δ(t − τ1
jl
E)

+
NI
∑

j=1
j 6=i

R1
ij

kI

∑

l

δ(t − τ1
jl
I )+

NE
∑

j=1
j 6=i

C2
ij

kE

∑

l

δ(t − τ2
jl
E)

+
∑

j

F1
ij

k
p1

j, (1a)

dθ1
i
k

dt
= −λ(θ1

i
k − θk), (1b)

evolving from reset potential, VRe, until increasing enough to reach
its firing threshold, θ1

i
k
, at which time the neuron spikes. Once a

neuron fires, its voltage is instantaneously reset to the value VRe

and the voltages of all post-connected neurons are adjusted upon
integrating over the Dirac delta functions δ(·) in Equation (1a).
The spike times for the ith neuron in the kth population of the first

pool are denoted τ1
il
k
and are indexed by l = 1, 2, . . . in ordering

the firing events in time. Note that the voltage dynamics of the
neurons in the second downstream pool are analogously defined
except the locations of the initial subscripts 1 and 2 in Equation (1)
are interchanged.

The N × N recurrent connectivity matrix for the first
downstream pool, R1, determines the instantaneous neuronal
interactions within the pool upon firing events and is indexed such
that R1

ij

kl
denotes the recurrent connection strength between the

ith post-connected neuron in the kth population and the jth pre-
connected neuron in the lth population. Each entry of the recurrent
connectivity matrix is prescribed by a Bernoulli distribution, where
R1

ij

kl
= Rkl/

√
K with probability K/Nl and R1

ij

kl
= 0 otherwise.

Thus, on average, a given downstream neuron will be post-
connected to K excitatory and K inhibitory neurons within its
pool, where the excitatory connection strength RkE is positive and
the inhibitory connection strength RkI is negative. The recurrent
connectivity is assumed sparse in this model, as typically observed
in experiment (He et al., 2007; Ganmor et al., 2011), implying
1≪ K ≪ NE,NI .

Each downstream pool corresponds to a column of neurons
with a specific ocular dominance preference, which is well-
documented in V1 (Blasdel, 1992; Issa et al., 1999). Reflecting
ocular preference, a neuron in a given downstream pool
receives external drive determined by its corresponding monocular
stimulus, which is mediated by a feedforward connectivity matrix.
In the first pool, for example, the corresponding monocular
stimulus is given by a constant image input vector p1 with
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n = 10NE total pixel components, modeling the large number of
photoreceptors relative to downstream neurons in V1 (also relative
to the number of neurons in earlier layers, such as the retinal
ganglion cells or neurons in the LGN). We have verified that a
less extreme compression ratio, focused on connectivity between
alternative specific layers, may be used with minimal impact on our
analysis. The feedforward connectivity matrix, F1k, determines the
connections between the upstream and downstream layers, where
F1

ij

k
denotes the feedforward connection strength between the jth

component of the stimulus vector, p1j, and the ith neuron in the
kth population of the first pool. Note, however, we do not consider
neurons with orientation selectivity (Ferster et al., 1996; Tao et al.,
2006) and we view the monocular image input as a single patch of
the visual scene sampled by the downstream pool in V1 (Hubel and
Wiesel, 1962) for analytical tractability andmore direct mechanistic
insights that apply to stimuli beyond simple oriented gratings.With
the model network connectivity characterized, we now proceed to
underline the three main model features that are together sufficient
to produce perceptual alternations in binocular rivalry.

2.1.1. Irregular firing activity
Irregular firing activity is internally generated by the recurrent

interactions among the downstream neurons, as we assume the
external input vectors forcing the two pools are constant, such
that the expected external drive into a downstream neuron in
the kth population of either pool is

√
Kfkm0. Here, m0 and fk

are O(1) parameters applying to both pools, where m0 scales the
overall external drive strength for the two populations and fk
further scales the external drive strength for the kth population
only. For analytical tractability in our initial investigation,
we assume the feedforward connectivity matrices are sparse
with entries determined by Bernoulli distributions akin to the
recurrent connectivity matrices. Later, in Section 2.5, we instead
consider the impact of utilizing more realistic spatially localized
feedforward connectivity.

2.1.2. Competition
Competition between the two downstream pools is fostered by

long-range connections from excitatory neurons in one pool to
inhibitory neurons in the other pool. The long-range connections
starting from neurons in the second pool are given by matrix C2,
where C2

ij

kl
denotes the long-range connection strength between

the ith post-connected neuron in the kth population of the first
pool and the jth pre-connected neuron in the lth population of the
second pool. The entries of C2 are prescribed similarly to those
of the recurrent connectivity matrices except the only non-zero
long-range connections possible are from excitatory to inhibitory
neurons, so C2

ij
IE = RIE/

√
K with probability K/NE and C2

ij

kl
= 0

otherwise. In this case, when one pool is highly active, it will send
numerous excitatory inter-pool impulses to inhibitory neurons
in the other pool and thereby tends to suppress the activity of
the competing neurons. Though a host of mechanisms for inter-
pool competition exists, such long-range excitatory connections
are a plausible and biologically feasible apparatus for inter-pool
competition (Stettler et al., 2002; Douglas and Martin, 2004;
Tamamaki and Tomioka, 2010; Binas et al., 2014), and they have

been included in prior realistic models of binocular rivalry (Wang
et al., 2020).

In an isolated pool that receives no cross-pool connections,
reminiscent of the dominant pool that receives only weak
competitive drive from the suppressed pool, it is important to
underline that if the recurrent connectivity strength parameters,
Rkl, are O(1), then only O(

√
K) excitatory impulses are needed

for a constituent neuron to fire given an O(1) firing threshold.
Hence, the mean excitatory and inhibitory inputs into each
downstream neuron are each in total of the same order as the
default firing threshold, reflecting the dynamic balance of large
excitatory and inhibitory inputs observed in many experimental
settings (Britten et al., 1993; Haider et al., 2006; Miura et al., 2007;
London et al., 2010; Xue et al., 2014). As a result, intermittent
fluctuations in neuronal input are largely responsible for firing
events as well as their irregular distribution. Since the excitatory
and inhibitory inputs into a given downstream neuron in the
balanced state dynamically cancel over time, a nearly constant level
of asynchronous activity is typically produced across neurons in the
dominant pool (van Vreeswijk and Sompolinsky, 1996; Barranca
et al., 2019).

2.1.3. Spike-frequency adaptation
Spike-frequency adaptation is the final major feature

incorporated into the model (Brown and Adams, 1980; Benda
and Herz, 2003; Barranca et al., 2014a), supported by a large body
of theoretical evidence that underlines the resultant decrease in
neuronal firing rate over time in response to a constant stimulus
as a core contributor to the percept switching in binocular rivalry.
In our model, adaptation arises from a dynamic firing threshold
for each neuron, rather than a static threshold as in traditional
balanced networks. As time progresses, this dynamic firing
threshold generally rises for the dominant pool and consequently
increases the excitation needed for its neurons to undergo action
potentials. Multiple subsequent spikes occurring close in time
sum to produce an accumulated increase in firing threshold and
ultimately reduce a neuron’s firing frequency. In particular, the
firing threshold of the ith neuron in the kth population of the first
downstream pool, θ1

i
k
(t), increases by a fixed positive constant

φ at the moment that neuron fires. Between firing events, θ1
i
k
(t)

evolves according to Equation (1b), such that the dynamic firing
threshold decays to the constant non-adapted firing threshold for
all neurons in the kth population, θk, in the absence of firing events,
with speed dictated by decay rate constant λ. The voltages and
thresholds are non-dimensionalized such that VRe = 0, θE = 1,
and θI = 0.8, with gL = 50s−1 corresponding to the standard
membrane-potential time-scale of 20 ms (McLaughlin et al., 2000;
Brette et al., 2007; Barranca et al., 2014b).

In the context of this study, adaptation further facilitates
rivalry since it causes the activity of the dominant pool to
weaken with time, giving the suppressed pool the opportunity to
again dominate as the firing thresholds of its neurons decrease
and consequently the overall firing activity of the suppressed
pool increases with time. Without relatively irregular neuronal
dynamics, such alternations in dominance could occur almost
periodically with highly correlated dominance durations. In
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order to agree with the gamma-distributed dominance durations
typical in experimental data (Kovacs et al., 1996), irregularity is
intrinsically introduced through balanced network structure, and
prior theoretical work suggests that binocular rivalry may only
occur with the appropriate mix of irregularity and adaptation
(Shpiro et al., 2009).

Before turning to the rivalrous behavior of the full model,
we provide useful insight into the model network dynamics by
underlining several main characteristics of balanced activity for a
single isolated pool in the absence of spike-frequency adaptation in
Figure 1. For a sample downstream neuron, we plot in Figure 1B
its total excitatory and inhibitory inputs, which dynamically cancel
over time and are much larger in magnitude than the static firing
threshold, causing the neuronal voltage to only sporadically reach
the firing threshold. As a result, on the population scale, we observe
in Figure 1C a nearly constant level of asynchronous firing activity
with only a relatively small percentage of neurons spiking at any
point in time. For a given neuron, the time-averaged ratio between
its total excitatory and total inhibitory input is primarily near −1.
Since this quotient is always negative when well-defined and a
ratio larger in magnitude than −1 implies an excess of excitatory
input, excitatory to inhibitory input ratios near −1 demonstrate
that on a neuron-by-neuron basis the excitatory and inhibitory
inputs are largely proportional. A histogram of these ratios across
the pool of neurons is given in Figure 1D, showing a clear center
near −1 and thus widespread balance. Despite the highly non-
linear voltage dynamics of neurons on an individual level, the
network firing rate response properties of the isolated balanced
network are quite linear. In Figure 1E, we adjust the external
input by increasing the overall scaling strength m0 and depict
the resultant population-averaged firing rates. We observe that
as the mean external drive is increased, the population-averaged
firing rate of both the excitatory and inhibitory populations
linearly amplifies for this finite network realization and agrees with
the theoretical gain curve derived in the large-network limit in
Section 4.1.

We conclude the preliminary discussion of our model network
by examining the impact of the spike-frequency adaptation
prescribed by Equation (1b). In Figure 2A, we plot the dynamics
of the firing threshold for a sample neuron subject to moderately
strong adaptation, demonstrating relatively large upward jumps in
threshold when that neuron fires and a slow decay in the dynamic
threshold between its spikes. The neuronal firing threshold shows
a more rapid overall increase initially and then the threshold
ultimately saturates at an elevated level once the neuron tends
to spike more slowly. On a more global level, in Figure 2B we
depict the population-averaged threshold dynamics with time
for the excitatory neurons, which, albeit more smoothly, also
exhibit a relatively rapid initial ascent and saturation in the long-
time limit. Consequently, as seen in Figure 2C, the percentage of
neurons firing decreases initially in time and then remains nearly
constant with minor fluctuations about a now depressed mean.
As demonstrated in prior work (Barranca et al., 2019), so long as
the adaptation is not too strong, the network still demonstrates
balanced dynamics with lower overall activity following an initial
transient period.When spike-frequency adaptation is included only
in the excitatory neurons, the parameter regime in which balanced
dynamics are theoretically expected in fact broadens.

FIGURE 2

Balanced network dynamics with spike-frequency adaptation. (A)

Firing threshold of a sample excitatory neuron over time in a

balanced network incorporating spike-frequency adaptation. (B)

Population-averaged firing threshold across the corresponding

excitatory population over time. (C) The percentage of excitatory

neurons firing (red) and inhibitory neurons firing (blue) as a function

of time. A locally weighted moving average is plotted for the

excitatory population in dashed magenta and for the inhibitory

population in cyan. Adaptation parameters are λ = 0.05 and φ = 0.3,

and the remaining parameters for the isolated balanced network

considered are provided in Figure 1.

2.2. Binocular rivalry dynamics and model
percept reconstructions

In order to reconstruct the dynamic percept during binocular
rivalry, we derive a generalized input-output map capable of
incorporating multiple stimuli in Section 4.1 and then construct
a mechanism for selecting the appropriate percept at any given
point in time. While previous work has developed such mappings
in balanced networks using coarse-graining techniques rooted
in statistical mechanics for I&F neurons without adaptation
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(Barranca, 2022) or binary neurons with adaptation (Barranca et al.,
2019), the model in this work is more detailed and requires an
extension of these methodologies. We note, however, that even if
the network parameters are not strictly in the theoretical balanced
operating regime, as long as the evoked dynamics are sufficiently
irregular, our derivation of the input-output mapping still holds,
making our framework robust to alternative model settings.

A typical requirement for balanced dynamics is that activity in
both the excitatory and inhibitory populations remains non-zero
and asynchronous in the large-network limit. Thus, we require the
population-averaged firing rates in a given pool, mzk for k = E, I
and z = 1, 2, to obey 0 < mzk < ∞ as N → ∞ and as
K → ∞ given a fixed ratio NE/NI . In order to hold well for
a finite-network realization, the linear input-output mapping and
associated theoretical bounds on the model parameters require that
the network is sufficiently large and composed of enough excitatory
and inhibitory connections to generate sustained irregular activity.

In particular, we require balanced dynamics for neurons
in the currently dominant pool, as excitatory neurons in the
suppressed pool are expected to be significantly less active andmore
inhibited than assumed in a balanced network. Since the inter-
pool connections are from excitatory to inhibitory neurons, the
inhibitory neurons in the suppressed pool will typically continue
firing from this additional cross-pool excitation while the excitatory
neurons in the suppressed pool will primarily be quiescent. This is
demonstrated in the raster plot in Figure 3A for a model network
simulation of 6, 000 ms, showing persistent firing across both
inhibitory populations for all time and significantly diminished
firing activity across the excitatory neurons in the suppressed pool
for each period of dominance. A relatively low level of firing in the
non-dominant pool is observed in some experiments, consistent
with the model dynamics (Blake and Logothetis, 2002), though
whether the neurons firing in the suppressed pool are largely
inhibitory in experiments is not yet fully determined.

The key input-output mapping, relating the monocular
stimulus driving a downstream neuron in the first pool, p1, to the
vectors of evoked neuronal firing rates and expected voltages across
the downstream neurons in the first pool, m1 and v̄1, respectively,
may be expressed compactly across the network in matrix form as

v̄1 = VRe + 1

gL

(

F1p1 + R1m1 + C2m2 −m1

(

θ̄1 − VRe
))

, (2)

where R1 is ordered such that the first NE rows (columns)
correspond to the NE excitatory neurons and the next NI rows
(columns) correspond to the NI inhibitory neurons in pool 1; we
assume the same ordering for the remaining terms in Equation
(2). The time-averaged threshold of each neuron in the first
downstream pool, θ̄1, is included in the input-output mapping
to account for the impact of spike-frequency adaptation, and the
influence of inter-pool connections is accounted for by C2m2. Note
that this mapping is valid when the first pool is dominant. The
input-output mapping for downstream neurons in the second pool
is similarly given by interchanging the numbered subscripts in
Equation (2) and is analogously derived. This mapping assumes the
periods of dominance are sufficiently long such that the dynamical
statistics, m1, v̄1, and θ̄1, are robust and well approximate long-
time averages, which we have verified to be empirically true. In

FIGURE 3

Rivalrous dynamics for network model with competing downstream

pools and simple monocular image stimuli. (A) Raster plot exhibiting

the firing times of all downstream neurons in the full model.

Neurons in pool 1 are indexed 1− 2000 (excitatory in red, inhibitory

in blue) and neurons in pool 2 are indexed 2001− 4000 (excitatory

in magenta, inhibitory in cyan). The first 1, 000 neurons in a pool are

excitatory. (B) Dominance metric, M, as a function of time given the

model dynamics evoked by simple monocular image inputs. A value

of 1 indicates that pool 1 is fully dominant and −1 indicates that

pool 2 is fully dominant. (C) Raster plot for only the downstream

excitatory neurons. Excitatory neurons in pool 1 are indexed

1− 1000 and in pool 2 indexed 1001− 2000. (D) 100× 100 pixel

grayscale stripes images driving the downstream neurons in pool 1

(top) and pool 2 (bottom). (E) Percept reconstructions from evoked

network dynamics during each of the first eight dominance

durations following the initial transient period (left to right).

Parameters within each pool are identical to those in Figure 1 with

λ = 0.00625, φ = 0.005, and long-range connection strength

parameter CIE = RIE = 1.
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practice, statistics regarding the network dynamics are computed
separately for each period of dominance and then separately used
to reconstruct each corresponding dominant monocular stimulus.

Since the firing activity of the excitatory neurons is most
significantly modulated across periods of dominance, the dominant
stimulus at time t will be determined by the population-averaged
firing rates of the excitatory neurons in first and second pools,
m1E(t) and m2E(t), respectively, computed in a small time bin
centered around time t. Based on these firing rates, we compute a
time-varying dominance metric that prescribes both the dominant
pool and the degree to which it currently dominates,

M(t) = m1E(t)−m2E(t)

m1E(t)+m2E(t)
. (3)

The dominance metric varies between −1 and 1, where a value
closer to 1 indicates stronger dominance of the first pool and a value
closer to −1 indicates stronger dominance of the second pool. We
assume a dominance period begins when M(t) switches sign and
then remains above 0.4 in magnitude for at least 100ms.

Figure 3B depicts the dominance metric as a function of
time for the same network simulation previously considered
in Figure 3A. Here, we observe an initial transient period in
which neither stimulus is fully dominant. Then we subsequently
see clear alternating periods of dominance for each pool, with
metric values hovering near −1 or 1, along with fast transitions
in the dominance metric value at the end of each period of
dominance. As will be described in more detail in the next
section, these dominance durations agree well with experimental
observations and demonstrate irregularity in length. Note that the
dynamics of the dominance metric specifically correspond to the
rivalrous alternations in excitatory neuron firing activity shown
for this simulation in Figure 3C, determining the duration of each
dominance period, the rapid transitions in dominance, and the
degree to which a given pool is dominant. In this case, the respective
monocular stimuli driving the neurons in the two downstream
pools are simple grayscale horizontal and vertical gratings, depicted
in Figure 3D.

With ameans of identifying the dominant stimulus as well as an
input-output mapping, what remains to be determined is a method
for reconstructing the appropriate percept given measurements
of network dynamics during a period of dominance. In order to
apply Equation (2) and recover the percept, only the monocular
stimuli are assumed unknown and all remaining terms must either
be known or estimated. The connectivity matrices are known
exactly following a particular network realization and fixed model
parameters, gL and VRe, are known as well.

Due to the assumed compressive nature of the feedforward
pathway, i.e., since there are many more monocular stimulus
components (pixels) than downstream neurons, reconstructing the
dominant stimulus during each dominance duration from our
input-output mapping requires solving a highly underdetermined
linear system with infinitely many solutions. Addressing this
issue, to select the percept most closely associated with the true
dominant monocular stimulus, we apply compressive sensing (CS)
theory to linear system (2). CS theory is a modern mathematical
breakthrough that provides a means of efficiently sampling and
reconstructing signals which are sparse in an appropriately-chosen

domain (Candes et al., 2006; Donoho, 2006; Candes and Wakin,
2008), and it has promoted discoveries in diverse applications
across physics, biology, and image processing (Lustig et al., 2007;
Bobin et al., 2008; Dai et al., 2009; Herman and Strohmer, 2009;
Berger et al., 2010; Gross et al., 2010; Wang et al., 2011; Noor
et al., 2013; Emad and Milenkovic, 2014). Natural scenes and
gratings, common as monocular inputs in binocular rivalry, are
known to have sparse representations in frequency-based spaces
(Field, 1994) and thus CS techniques are amenable to their
reconstructions. As discussed in detail in Section 4.2, compressive
sensing reconstructions generally require linear measurements of
static sampled data (Candes et al., 2006; Donoho, 2006), but our
model demonstrates non-linear dynamics in time. The derived
input-output mapping therefore allows us to successfully overcome
this conceptual obstacle by approximating a linear relationship
between the monocular stimuli and limited observations of the
evoked network dynamics, facilitating efficient reconstructions of
the dominant stimuli.

We use the network model output over a given dominance
duration to estimate the terms reflecting dynamical statistics in
Equation (2) and then apply a CS recovery algorithm known
as the orthogonal matching pursuit (Tropp and Gilbert, 2007)
to reconstruct the dominant stimulus. For a given period of
dominance, we record the firing rates, time-averaged voltages,
and time-averaged thresholds across all downstream neurons to
obtain estimates for mz, v̄z, and θ̄ z , respectively. When the metric
abruptly switches sign and signals an alternation, we stop collecting
output data and perform a reconstruction. In the recovery process
when the first pool is dominant, the stimulus p1 is considered the
unknown input in the input-output mapping given by Equation
(2), and the remaining terms are either known model parameters
or measured from model simulation. In this case, the feedforward
connectivity matrix F1 plays the role of the CS measurement
matrix, and the solution obtained via the orthogonal matching
pursuit, precon, corresponds to the percept and is considered
optimal when it is close to the true dominant stimulus p1. After this
reconstruction, we begin to recollect new output data throughout
the next dominance duration for the subsequent reconstruction;
this process of reconstructing and recollecting data continues
throughout the simulation, giving a sequence of estimates for the
percepts during the rivalrous alternations.

CS reconstructions of the switching percept using the network
dynamics during each of the first eight dominance durations
following the initial transient period are given in Figure 3E. In
each case, the reconstruction is nearly perfect, showing successful
encoding of the dominant percept in the downstream dynamics.
We emphasize that there is minimal information loss from the non-
linear dynamics and downstream compression for these relatively
simple images. Note that the pixel values are normalized so that
each monocular stimulus has the same average pixel value and the
feedforward drive from the two input images is comparable. As a
result, there is little systematic difference in both the dominance
durations and the reconstruction quality corresponding to the two
monocular stimuli.

It is important to emphasize that while it may be possible for
the brain to implement CS recovery in general (Rozell et al., 2008),
we make no claim that our precise method of reconstructing the
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percept is performed by the visual system itself and hypothesize
that summation implemented by a downstream binocular neuronal
network or dichoptic differencing ofmonocular input via opponent
neurons (Lansing, 1964; Bock et al., 2019) may be able to compute
a dominance metric in the determination of the dynamic percept.
Nonetheless, we see that rivalrous behavior can manifest even in
the presence of potential information loss through a downstream
sensory bottleneck and that monocular image information is well-
encoded in the dynamics of the downstream neurons in the
dominant pool. Even if network dynamics data is instead only
collected during the first 200 ms of a given dominance period
rather than throughout the entire dominance duration, we have
verified that there is little change in the percept reconstruction
quality and thus monocular stimulus information is indeed quite
rapidly encoded.

We can similarly consider the model dynamics evoked when
the two monocular stimuli are more complicated natural scenes,
particularly those depicted in Figure 4C. In this case, we again
observe clear alternations in the dominance metric plotted in
Figure 4A, hovering near a value of 1 and then rapidly switching
to gravitate near −1, with such alternations continuing to occur
irregularly throughout time. Each dominant monocular stimulus
is analogously reconstructed via Equation (2) using data collected
during each dominance duration. To measure the accuracy of
a given stimulus reconstruction, precon, we compute the relative
reconstruction error, ‖p− precon‖/‖p‖, using the Euclidean norm,

‖p‖ =
√

∑

i p
2
i and true dominant stimulus p.

The relative error for each monocular natural scene
reconstruction is plotted in Figure 4B over all dominance
periods in the model simulation. Here, we include as the first data
point the relative reconstruction error using network dynamics
collected over the initial transient period, where the metric initially
hovers slightly below 1 for a time shorter than a typical dominance
duration. As expected from experimental results (Blake et al.,
1991; Pearson and Brascamp, 2008), the reconstruction error in
the transient period is relatively high and likely corresponds to
the mixed percept often reported initially in binocular rivalry
experiments. The relative reconstruction errors corresponding to
each of the subsequent dominance periods are lower and display
only minor fluctuations in value. We provide several sample
percept reconstructions using data collected during each of the
dominance durations following the initial transient period in
Figure 4D. The reconstructions are each recognizable though less
accurate than those obtained for the grating images considered
previously. This is to be expected since these natural scenes display
more complex structure in the sparse frequency space and yet only
contain 10, 000 pixels. For higher resolution images with more
pixels and consequently more sparsity in the frequency domain,
more accurate CS reconstructions are generally achievable given
the same ratio of input image pixels to downstream neurons
(Barranca et al., 2016). While high-frequency components are
added when the resolution of an image is increased, the amplitude
distribution of the dominant low-frequency components is often
nearly identical to that of a lower resolution version of the
image, and the additional downstream neurons introduced to
maintain the same factor of compression will generally increase
the accuracy of stimulus recovery since the nearly fixed dominant

FIGURE 4

Rivalrous dynamics for network model with competing downstream

pools and natural scene monocular stimuli. (A) Dominance metric,

M, as a function of time given the model dynamics evoked by natural

scene monocular image inputs. (B) Relative reconstruction error for

percept reconstructions using downstream network dynamics

during each dominance duration in (A) as time increases. (C)

100× 100 pixel grayscale natural scene images driving downstream

neurons in pool 1 (top) and pool 2 (bottom). (D) Percept

reconstructions from the evoked network dynamics during each of

the first four dominance durations following the initial transient

period (left to right). Parameters are identical to those in Figure 3.

frequency-components become better resolved when more
neurons are available to sample them.

2.3. Dominance duration distribution and
robustness to alternative architectures

Widespread experimental studies in both humans and non-
human mammals indicate that dominance duration distributions
in binocular rivalry are largely peaked, right-skewed, a few seconds
in length, and conform well to a gamma distribution (Kovacs et al.,
1996; Leopold and Logothetis, 1996). Due to their ubiquity and ease
of application, such observations often serve as natural benchmarks
for physiologically reasonablemodels of binocular rivalry. From the
dynamics of the dominance metric displayed in Figures 3, 4, we see
that model dominance durations are indeed often between 1 and 2
s with irregularity in their specific lengths.
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FIGURE 5

Dominance duration distributions. (A) Histogram of all dominance

durations across 50 network realizations each with duration 40, 000

ms. (B) Gamma distributions fitted to the dominance duration

histograms for pool 1 (red), pool 2 (blue), and both pools (green).

For the fitted gamma distributions, the pool 1 shape parameter is

12.7176 and scale parameter is 125.942, the pool 2 shape parameter

is 10.5895 and scale parameter is 162.762, and for both pools the

shape parameter is 11.3812 and scale parameter is 146.096.

Network model parameters and monocular image inputs are

identical to those in Figure 3.

We examine the distribution of dominance durations in more
detail in Figure 5A, where we plot a histogram of all dominance
durations for 50 model network realizations each with a total
runtime of 40 s. This is meant to reflect the typical experimental
setting in which rivalry dynamics are analyzed for multiple
individuals (network realizations) for a relatively long time course.
The resultant histogram is right-skewed with mean near 2 s,
conforming to classical dominance duration statistics. In Figure 5B,
we similarly examine the dominance duration distributions for
the first pool, second pool, and both pools, fitting each to a
gamma distribution. Separately, the dominance durations in each
pool are also well-approximated by a gamma distribution, with
slight shifting in mean likely as a consequence of differences in
feedforward connectivity and monocular input stimuli.

We note these peaked gamma distributions indicate that
the probability of a subsequent switch immediately following an
alternation is low, giving further credence to the notion that
sufficient adaptation must accumulate, or alternatively wear off,
before another percept switch can occur. It is important to
emphasize that while dominance durations for a specific network
realization are quite irregular, there is still more correlation in
dominance durations for a particular network than across distinct
network realizations. The inclusion of data accumulated over

multiple network realizations facilitates the especially long right tail
in the dominance duration distributions, corresponding primarily
to those network realizations that tend to produce especially long
periods of dominance. This is consistent with themarked variations
in average dominance duration across different individuals in
experiments (Gallagher and Arnold, 2014; Bosten et al., 2015; Bock
et al., 2019), and can potentially be attributed to underlying genetic
or chemical differences (Klink et al., 2010; Miller et al., 2010;
Shannon et al., 2011). It is worth noting that some studies report
a correlation between sequential dominance durations in certain
experimental settings (van Ee, 2009), especially demonstrating
history dependence after prolonged exposure to a non-ambiguous
display and highlighting the possible role of adaptation (Nawrot
and Blake, 1989). While we do not explicitly consider how such
correlations may be modulated or manifest, one approach to
examining history dependence in the context of our model would
be to include white noise in the dynamic firing threshold activity
and examine its potential affect on serial correlations.

Gamma-distributed dominance durations and rivalrous
switching are present for a relatively broad set of model parameters
and ratios of excitatory to inhibitory neurons as long as the
dynamics within the dominant pool are largely balanced. While the
majority of our model simulations utilize a 1 : 1 ratio of excitatory
to inhibitory neurons to ensure sufficiently well-balanced dynamics
for a given finite network realization, we note that similar switching
dynamics are observed when a 4 : 1 ratio of excitatory to inhibitory
neurons is utilized consistent with estimates in V1 (Gilbert,
1992; Liu, 2004). Moreover, if spike-frequency adaptation is only
incorporated in excitatory neurons, holding the firing thresholds
of all inhibitory neurons at θI , realistic rivalrous activity is
also produced as depicted by the dominance metric dynamics in
Figure 6A. Experimental evidence indicates that excitatory neurons
are generally more likely to undergo adaptation than inhibitory
neurons (La Camera et al., 2006; Augustin et al., 2013), and we see
that binocular rivalry is consistent with this network setting as well.
In fact, prior theoretical analysis demonstrates that the presence
of spike-frequency adaptation only in the excitatory population
can broaden the space of model parameters over which balanced
dynamics manifest (Barranca et al., 2019).

If instead spike-frequency adaptation is removed from our
model entirely, by fixing all excitatory neuron firing thresholds at θE
and all inhibitory neuron firing thresholds at θI , rivalrous dynamics
are not produced and there is a single dominant pool throughout
time. As depicted in Figure 6B, the dominance metric rapidly
gravitates toward 1 or −1, remaining near that value perpetually
and failing to produce any switching even over a long time horizon.
The identity of the dominant pool is random and dependent on
the specific network realization, with balanced dynamics in the
dominant pool as seen during a specific dominance period in the
full model. This underlines the key role of a fatigue mechanism in
binocular rivalry, and without irregularity in the model dynamics,
which is produced under the balanced network paradigm in
this case, the ubiquitous skewed dominance duration distribution
is eliminated. Thus, we provide evidence for the necessity of
both irregular network dynamics and slow adaptation, beyond
the competition fostered by long-range connections between the
downstream pools, to fully produce the stochastically switching
percept that is the cornerstone of binocular rivalry.
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FIGURE 6

Dynamics for network model with competing downstream pools

given alternative choices of spike-frequency adaptation. (A)

Dominance metric,M, as a function of time when only the excitatory

neurons in each pool undergo spike-frequency adaptation. (B)

Dominance metric, M, as a function of time when spike-frequency

adaptation is removed entirely from the model, indicating the rapid

and sustained dominance of pool 2 for this network realization.

Inset: Monocular stimulus reconstruction from the corresponding

dynamics of pool 2. Network model parameters and monocular

image inputs are otherwise identical to those in Figure 3.

2.4. Levelt’s laws and the impact of stimulus
strength on alternations

Levelt’s four laws often provide a gold standard on which
models of binocular rivalry can be tested for biological realism
and applied to discover general principles for visual perception,
summarizing the core relationships between variations in stimulus
characteristics and resultant rivalrous dynamics (Levelt, 1965).
These propositions have evolved into a more modern form over
the last half century, accumulating new insights over a wide
array of modern experiments that are summarized in (Brascamp
et al., 2015), and we address each in turn using our model
network dynamics. While experimental studies involving Levelt’s
laws typically consider the impact of stimulus strength based
on the relative contrast, density, or blur of contours in each
monocular stimulus for relatively simple images, in our model we
consider the stimulus strength to be directly determined by the
mean feedforward input for a downstream neuron. While there
is not a single notion of stimulus strength across all experiments,
meaning alternative perturbations in the stimuli can predictably
effect rivalrous dynamics, our choice allows us to precisely probe

the strength of any stimulus in a unifiedmanner, including complex
natural scenes as well as simple gratings.

Levelt’s first law posits that increasing the strength of one

monocular stimulus only will increase the predominance of that

particular monocular stimulus. Note that the predominance of
a specific monocular stimulus is the proportion of viewing
(simulation) time in which that monocular stimulus is dominant.
In Figure 7A, we explore Levelt’s first law by varying the monocular
stimulus strength, m0, for the first pool only and fixing the
monocular stimulus strength for the second pool. Across a
sequence of such simulations, we plot the predominance of the first
pool, which indeed increases with its monocular stimulus strength
for sufficiently large feedforward drive; this trend holds over a
range of m0 values that broadly surrounds the fixed monocular
stimulus strength for the second pool. Intuitively, Levelt’s first law
agrees with the idea that the pool with the stronger monocular
stimulus should be dominant more often since it is predisposed to
suppressing the competing pool.

Proceeding in turn, Levelt’s second law postulates that
increasing the difference between the two monocular stimulus

strengths will primarily increase the average dominance duration

for the percept corresponding to the stronger monocular stimulus

strength. We investigate Levelt’s second law in Figure 7B by again
varying the monocular stimulus strength for only the first pool
and now plotting the resultant average dominance durations for
each pool across the corresponding simulations. We observe that
when the second pool has a stronger monocular stimulus and
the monocular stimulus strength for the first pool is decreased,
the average dominance duration for the second pool markedly
increases with minimal change in the average dominance duration
for the first pool. Likewise, when the stimulus strength for the
second pool is less than the stimulus strength for the first pool,
as the stimulus strength for the first pool is increased, the average
dominance duration for the first pool increases with only a minor
change in the average dominance duration for the second pool.
Together, these observations conform precisely to the prescription
provided by Levelt’s second law.

Levelt’s third law proposes that increasing the difference between
the twomonocular stimulus strengths will reduce the alternation rate.
Note that here the alternation rate refers to the total number of
perceptual switches that occur per unit time. We explore Levelt’s
third law in Figure 7C by once again varying the monocular
stimulus strength for the first pool while fixing that of the second
pool, plotting the alternation rate in each case. As expected from
Levelt’s third proposition, the highest alternation rate occurs when
the two monocular stimuli are of equal strength, with consistently
decreasing alternation rate as the first pool stimulus strength is
either further increased or decreased from the fixed second pool
stimulus strength. One can argue that Levelt’s third law is in
fact equivalent to Levelt’s second law, since when the average
dominance durations for the two pools in sum are lowest, there will
generally be the most alternations. However, the two laws are still
often separated because they observe this shift in dynamics with a
slightly different perspective and were more distinct in the context
of the original non-updated version of Levelt’s laws.

Finally, Levelt’s fourth law asserts that increasing the monocular

stimulus strengths of each eye together, such that the two monocular
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FIGURE 7

Levelt’s laws and network model dynamics. (A) Investigation of Levelt’s first law. The stimulus strength of pool 1 is varied while the stimulus strength

of pool 2 is fixed at 1 (indicated by red arrow). For each choice of stimulus strength, the predominance of pool 1 is plotted, indicating the proportion

of time in which pool 1 is dominant. (B) Investigation of Levelt’s second law. Stimulus strengths are as in (A) and now the average dominance

durations for pool 1 (blue) and pool 2 (red) are plotted. (C) Investigation of Levelt’s third law. The stimulus strength of pool 1 is varied while the

stimulus strength of pool 2 is fixed at 0.1. The alternation rate for pool 1 is plotted for each choice of stimulus strength, indicating the number of

dominance durations for pool 1 per unit time (ms). (D) Investigation of Levelt’s fourth law. The stimulus strengths of both pool 1 and pool 2 are varied

together. The alternation rate summed across both pools is plotted for each choice of stimulus strength, including switches from either monocular

stimulus. Network model parameters and monocular image inputs are otherwise identical to those in Figure 3 for a simulation time of 40, 000 ms.

stimulus strengths are equal in each case, will generally increase

the alternation rate, except at particularly low monocular stimulus

strengths for which this trend is reversed. To probe this final law,
we vary together the monocular stimulus strengths for each pool,
so the two downstream pools have the same average feedforward
drive in a given trial, and plot the alternation rate for each
choice of monocular stimulus strength in Figure 7D. We see that
as the stimulus strength is increased beyond m0 = 0.25, the
alternation rate monotonically increases. On the other hand, for
low stimulus strengths, we note that as the stimulus strength is
instead decreased below 0.25, the alteration rate increases. These
results fully agree with this modern form of Levelt’s fourth law,
including the more subtle shift in trend that occurs for low
stimulus strengths. While the majority of studies demonstrate
an increase in alternation rate with increasing stimulus strength,
several model-driven explorations (Shpiro et al., 2009; Seely and
Chow, 2011) as well as select experiments (Platonov and Goossens,
2013) alternatively exhibit an increase in alternation rate as
stimulus strength is decreased over a range of weak strengths. It
is likely that the regime of small stimulus strengths for which this
reversal occurs is difficult to produce in experiments for specific
notions of stimulus strength, causing most experimental settings
to more naturally indicate that alternation rate increases with
stimulus strength.

Beyond reproducing experimental observations, Levelt’s fourth
law and our related model analysis together support concrete
mechanisms for the percept switching that depend on the strength
of the stimuli. To demonstrate this, we compare the model network
dynamics for two different stimulus strengths, with one in the
classical Levelt’s fourth law regime and the other in the reversal
regime. We plot in Figure 8A the dominance metric dynamics for
a relatively large stimulus strength of m0 = 1 and depict the
corresponding dynamics of the network-averaged thresholds for
the two pools in Figure 8B. We do the same in Figures 8C, D,
respectively, when the two downstream pools are each driven using
a particularly small stimulus strength of m0 = 0.25. As expected
from Levelt’s fourth law and Figure 7D, the dominance durations
are generally longer when the stimulus strength is relatively small.

More informative to explaining the reversal at small stimulus
strengths, however, is the difference in the saturation of the
network-averaged thresholds in the two cases. For relatively high
m0, it can be argued that the suppressed pool is responsible for
the percept switch in what is often called the escape mechanism
(Brascamp et al., 2015). In this case, decreasing the external drive
strength results in longer periods of dominance (lower alternation
rate) because generally the firing thresholds for neurons in the
suppressed pool will need to drop yet lower to produce spikes and
actively escape domination. As m0 is decreased, the suppressed
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FIGURE 8

Mechanisms for switching phenomenon. (A) Dominance metric, M, as a function of time when m0 = 1 and the alternation rate is high. (B)

Network-averaged firing threshold across all downstream neurons in pool 1 (red) and pool 2 (blue) over time for m0 = 1. (C) Dominance metric, M,

as a function of time when m0 = 0.25 and the alternation rate is low. (D) Network-averaged firing threshold across all downstream neurons in pool 1

(red) and pool 2 (blue) over time for m0 = 0.25. Network model parameters and monocular image inputs are otherwise identical to those in Figure 3.

pool has less total external drive, so the maximal voltage that a
constituent neuron can achieve through fluctuations in its input
current will be lower and hence the dynamic threshold will need
to decrease further over the course of more time for a spike to
be viable. In the regime of high m0, as exemplified by the steeply
decreasing thresholds in Figure 8B, a necessary fixed decrease in
firing threshold is achieved quite rapidly since the firing thresholds
of the suppressed pool are relatively high initially and thus the
first derivatives in threshold are generally large in magnitude in
accordance with Equation (1b).

On the other hand, for small m0 below 0.25, it can be argued
that the dominant pool is instead responsible for the percept switch
in what is often called the release mechanism. Here, decreasing
the external drive strength results in shorter periods of dominance
(higher alternation rate) because generally the firing thresholds
for neurons in the dominant pool will need to rise less for the
spiking of the dominant neurons to be extinguished and thereby
release the suppressed pool from domination. Decreasing the
external drive results in shorter dominance durations because
neurons in the dominant pool become unable to spike for a
lower firing threshold that will take less time to reach via spike-
frequency adaptation. This alternative mechanism corresponds to
the relatively shallow declines in firing threshold exhibited in
Figure 8D, since for sufficiently small m0 the amount of time
necessary for the suppressed pool thresholds to recover (escape)
becomes excessively long and what instead begins to happen first
is the thresholds of neurons in the dominant pool become so
high that spiking is no longer feasible. From the perspective of

Equation (1b), a necessary fixed decrease in threshold for neurons
in the suppressed pool is achieved very slowly since the firing
thresholds of constituent neurons are now relatively low and thus
the first derivatives in threshold are typically small in magnitude;
therefore, the mechanism changes and the dominant neurons’
inability to fire largely drives the percept switching for sufficiently
small m0. We note that the exact time of the switch for either
mechanism is random due to the fluctuations in neuronal inputs
and irregular dynamics in the balanced regime, and when the
approach of the firing threshold toward a critical value necessary
for switching is especially slow in the case of the long dominance
durations for m0 = 0.25, there is a larger degree of variability in
the dominance durations. Such a shift from the escape to release
mechanism observed empirically in our detailed neuronal model is
indeed carefully documented and substantiated by prior theoretical
studies (Curtu et al., 2008), where rigorous analytical techniques
and dynamical systems theory were utilized in the context of a
two-population firing rate model to characterize the change in
mechanism for low stimulation strengths.

2.5. Rivalry dynamics and receptive field
structure

While up to this point we have demonstrated the successful
dynamic encoding of monocular stimulus percepts during
binocular rivalry and the adherence of our model activity to
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canonical experimental constraints, we now turn to show that
these results are robust to more biologically faithful choices of
feedforward connectivity beyond the uniformly random structure
assumed in the prior sections. In particular, receptive field structure
in feedforward connectivity is ubiquitous throughout much of
the visual system in the sense that downstream neurons are
most stimulated by a range of stimuli with analogous features
(Welker, 1976; Graziano and Gross, 1993; Wilson, 2001). This
includes neurons in the retina, LGN, and V1, though the precise
prototypical features of the receptive fields vary by brain area. In
the LGN, for instance, neurons generally possess center-surround
receptive fields, aggregating the output of upstream ganglion cells
that together sample a spatially localized region of visual space,
with inputs from the central circle and surrounding annulus of
the receptive field having opposite (excitatory or inhibitory) effect
(Hubel andWiesel, 1960; Wiesel, 1960). In this case, the overall size
of the spatial receptive field determines the spatial frequencies in
visual space that are encoded and the center-surround structure
facilitates the encoding of image edge information.

Prior work in the context of a single stimulus driving both eyes
has showed that, compared to the uniformly random feedforward
connectivity initially assumed in our two-layer model, spatially
localized feedforward connectivity inspired by receptive fields
can more accurately encode the dominant low and moderate
frequency components composing most natural stimuli (Barranca
et al., 2016). We focus next on the spatially localized nature of
these receptive fields for simplicity and generality, noting that the
inclusion of center-surround antagonism does not significantly
alter the compressed encoding of images in the downstream
network dynamics and still adheres to the requirements of
compressive sensing theory if sufficient randomness is incorporated
(Barranca and Zhu, 2018). To include spatial structure, we assume
that a pixel in n-vector pz is mapped to a distinct (x, y) location
with integer coordinates on a [1,

√
n] × [1,

√
n] Cartesian grid

corresponding to its row and column location in the pixel matrix
that produced vectorization pz. Each row of the feedforward
connectivity matrices is then mapped to a distinct random location
(xi, yi) on this grid, around which the receptive field of the
ith downstream neuron is centered. Incorporating both spatial
localization and randomness in the spatial receptive fields, we
assume the probability, P, that the ith downstream neuron samples
a pixel with spatial coordinates (xj, yj) is given by

P = ρe−[(xi−xj)2+(yi−yj)2]/2σ 2
, (4)

where ρ is the sampling probability if (xi, yi) = (xj, yj), when the
receptive field is centered at the location of a given pixel, and σ

scales the spatial size of the receptive field, which is known to
vary throughout the visual system (Hubel, 1995; Sceniak et al.,
1999). Therefore, each feedforward connection is prescribed by a
Bernoulli random variable, determined independently of all other
connections, with success probability given by Equation (4).

We utilize the (ρ, σ) parameter choice shown previously to
optimally encode a single 100 × 100 pixel natural scene stimulus
in a single-pool network model. The generated feedforward
connectivity matrices are sparse with connection density near
0.001, where σ = 2.2 produces moderately-sized receptive
fields and ρ = 0.92 allows each pixel to be sampled

on average at least one time (Barranca et al., 2016). The
resultant dominance metric dynamics are plotted in Figure 9A,
which demonstrate clear rivalrous switching behavior and largely
resemble the activity produced in the case of the uniformly random
feedforward connectivity considered in the previous sections.
What does change, however, is the quality of the monocular
natural scene percept reconstructions during each period of
dominance, as evidenced in Figure 9B. While there still exists an
initial transient period in which neither stimulus is well-encoded,
reconstructions using data from the subsequent dominance
durations are significantly improved relative to those produced for
the natural scenes considered in Figure 4B with uniformly random
feedforward connectivity. The relative reconstruction errors are
nearly halved, gravitating around a constant low value.

Sample reconstructions of the corresponding two monocular
natural scene inputs are depicted in the inset of Figure 9B, visually
demonstrating quite accurate encoding. Hence, the proposed
mechanisms for binocular rivalry are robust to more realistic
feedforward network architectures that are largely absent from
prior model investigations. The continued presence of the initial
transient period indicates that its entrenchment is beyond the
feedforward connectivity structure, and the associated mixed
percepts may in fact manifest as a result of initial information loss
due to the sensory bottleneck or an intrinsic lag in processing via

the non-linear network dynamics.

2.6. Relationship between autism and
binocular rivalry

The excitation/inhibition imbalance hypothesis suggests that
levels of excitation and inhibition are abnormal throughout many
brain areas for individuals with autism (Rubenstein andMerzenich,
2003; Jamain et al., 2008), but clear markers for this imbalance
in the autistic brain are still needed. At the same time, several
experimental studies indicate that inhibition levels in the brain
may be implicated in variations in both alternation rate and the
prevalence of mixed percepts in binocular rivalry (Robertson et al.,
2013; Dieter et al., 2017; Spiegel et al., 2019). Alternation rate may
therefore serve as a non-invasive indicator of autism, and in light
of evidence that the autistic brain exhibits reduced inhibition due
to impaired GABA signaling (Robertson et al., 2016; Mentch et al.,
2019), we explore the effect of reduced inhibition in our model on
rivalrous dynamics.

To adjust the level of inhibition, we multiply all inhibitory
connection strengths in our model, particularly parameters REI
and RII , by a scaling factor SI . For each choice of inhibitory
scaling factor, we record the dynamics of our model and compute
the average dominance duration, plotting the result in Figure 9C.
We observe that as the inhibition in the model decreases, the
average dominance duration increases and the alternation rate
correspondingly decreases. This monotonic trend strongly suggests
that binocular rivalry is indeed weakened as a result of the reduced
inhibition often associated with autism. In fact, if the inhibition
strength is yet weaker than considered in Figure 9C, we begin to see
trials in which either full winner-take-all dynamics manifest with
no percept switching or interspersed long periods of time in which

Frontiers inComputationalNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fncom.2023.1137015
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Barkdoll et al. 10.3389/fncom.2023.1137015

FIGURE 9

Receptive field structure, autism, and rivalrous dynamics. (A)

Dominance metric, M, as a function of time when the feedforward

connectivity matrices both have spatially localized receptive field

structure prescribed by Equation (4) with parameters ρ = 0.92 and

σ = 2.2. (B) Relative reconstruction error for percept reconstructions

using evoked network dynamics during each dominance duration in

(A) as time increases. Inset: Monocular image input reconstructions

from the dynamics of pool 1 and pool 2, respectively, during two

subsequent dominance durations. (C) Average dominance duration

as a function of the inhibition scaling factor, multiplying all inhibitory

connections in each pool, computed over a simulation time of

40, 000 ms for each scaling. Network model parameters and

monocular image inputs are otherwise identical to those in Figure 4.

the dominance metric is near 0 indicative of a mixed percept, which
is consistent with the longer periods of mixed percepts reported for
autistic individuals in experiments (Robertson et al., 2013).

It should be noted that the conditions for balanced dynamics
in an isolated (or highly dominant) pool given by Equation (9)
are still met under this scaling of inhibition, which has no impact
on the quotient |REI |

|RII | in the inequality, and thus the diminished
rivalry is theoretically not a direct result of balanced dynamics
breaking down. It is potentially the case that the reduced inhibition
results in weaker competition between the downstream pools
and consequently the slow adaptation dynamics must evolve over
a longer time scale to compensate. One possible explanation

according to Equation (8) is that the inhibitory neurons are
expected to fire at a higher rate when their synaptic influence is
weakened; so immediately following an alternation, the elevated
firing thresholds of the inhibitory neurons in the newly suppressed
pool will need to fall more to reach a fixed critical threshold for
which a percept switch can occur and as a result more time will
elapse until the next alternation.

3. Discussion

In the context of our newly formulated two-layer neuronal
network model, we develop a framework for estimating the
dynamic percepts in binocular rivalry based on explicit monocular
stimulus reconstructions using measurements of network
dynamics collected during each period of dominance. Our model
suggests that to generate realistic rivalrous alternations it is
sufficient to include irregular neuronal activity rooted in balanced
network dynamics, competition between the downstream pools
mediated by long-range connections from excitatory neurons
in one pool to inhibitory neurons in the other, and slow fatigue
via spike-frequency adaptation, showing that the removal of any
one of these characteristics eliminates the dynamical features
key to binocular rivalry. Moreover, beyond its novelty in the
ability to directly incorporate natural scene monocular stimuli,
our rivalry model is among the first to include complex network
structure, such as feedforward connectivity and downstream
compression, and uniquely produces distinct dynamics during the
early transient period, which may correspond to the initial mixed
percepts widely observed in experiments. We resolve the potential
sensory bottleneck, where photoreceptor output is processed
by the activity of smaller networks of neurons in downstream
layers, by deriving an approximate linear input-output map
embedded in the non-linear network dynamics and then utilizing
compressive sensing theory to accurately recover a sequence
of dominant monocular stimuli corresponding to the dynamic
percepts. Incorporating additional facets of visual system structure
observed empirically, such as spatial localization in receptive fields
and adaptation present in excitatory neurons only, we underline
the robustness of the proposed mechanisms for rivalrous dynamics
and demonstrate strong agreement with canonical experimental
findings that serve as litmus tests for rivalry models, such as Levelt’s
laws and gamma-distributed dominance durations.

While our study does addressmany features novel to theoretical
investigations of binocular rivalry, experimental observations have
unearthed additional factors that may play important roles in the
phenomenon, such as top-down feedback from higher cortical
areas and attention (Brown and Norcia, 1997; Zhang et al.,
2011; Dieter et al., 2016; Li et al., 2017), and their dynamics
may significantly modulate the lower-level processing primarily
considered in this work. The primary visual cortex, as examined in
our model, is the classical area implicated in generating perceptual
bistability through what is termed eye-based rivalry, arising from
competition between neurons driven by monocular inputs. While
eye-based rivalry is well-supported experimentally (Xu et al., 2016),
there is compelling evidence of stimulus-based rivalry, where the
dynamics of binocular and feature-selective neurons in higher
visual system areas are instead associated with perceptual changes
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in binocular rivalry (Leopold and Logothetis, 1996). While we
largely remain agnostic on this issue, it may be the case that the
two proposed types of rivalry together yield a more complete
explanation of the true phenomenon (Lee and Blake, 1999; Tong,
2001).

Beyond the bistability examined in this work, alternative
perceptual behaviors closely related to binocular rivalry are possible
and may be studied using analogous techniques. Multistable rivalry
betweenmore than two percepts canmanifest when parts of the two
monocular stimuli may be divided and recombined into various
coherent images, generating perceptual alternations between the
original monocular stimuli as well as the meaningfully regrouped
coherent images (Kovacs et al., 1996; Suzuki and Grabowecky,
2002; Sterzer et al., 2009; Golubitsky et al., 2019). While the
use of additional fine-grained spatial structure in the recurrent
connectivity with additional pools may generalize our model to
this setting, many other forms of visual multistability often involve
multiple mutually exclusive three-dimensional interpretations of
a single static two-dimensional image due to a lack of depth
or orientation cues (Kornmeier and Bach, 2012), for which
alternative model settings may be more appropriate in studying
their mechanisms.

As multistable perception is documented across sensory
systems (Holcombe and Seizova-Cajic, 2008; Hupe et al., 2008;
Zhou and Chen, 2009), possibly manifesting from universal
organizing principles, computational models have taken diverse
creative approaches to granting important mechanistic insights. In
the context of audition (Nguyen et al., 2020), for example, one
recent study utilized a model featuring two noisy accumulators
associated with different ambiguous stimuli, similar to how the
dominance metric in this work incorporates firing rate data
corresponding to the two monocular stimuli in order to produce
the choice of visual percept. However, in the context of auditory
bistable perception, the accumulators were forced by data-driven
Poisson distributed inputs based on spike count data from
the primary auditory cortex, showing that when the saturation
strength, akin to adaptation in the present work, is close to the
boundary that yields noise-driven attractor dynamics, perceptual
alternations agreeing with key experimental observations manifest
without the direct use of competition. Another recent study
presented a compelling alternative mechanistic framework for
binocular rivalry, replacing slow microscopic adaptation with an
accumulation process carried out by pools of neurons in the first
layer that fed into pools of competing neurons in the second
layer (Cao et al., 2021). This alternative framework used out-of-
equilibrium dynamics to reproduce common experimental findings
and, beyond most existing mechanistic models, further agreed with
detailed experimental observations in that it both demonstrated
sequential dependence in dominance durations and preserved the
statistics of dominance durations even when the contrast of the
monocular stimuli was broadly adjusted.

In contrast to binocular rivalry, when the two monocular
stimuli are instead sufficiently similar, binocular fusion may occur
and result in a constant single image percept, with hysteretic
transitions between rivalry and fusion as the similarity of the
monocular stimuli varies (Nelson, 1975; Buckthought et al., 2008).
How the competition mechanism is counteracted to shift from

rivalry to fusion in a unified manner is an important issue (Wilson,
2017) and may be further explored in the two-pool context in
this work, for which it is possible to directly manipulate the
monocular stimuli and measure the resulting percept given a
reconstruction paradigm. While we use a particular monocular
stimulus recovery method based on the dynamics of the rivalry
metric and compressive sensing techniques applied to the derived
input-output mapping given by Equation (2) for the dominant
pool, it may also be possible to produce a reasonable percept
based on the average of reconstructions generated using the input-
output mappings for both the dominant and suppressed pools.
Intuitively, for rivalrous dynamics it is likely that the reconstruction
from the suppressed pool would only add minimal noise to the
reconstruction generated from the dominant pool. In the case of
fusion, this averaging approach could coherently generate a single
fused percept and potentially yield a more unified understanding
of these perceptual phenomena. In a similar vein, the impact of
monocular contrasts in fusion for similar images and rivalry for
highly distinct stimuli may be analyzed in this context (Wilson,
2017).

There is both theoretical and experimental evidence that the
spreading of perceptual waves during alternations in dominance
is associated with binocular rivalry (Wilson et al., 2001). In
a perceptual transition, a perceptual wave pattern associated
with a specific stimulus manifests locally and then spatially
spreads with time to eventually eclipse the competing pattern,
closely aligning with the propagation speed of traveling wave
dynamics of cortical activity in V1 functional magnetic resonance
imaging data (Lee et al., 2007). While feedforward connectivity
with spatially localized structure akin to receptive fields was
examined in Section 2.5, it would be informative to also provide
a spatial arrangement in the recurrent connectivity for the
two competing neuronal pools, potentially connecting neurons
with analogous orientation selectivity, and examine when as
well as how this imbues the system with spreading waves of
dominance in perceptual alternations for different classes of
monocular stimuli.

Giving further credence to empirical evidence that individuals
with autism demonstrate weaker binocular rivalry (Robertson et al.,
2013; Spiegel et al., 2019), we have systematically demonstrated that
the percept alternation rate in binocular rivalry decreases as the
network inhibitory connections diminish in strength akin to the
reduced impact of GABA hypothesized to be present in the autistic
brain (Robertson et al., 2016; Mentch et al., 2019). At the same
time, there is still great debate regarding the excitation/inhibition
imbalance hypothesis for autism (Happe et al., 2006; Dinstein et al.,
2012), and further investigation, both theoretical and experimental,
is warranted. Some experimental measurements suggest that the
autistic brain is alternatively subject to extraneous excitation
(Vattikuti and Chow, 2010) and genetic studies associating
excitation or inhibition with autism generally fail to demonstrate
a clear directional impact on synaptic transmission (Chao et al.,
2010), indicating that continued interplay between experimental
advances and mathematical theory is necessary to provide a more
parsimonious characterization of the autistic brain.

Though we assumed the activity of the downstream neurons
to be prescribed by integrate-and-fire model dynamics, we
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could similarly investigate whether our framework for rivalrous
alternations is robust to more biologically realistic single-neuron
models, such as the exponential integrate-and-fire and Hodgkin-
Huxley models (Hodgkin and Huxley, 1952; Barranca et al., 2014a).
While such models present significant conceptual obstacles in
deriving new network input-output mappings crucial to percept
reconstructions and may not be analytically tractable, we have
developed a methodology for constructing data-driven input-
output maps across two layers of excitatory neurons (Barranca
et al., 2021) and preliminary work indicates this approach may be
extended to balanced networks. Considering that binocular rivalry
has provided a unique and fruitful lens through which neuronal
computation in the visual system can be understood, linking a
dynamic percept to constant external drive, we expect that going
forward analogous model-based analysis may help to characterize
mechanisms for stimulus encoding and multistability in other
sensory systems (Holcombe and Seizova-Cajic, 2008; Hupe et al.,
2008; Zhou and Chen, 2009).

4. Methods

4.1. Network input-output mapping
derivation

Under the assumption of irregular neuronal network activity
prescribed by Equation (1), in this section we derive a linear input-
output relationship crucial to our framework for reconstructing
monocular stimulus inputs in Section 2.2. To uncover the
underlying network mapping, we estimate the expected voltage
for each downstream neuron in the long-time limit. For analytical
tractability, we begin by approximating the net effect of all recurrent
and feedforward inputs into a given downstream neuron. In
considering the recurrent interactions, it is useful to observe that
the input into a particular neuron is a spike train summed over
the action potentials generated from a relatively large number of
neighboring neurons. Since the firing events of neurons in the
balanced regime are only weakly correlated, the summed spike
train input over a large number of incoming neuronal impulses
asymptotically approaches a Poisson point process (Cinlar, 1972).
Moreover, because the external input into each pool is constant,
we arrive at a simpler statistical characterization of the neuronal
inputs. Note that while we derive this input-output mapping for
the downstream neurons in the first pool for concreteness, the
corresponding mapping for neurons in the second pool is given by
interchanging the 1 and 2 subscripts in the equations below.

Since the voltage of each downstream neuron is reset to VRe

upon firing, we consider Equation (1) with initial condition v1ik(t =
0) = VRe for k = E, I. Assuming Poisson spike train inputs as
described above, the solution to the corresponding initial value
problem gives the subthreshold membrane potential trajectory for
the ith neuron of the kth population in the first pool and may be
expressed as
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(t) yields the total recurrent spike train input from

the jth neuron of the lth population in the first pool into the ith
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denotes the total number of spikes transmitted by the jth neuron of
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uniformly distributed in the time interval [0, t] based on the
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for time horizon t. Temporarily disregarding the impact of the
reset condition, the expected voltage of the ith neuron of the kth

population in the first pool at time t is thus approximately
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The true expected voltage, v̄1ik, will be lower than ṽ1
i
k since upon

reaching the dynamic threshold θ1
i
k
, the voltage is instantaneously

reset down toVRe. As a result of this non-linearity, since the change
in voltage due to a given action potential is−(θ1ik −VRe) occurring
with rate m1

i
k
, it follows that the true long-time expected voltage

for the ith neuron in the kth population of the first pool, v̄1ik,
is approximately

v̄1
i
k =VRe + 1

gL
·
(

∑

j

F1
ij

k
p1

j
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+
NE
∑

j=1
j 6=i

R1
ij

kE
m1

j
E +

NI
∑

j=1
j 6=i

R1
ij

kI
m1

j
I

+
NE
∑

j=1
j 6=i

C2
ij

kE
m2

j
E −m1

i
k(θ̄1

i
k − VRe)

)

, (6)

where θ̄1
i
k is the time-averaged firing threshold for the ith neuron in

the kth population of the first pool. Linking the evoked downstream
network dynamics to the monocular image input given by p1,
Equation (6) is the linear input-output mapping that we will
leverage to estimate the encoded percepts in Section 2.2 and is
expressed in matrix form in Equation (2).

With this mapping in hand, we next derive conditions on the
model parameters that theoretically produce balanced dynamics
in the dominant pool. The excitatory neurons in the suppressed
pool are sufficiently quiescent such that the cross-pool inputs in
Equation (6) determined by matrix C2 have relatively little impact
on the expected voltage offset fromVRe, and thus we derive balance
conditions for the dominant pool ignoring the competitive long-
range inputs included in our full model. Viewing the dynamics
at the population level, since each neuron in the lth population
of the first pool is expected to fire at rate given by the long-time
population-averaged firing rate m1l and each neuron in the kth

population of the first pool is expected to receive K incoming
recurrent connections from the lth population of the first pool
with individual connection strength Rkl/

√
K, the expected total

recurrent input from the lth population in the first pool into a
neuron in the kth population of the first pool is approximately
Rklm1l

√
K. Similarly, we assume the expected feedforward input

into a downstream neuron in the kth population of an arbitrary
pool is of magnitude

√
Kfkm0, with O(1) parameters m0 and

fk respectively scaling the overall and relative feedforward drive
strengths for the excitatory and inhibitory populations. As a result,
taking the expectation of Equation (6) over all network realizations,
we approximate the expected offset in voltage fromVRe due to both
recurrent and feedforward inputs for a downstream neuron in the
kth population of the first pool as

d1k =
√
K

1

gL

(

fkm0 + RkEm1E + RkIm1I
)

. (7)

Seeking irregular activity indicative of balance within the dominant
pool, the expected voltage for a given downstream neuron must
remain finite as K → ∞ in the large-network limit. Based
on Equation (7), which neglects the weak cross-pool drive and
assumes statistically equivalent constant feedforward drive in the
two pools for fairness in rivalry, it must be that fkm0 + RkEm1E +
RkIm1I is O(1/

√
K) and vanishes as K → ∞ (van Vreeswijk

and Sompolinsky, 1998). The resultant constraints for both the
excitatory and inhibitory populations composing the first pool
provide a system of two linear equations with solution

m1E = |RII |fE − |REI |fI
RIE|REI | − REE|RII |

m0 (8a)

m1I =
RIEfE − REEfI

RIE|REI | − REE|RII |
m0, (8b)

indicating a linear scaling of the population-averaged firing rates
with the overall feedforward input strength parameterm0.

Requiring that both the excitatory and inhibitory population-
averaged firing rates are non-negative and finite in the balanced
dynamical regime, Equation (8) provides parameter bounds
referred to as balance conditions,

fE

fI
>

|REI |
|RII |

>
REE

RIE
, (9)

which are theoretically necessary for balanced dynamics in the
dominant pool in the large-network limit. The linear scaling of
downstream neuronal firing rates with feedforward input strength
demonstrated by Equation (8) holds theoretically on the population
level when the balance conditions are satisfied and in Figure 1E
we empirically examine the population-averaged firing rates for the
model network in response to increasingly large feedforward inputs
by increasing the overall feedforward scaling strength m0 across a
family of simulations. We observe that as the mean feedforward
drive is increased, the average firing rate of both the excitatory
and inhibitory populations in a given pool linearly increases over a
wide range of scalings, agreeing with the estimate computed in the
large-network limit and corroborating the accuracy of the derived
input-output mapping.

While the original balanced network theory was derived in the
context of constant and homogeneous excitatory external inputs
driving the two populations in a single pool of binary neurons (van
Vreeswijk and Sompolinsky, 1996), it is important to emphasize
that in our two-layer I&F network model the excitatory external
input vectors are instead heterogeneous and determined by the
pixels composing the monocular image stimuli. Nonetheless, as
long as the stimulus strength scalings for the excitatory and
inhibitory populations in a given pool are such that fE > fI for these
heterogeneous external inputs, the classical balance conditions
given by Equation (9) hold on average and balanced dynamics are
primarily preserved in the dominant pool.

4.2. Compressive sensing theory

Compressive sensing theory shows that for sparse data, the
amount of measurements necessary for a successful reconstruction
is determined by the number of dominant non-zero components
in the data (Candes et al., 2006; Donoho, 2006). This suggests that
optimally reconstructing sparse data from relatively few samples
requires selecting the sparsest viable reconstruction that agrees
with the collected information, since the resultant signal is most
compressible. By leveraging the sparse structure of signals, CS offers
a significant improvement in efficiency from the classical Shannon-
Nyquist theorem, which asserts that the sampling rate should be
determined by the full bandwidth of the data (Shannon, 1949).
Considering that common signals and sensory stimuli, such as
scenes, soundwaves, and odorants, are each sparse in a certain
domain (Field, 1994; Markram et al., 1997), CS theory has amassed
numerous and broad scientific applications (Lustig et al., 2007; Dai
et al., 2009; Berger et al., 2010; Gross et al., 2010).

The reconstruction of time-invariant data from a small number
of samples generates a highly underdetermined linear system. For
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an n-component signal, x, a total of m discrete samples of x can
be represented by Ax, where A is an m × n measurement matrix
composed of rows that each prescribe a set ofmeasurement weights.
This yields an m-component measured signal, b, where m ≪ n.
Assuming that signal x is sufficiently sparse, CS theory shows for
a large class of measurement matrices that minimizing |x|ℓ1 =
∑n

i=1 |xi| yields the sparsest reconstruction consistent with the
measurements (Candes and Wakin, 2008; Bruckstein et al., 2009).
The resultant optimization problem

arg min
x∈Rn

|x|ℓ1 subject to Ax = b (10)

is well-researched and can be efficiently solved using numerous fast
numerical methods, thus yielding a tractable reconstruction
methodology for high-dimensional data with a sparse
representation (Tropp and Gilbert, 2007; Donoho and Tsaig,
2008).

The recovered signal exhibits variations depending on
the optimization algorithm used, but the minimal relative
reconstruction errors generated across methods are quite
comparable for our work. Moreover, if signal x is not sparse in the
sampled domain and is instead sparse under a transform, L, then
the linear system φx̂ = b, where φ = AL−1 and x̂ = Lx, can be
considered similarly. In the case of the natural scenes analyzed in
our model, the monocular image input is indeed non-sparse in the
original pixel domain but is instead sparse in a frequency-based
domain. For concreteness, we utilize the two-dimensional discrete-
cosine transform to take advantage of the sparse stimulus structure
underlying our percept reconstructions (Heil and Walnut, 1989;
Barranca et al., 2014b).

In determining an appropriate sampling scheme, it is important
to note that measurement matrices exhibiting little correlation
among their columns and well-preserving signal magnitudes, such
as those containing independent identically distributed elements,
are typically feasible candidates (Baraniuk, 2007; Candes and
Wakin, 2008). While diverse matrices demonstrating sufficient
randomness in their structure have been proven to suitably
exhibit these properties (Candes et al., 2006; Candes and Wakin,
2008), there are other sampling matrices with more complex
structure that are highly successful in CS signal reconstructions
but not analytically tractable. Improved sampling matrices may

be generated, for example, from experimental insights or machine
learning techniques (Barranca, 2021). As a result, numerous
sampling schemes are amenable to CS recovery and they may be
adapted based on logistical constraints or a priori knowledge of
signal characteristics.
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