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Neural Network Learning of Improved Compressive

Sensing Sampling and Receptive Field Structure

Victor J. Barrancaa,∗

aDepartment of Mathematics and Statistics, Swarthmore College, 500 College Avenue,
Swarthmore, PA 19081, USA

Abstract

While the theory of compressive sensing (CS) in modern signal processing
typically indicates that uniformly random sampling facilitates the efficient
recovery of sparse signals, such measurements are infeasible in many engi-
neering applications and are not well reflected by the constraints of natu-
ral systems, including neuronal networks in the brain. Uniformly random
sampling also does not leverage the underlying structure of many classes
of signals, and may therefore be suboptimal in these cases. We address
these issues by formulating a novel neural network framework for learning
improved CS sampling based on the intrinsic structure present in classes of
training signals. Beyond sparsity in an appropriate domain, this approach
does not assume knowledge of any specific signal statistics and is purely data-
driven. The learning methodology is biologically realistic in that it utilizes
(1) asymmetric feedback and feedforward connections in the neural network
and (2) only information from adjacent layers in training the CS measure-
ment matrix. Observing a broad spectrum of learned sampling paradigms
that improve CS signal reconstructions relative to uniformly random sam-
pling, our learned sampling is widely applicable across logistical constraints.
Motivated by the receptive field structure of sensory systems, we specifically
analyze natural scene inputs and demonstrate improved CS reconstruction
as a result of training across several choices of penalization schemes on the
sampling weights. Considering this learning is effective even under sparse
and spatially localized constraints, as commonly observed in the brain, we
hypothesize that neuronal connectivity may have manifested with the aim of
providing a compressive encoding of data by leveraging its sparse structure,
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thereby achieving efficient signal transmission.

Keywords:
Signal processing; Mathematical neuroscience; Neural networks; Receptive
fields

1. Introduction

The ubiquity of compressive sensing (CS) in modern signal processing
theory marks a significant shift in the notion of efficient sampling, with po-
tentially important implications in understanding information encoding in
the brain. While signal acquisition prior to CS theory had largely utilized
uniform sampling with rate determined by the Shannon-Nyquist theorem [1],
compressive sensing instead facilitated the successful reconstruction of sig-
nals using far fewer non-uniform samples provided the signals were sparse
in an appropriate domain [2, 3]. Leveraging the widespread sparsity of tech-
nological and biological data, CS has furnished numerous interdisciplinary
scientific advances, taking root in applications such as tomography, medical
imaging, radar, microscopy, neuroscience, and genetics [4–10].

The current mathematical framework for the CS reconstruction of sparse
data is primarily made rigorous when sampling is uniformly random, typi-
cally determined by Gaussian or Bernoulli distributions [11–13]. However,
in various practical applications, completely random sampling is potentially
infeasible or suboptimal. In many cases, sensors may be highly limited in
number or expensive [14] and their completely random arrangement may not
satisfy logistical constraints, which, for example, may be limited by the size
of gaps between sensors [15–17]. Uniformly random sampling also does not
take into account the structural characteristics often known for classes of sig-
nals in applications [18, 19], and, particularly when the number of available
measurements is significantly limited, the question of how to improve CS
data acquisition in these common cases still remains an active area of inves-
tigation. For this reason, various structured sampling and recovery methods
amenable to CS theory have been proposed for specific classes of signals with
known structural features [20–22].

Considering that the unifying characteristics of data are often unknown
in many applications and since an optimal CS sampling may be unclear even
with partial knowledge of signal structure, several application-driven method-
ologies have recently been proposed to develop CS sampling protocols using
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mutual coherence minimization to address these issues [23]. Other recent
frameworks instead use deep learning to entirely circumvent CS theory while
still making use of sparsity, inferring statistical dependencies among signals
and leveraging them to compute signal reconstructions upon sufficient train-
ing [24]; however, such approaches still do not address the issue of improving
compressive sensing sampling in particular.

In this work, we formulate a novel neural network-based and data-driven
framework for learning improved compressive sensing sampling paradigms in
a biologically motivated fashion. Under the observation that signals of inter-
est commonly share certain unifying properties in applications, we iteratively
refine the uniformly random sampling typical in CS theory by learning ad-
ditional structure to incorporate into sampling based on CS reconstruction
errors driven by the class of signals composing the training data. Since our
method is largely motivated by the fact that learning in the brain is based on
similar predictive errors in perception [25–27], we further show how realistic
neuronal connectivity may manifest using analogous principles.

The use of neural networks in signal processing has a long history [28–31],
and deep learning has achieved profound success in identifying as well as uti-
lizing the structure common in large data sets [32–34]. With its widespread
applicability and generalizability, the back-propagation method is the cor-
nerstone of much of modern supervised deep learning [35]. However, the
biological plausibility of most methods of deep learning, particularly back-
propagation, is still questionable and how the brain may implement neural-
network type learning remains unknown. In conflict with the requirements of
conventional back-propagation, connectivity in the brain is generally asym-
metric and upstream neurons do not necessarily possess knowledge of all
downstream synapses [16, 36–39]. One recently developed approach for
achieving a biologically feasible mechanism for deep learning is feedback align-
ment, which effectively back-propagates error signals via fixed randomly gen-
erated feedback weights distinct from the feedforward connectivity adapted
via standard error-driven updates [40, 41]. Making a natural parallel with
sensory processing in the brain and addressing the issue of reconciling back-
propagation with the highly nonlinear and generally iterative CS reconstruc-
tion algorithms, our methodology for learning improved CS sampling utilizes
a modified feedback alignment framework for adapting measurements to in-
put signal structure.

Neural network architecture in deep learning was largely inspired by the
hierarchical receptive field structure in the cat primary visual cortex [42].
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Motivated by information processing in mammalian visual systems, we focus
on CS sampling in the context of natural scenes, though our framework ap-
plies to data with sparse structure in general. Amenable to CS theory, typical
visual stimuli are sparse in various frequency-based domains [43], and odors
as well as soundwaves are similarly known to possess sparse representations
[44, 45]. Beyond sparsity, natural scenes generally demonstrate strong spatial
correlations among nearby pixels and are composed of constituent modes with
amplitudes that decay with frequency [19]; we investigate if such additional
structure may be further leveraged in improving CS sampling. Analogous to
the underdetermined nature of CS signal processing, there are many regions
of the brain, such as the early visual system, in which upstream neurons far
outnumber downstream neurons [46–48]. Despite these networks of highly
dissimilar sizes, information must be preserved across such layers for success-
ful sensation. We hypothesize that evolution has optimized sensory systems
to efficiently encode sparse stimuli and explore the extent to which neuronal
networks can learn optimal sampling of stimuli based on their sparsity and
intrinsic properties.

Beyond sensory inputs, network connectivity among neurons in the brain
is generally sparse yet often demonstrates spatial localization and modular-
ity [39, 49–51]. The receptive field architecture, prominent in the visual,
somatosensory, auditory, and olfactory systems, is localized in the sense that
specific neurons are most stimulated by a particular range of similar stim-
uli [52–58]. In the early visual system, for example, this translates to a
given downstream ganglion cell sampling spatially clustered image proper-
ties prescribed by the activity of upstream photoreceptors, with the response
depending on where the light falls in the receptive field, i.e., in the center
or surround area, in addition to the light intensity distribution. Taking into
account this sparse and localized architecture in the brain, we further ex-
plore how sampling, or receptive field structure, may potentially evolve via
CS learning with constraints on the density and locality of the connections
as observed in vivo.

The organization of this work is as follows. We first provide background
by reviewing the primary facets of compressive sensing theory in Section 2.1.
We then develop our methodology for learning CS sampling in Section 2.2.
Next, we investigate the performance of several variants of our reconstruction
framework on natural scene data in Section 3.1, analyzing how and why
the sampling successfully adjusts upon learning in Section 3.2. In Section
3.3, we visually investigate the learned sampling paradigms in the spatial
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and frequency domains, exploring potential parallels with sensory systems.
Finally, in Section 4, we examine the ramifications of this work and possible
avenues for future investigation.

2. Methods

2.1. Compressive Sensing Theory

In the context of compressive sensing theory, signal acquisition is per-
formed via linear measurements. For an unknown n-component signal, x ∈
Rn, each measurement of x is obtained by taking a weighted sum of its ele-
ments. The set of m measurements (samples) can be generated by a sequence
of dot products between the measurement weighting vectors Ai and the signal
x for i = 1, . . . ,m. Aggregating all such measurement vectors as individual
rows in a measurement matrix A, sampling may thus be expressed compactly
as

Ax = b, (1)

where b ∈ Rm contains the collected measurements. Reconstructing unknown
signal x is then equivalent to solving linear system Ax = b. However, in the
case of highly efficient sampling, when m � n, this system is generally
underdetermined and possess an infinite number of solutions. Depending on
the structure of x and the design of the measurement matrix A, CS theory
shows an accurate reconstruction is nevertheless possible in this case. A
schematic of this sampling and reconstruction paradigm is given by the top
of Fig. 1(a).

A key facet of compressive sensing is the observation that many signals
demonstrate sparse structure, namely x possesses a representation which
contains only a small number of non-zero components in some domain. A
signal with n components is defined as k-sparse when there exists a rep-
resentation that contains at most k components whose magnitude exceeds
a small threshold with k � n. In the case of natural scenes, for example,
frequency-based transformations, such as a two-dimensional discrete Fourier,
cosine, and wavelet transforms, generally yield highly sparse representations,
as demonstrated in Fig. 1(b) for a representative natural scene [19, 43].

For sparse signals, it is intuitive to conjecture that the number of samples
necessary for an accurate reconstruction should be determined by the sparsity
of the signal. CS theory therefore provides a framework for the measurement
and subsequent reconstruction of signals under the assumption of sparsity,
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Figure 1: (a) Schematic model of the learning process. A relatively large n-component
signal x is sampled by measurement matrix A, producing m-component measurement
vector b. A reduction factor of r is assumed in the sampling, such that m = n/r. Next,
in accordance with compressive sensing theory , the optimization problem given by Eq.
(2) is solved to produce reconstruction xrec (denoted by CS). The reconstruction error
is back-propagated (denoted by BP) via the learning rule in Eq. (7) and fixed feedback
connectivity matrix F , driving adjustments in the measurement matrix A. This process is
repeated across an ensemble of training inputs to produce an improved CS measurement
matrix. (b) Example natural scene and its frequency domain representation via the two-
dimensional discrete Fourier transform. The natural logarithm of the absolute value is
depicted, accentuating differences between lower amplitude frequencies.

selecting the sparsest reconstruction agreeing with the set of linear measure-
ments [11]. This is equivalent to minimizing the `0 norm of x, which gives
the number of non-zero entries of the signal. Such a minimization problem is
computationally intractable in most applications [13], generally requiring a
search over all possible subsets of nonzero elements in x consistent with Eq.
(1). To address this issue, CS theory further demonstrates that by carefully
designing the measurement matrix A, a computationally feasible surrogate
`1 minimization problem yields an identical solution with high probability
[2, 13]. The resultant optimization problem is

arg min
x∈Rn

|x|`1 subject to Ax = b, (2)
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where |x|`1 =
n∑

i=1

|xi|. This `1 minimization problem is solvable in polynomial

time using multiple fast algorithms, such as the orthogonal matching pursuit
(OMP), the least angle regression (LARS), and the least absolute shrinkage
and selection operator (LASSO) methods [59, 60], making the reconstruction
now computationally tractable. Note that if the measured signal is not sparse
in the sampled domain, but is instead sparse under a transform, T−1, then
linear system Mx̂ = b, where M = AT and x̂ = T−1x, may be analogously
considered. Once x̂ is determined, the solution in the non-sparse domain,
x = T x̂, can be computed subsequently.

With the reconstruction methodology formulated, the remaining key idea
of CS theory addresses how to select a measurement matrix such that solving
the `1 minimization problem (2) indeed yields a viable x with as few mea-
surements as possible. Intuitively, the measurements should be as distinct as
possible from the basis used for the sparse domain, with each measurement
collecting a large number of nonzero basis element contributions, yielding
measurements that give distinct information about the components of x in
the sparse domain and thereby revealing a high degree of structure in the
measured signal. If instead, for example, each measurement only generated
data regarding a single component of x in the sparse domain, then gener-
ally the full set of n measurements would be necessary to capture all such
components and thus recover x. In CS theory, the maximum correlation (co-
herence) between the weighting vectors in the measurement matrix A and the
column vectors in transformation matrix T is often gauged by the following
maximum mutual coherence measure for the matrix product M = AT ,

µmax(M) = max
1≤i,j≤n

i6=j

|Mi ·Mj|
‖Mi‖‖Mj‖

, (3)

which generally becomes larger with increasing correlation and facilitates
rigorous estimates on the number of necessary measurements based on signal
sparsity.

Crucially, random weighting vectors in measurements will typically be
uncorrelated with any fixed set of basis vectors. Consequently, random mea-
surement matrices are particularly viable for CS recovery. For measurement
matrices with independent identically distributed Gaussian or Bernoulli en-
tries, it can be proven that with high probability a successful CS reconstruc-
tion is achievable given sufficiently many measurements, as determined by
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the sparsity of x [11–13]. It is important to emphasize that such random-
ness in measurements is sufficient but not necessary for successful CS recon-
structions, and that certain structured measurement matrices in fact yield
improved reconstructions, depending on the class of signals analyzed [20–
22, 61]. In the subsequent sections, we will demonstrate that it is possible to
refine the measurement matrix via learning, iteratively introducing structure
based on the inherent properties of the class of signals to be reconstructed
and thereby improving CS reconstruction quality.

We remark that for the signal class of natural scenes considered in detail
in this work, the reconstruction step in solving Eq. (2) is performed in the
sparse domain via the the vectorization of the two-dimensional discrete cosine
transform of the input image pixel matrix, x̂ = (x̂1, . . . , x̂n) = (D ⊗D)x. In
this case, x is vectorized, ⊗ denotes the n× n Kronecker product

D ⊗D =

 D11D · · · D1
√
nD

...
. . .

...
D√n1D · · · D√n√nD

 ,
and D is the

√
n×
√
n one-dimensional discrete cosine transform matrix with

entries

Dij = (D−1)Tij = ω(i) cos

(
(i− 1)(2j − 1)π

2
√
n

)
,

such that ω(1) = (1/n)1/4 and ω(i 6= 1) = (4/n)1/4.
Since the two-dimensional discrete cosine transform of the stimulus, x̂, is

sparse, recovering x̂ is thereby reduced to Eq. (2) where x = x̂ and the effec-
tive left-hand side in the constraint is A(D⊗D)−1. We solve this optimization
problem using a greedy algorithm known as the Orthogonal Matching Pur-
suit [59], though a host of alternative algorithms may be similarly applied
instead. Once x̂ is recovered, we invert the two-dimensional discrete cosine
transform and the vectorization to obtain the reconstructed signal xrec.

2.2. Neural Network Training Methodology for Optimal CS Sampling

From a learning perspective, compressive sensing sampling and signal re-
construction may be viewed as a two-step neural network operation. In the
first step, the signal x is sampled by measurement matrix A to produce mea-
surements b as in Eq. (1). Next, the `1 optimization problem given by Eq.
(2) is solved to produce a reconstruction xrec. It is important to underline
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that only the first operation is linear, since known CS reconstruction algo-
rithms are generally iterative and nonlinear. The input layer is given by x,
the middle layer by b, and the output layer by xrec.

As a whole, this network may be described as an autoencoder, where
the input and output layers both possess n components and the goal of
the network operation is to minimize the distance between the input and
output signals. With this aim, the ubiquitous back-propagation method, for
example, distributes error signals across the network following a gradient
descent approach, typically requiring layer operations to be both known and
differentiable to send feedback to upstream layers [35]. For a three-layer
network, as in the CS context, the error may be gauged by

e =
1

2

n∑
i=1

(xreci − xi)
2 . (4)

In general, back-propagation assumes that matrix A determines the connec-
tivity between the input and middle layers and that matrix C determines
the connectivity between the middle and output layers. Supposing the in-
puts into the middle and output layers are potentially integrated by nonlinear
and differentiable activation functions, f and g, respectively, the total inputs
into arbitrary component i of the middle and output layers, respectively, are
prescribed by

bi = f
(
h
(1)
i

)
= f

(
n∑

j=1

Aijxj

)
(5a)

xreci = g
(
h
(2)
i

)
= g

(
m∑
j=1

Cijbj

)
. (5b)

We remark that we will adapt these broad assumptions to the context of
CS subsequently, but we first briefly summarize the main theory of back-
propagation to provide context for our CS learning framework. With the aim
of minimizing the reconstruction error, gradient descent and the chain rule
ultimately yield the following adjustments to the two connectivity matrices

∆Cij = −γ ∂e

∂Cij

= γ (xi − xreci) g′(h
(2)
i )bj (6a)

∆Ajk = −γ ∂e

∂Ajk

= γ
n∑

i=1

(xi − xreci) g′
(
h
(2)
i

)
Cijf

′
(
h
(1)
j

)
xk, (6b)
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where γ is the learning rate controlling the magnitude of the connectivity
adjustments, ∆Cij and ∆Ajk, that occur on each iteration of the learning
algorithm.

In the compressive sensing neural network setting, particularly when the
number of components, n, in the input layer is far larger than the number
of components in the middle layer, m, a closed form expression for the sec-
ond, typically iterative, nonlinear operation is unknown and thus standard
back-propagation is infeasible. Back-propagation also makes the assump-
tion of symmetric connectivity between layers, i.e., reciprocal connections,
and shared knowledge of connectivity between all layers, which are both in
conflict with known physiological neuronal connectivity [16, 36–39].

To address the theoretical and biological challenges imposed by learning
CS sampling via back-propagation, we adapt a novel learning methodology
known as feedback alignment. In its original context, feedback alignment
was developed with the aim of extending the framework of back-propagation
to improve the biological plausibility of neural network learning [40]. In
rewiring the first layer connectivity matrix, A, as in Eq. (6b), feedback
alignment replaces the previously required knowledge of the second layer
connectivity matrix, C, with a fixed randomly generated feedback matrix
F . In this case, the feedforward connections may adapt with learning while
the feedback connections remain constant. Hence, the feedback alignment
learning rule, which may be extended similarly to networks with additional
layers, simultaneously eliminates the assumptions of symmetric connectivity
between layers and shared knowledge of the connectivity structure among
layers. Intuitively, the network learns how to make the static feedback useful,
such that the feedforward connectivity adjustments eventually facilitate an
alignment between the feedforward and feedback weights that allows error
signals to be effectively transmitted between layers.

In the specific case of our CS neural network architecture, while the con-
nectivity between the first two layers is indeed linear, namely with activation
function f(x) = x and feedforward connectivity prescribed by measurement
matrix A, the reconstruction operation performed between the middle and
output layers is nonlinear and not prescribed by a closed form expression.
Hence, motivated by feedback alignment, we fix the nature of the CS recon-
struction via solution to Eq. (2) and back-propagate error signals based on
this operation via fixed feedback connectivity matrix F in order to adjust
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the measurement matrix A. Hence, the CS sampling learning rule is

∆Ajk = −γ ∂e

∂Ajk

= γ
n∑

i=1

(xi − xreci)Fjixk. (7)

Learning is carried out iteratively via Eq. (7) based on the CS reconstruc-
tion error over an ensemble of signals in a common class that composes the
training set. A schematic model of the full recovery process is given by the
complete flow diagram in Fig. 1(a). Note that while both feedforward connec-
tivity matrices are trained in conventional feedback alignment, the nonlinear,
iterative second feedforward layer operation remains fixed here and nonethe-
less training only the first layer feedforward connectivity matrix is sufficient
for successful learning. It is important to emphasize that this framework is
relatively intuitive, biologically feasible, and generalizable to diverse classes
of signals with underlying sparse structure because it is data-driven.

3. Results

3.1. Performance Analysis

We utilize the neural network methodology for learning enhanced CS sam-
pling discussed in Section 2.2 via stochastic gradient descent on a training set
of 10000 inputs in the form of 50×50 pixel patches of natural scenes extracted
from the Computational Visual Cognition Laboratory of MIT database [62].
A validation set of 2000 patches drawn from the same database distinct
from the training set is utilized to gauge the reconstruction performance. To
quantitatively assess the accuracy of each CS reconstruction, we measure the
relative reconstruction error defined by

Error = ‖x− xrec‖/‖x‖, (8)

where the Euclidean norm ‖x‖ =
√∑n

i=1 x
2
i is utilized. For concreteness,

the signals are sampled with reduction factor r = 5, such that n = 2500 and
m = n/r = 500. Alternative reduction factors may be utilized analogously,
yielding potentially distinct learned measurement matrices, though the de-
tails of the training process remain identical. A learning rate of γ = 10−7

is shown to yield relatively fast convergence to a local minimum in error.
The measurement matrix A is initialized with independent identically Gaus-
sian distributed elements, as typical in CS theory, with mean µ = 0.02 and
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Figure 2: Mean relative reconstruction error for the CS image reconstructions averaged
over the validation set of natural scene patches across epochs. The training parameters
are described in detail in Section 3.1. Each input is reconstructed by solving Eq. (2) and
the measurement matrix is adjusted according to learning rule (7) for each training input.
The error using no penalization is plotted in solid blue, using localized penalization in
dashed red, and using `1 penalization in dotted green.

standard deviation σ = 0.2, and the fixed feedback connectivity matrix F
is analogously generated with entries given by new realizations of the same
Gaussian distributed random variable.

In Fig. 2, we plot the mean CS relative reconstruction error over the vali-
dation set across 15 epochs. Inputs are reconstructed by solving Eq. (2) and
the measurement matrix is adjusted according to the learning rule in Eq. (7)
for each training image. We observe an initial rapid decrease in error across
the first three epochs, subsequently leveling off upon processing further train-
ing data. The CS reconstruction error is reduced by over one third as a result
of learning, demonstrating marked improvements in the resultant sampling
scheme beyond the conventional uniformly random sampling with which the
network was initialized. Considering that the error remains approximately
constant upon sufficient training, we see that there exists a relatively broad
range of low error local minima that corresponds to a widespread space of
sampling schemes over which improved compressive sensing is achievable.
Hence, as we will affirm in our later analysis in Section 3.2, once a certain
degree of structure is present in the sampling, based on the class of training
inputs considered and number of samples utilized, signal information may
be captured with high accuracy by leveraging the distribution of dominant
components in the sparse domain.

For comparison, we also investigate the result of learning under several
penalization schemes on the sampling structure with the goal of utilizing
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a small number of weights in each measurement and later to better reflect
biological realism. The learning rule given by Eq. (7) adapted to account for
a general penalization term is

∆Ajk = −γ ∂

∂Ajk

(e+ λR (Ajk)) = γ

(
n∑

i=1

(xi − xreci)Fjixk − λR′ (Ajk)

)
,

where cost function R(·) penalizes non-zero entries in measurement matrix
A and parameter λ determines the penalization weight.

To incorporate sparsity into the sampling paradigm, we first utilize an `1
penalization on the connection weights in measurement matrix A, such that
R (Ajk) = |Ajk| and therefore R′ (Ajk) = sign(Ajk). In Fig. 2, we observe CS
reconstruction results using `1 penalization analogous to those in the absence
of penalization, indicating that sparsity may be enforced in the weighting of
signal components while still yielding improved CS reconstructions over a
broad space of sampling paradigms. We remark that since neuronal network
connectivity in the brain is generally sparse [39, 49], the sampling reflected
under `1 penalization is more physiological and consistent with the notion
that the brain may achieve efficient processing of sparse stimuli via CS prin-
ciples. As seen in our learning framework, for sensory systems, such sparse
feedforward connectivity may yield a similarly accurate compressive encod-
ing as dense connectivity while additionally satisfying physical constraints
on energy expenditure and the speed of information transfer [63, 64].

A yet closer step towards biological realism is to utilize spatial local-
ization in sampling akin to receptive fields [52–58]. To incorporate spatial
structure into the sampling, each pixel in the sampled image is assigned a
unique (x, y) location with integer coordinates on a [1,

√
n]× [1,

√
n] Carte-

sian grid reflecting all available pixel locations on n-component image x.
Each row of the measurement matrix A is associated with a distinct random
location (xj, yj) on this Cartesian grid and entry Ajk is penalized based on
the normalized Euclidean distance, d(Ajk), from the row location to location
(xk, yk) of pixel k. We note that this distance measure normalizes the raw
Euclidean distance by the maximum possible Euclidean distance between
grid points to produce O(1) quantities, and it is held constant throughout
the learning process for a given entry of A. Based on this distance measure,
we now impose the cost function R (Ajk) = d(Ajk) · |Ajk| with derivative
R′ (Ajk) = d(Ajk) · sign(Ajk). Hence, sparsity is encouraged by the `1 norm
with increased penalization for more distant connections, thereby yielding
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distance-dependent sparse sampling. Using the localized penalization, we
again observe a rapid initial decrease in CS reconstruction error with learn-
ing and diminishing gains in accuracy upon sufficient training. The accuracy
achieved is comparable to that of the other two methods, demonstrating a
minor improvement from the non-local `1 penalization.

While post-processing steps, such as applying a rectified linear function
to the CS reconstructions, may improve results further by about 20%, we fo-
cus on the effect of learned sampling in this work rather than other means of
improved reconstruction to limit confounding factors. Applying our frame-
work to alternative signal databases, such as MNIST or sinusoidal functions
modeling sound waves, produces similar results, but we investigate natural
scenes here for concreteness and to more closely draw parallels with the visual
system.

3.2. Sampling Analysis

To elucidate the changes in sampling structure that manifest with training
for each learning method, we first analyze the spatial distribution of the
dominant connections in the measurement matrix A. Eliminating the near-
zero connections that are pruned from learning, we limit our considerations
to all connections that are at least two standard deviations from the mean
connection strength across their respective rows. We note that similar results
are observed if instead connections only at least one standard deviation from
the row mean are included. Across the remaining dominant connections, we
generate for each row a point cloud of Cartesian grid locations corresponding
to the sampled pixels. On a row-by-row basis, the centroid of the (x, y) point
cloud of sampled pixels is computed and the mean Euclidean distance from
the centroid is determined. Finally, taking the average of the mean distance
from the centroid across all rows yields an average distance measuring the
spatial dispersion of the sampling for the full measurement matrix.

Agreeing with the intuition for the connection penalization schemes dis-
cussed in the previous section, we observe in Fig. 3 that only the learning
method with localized penalization demonstrates any significant change in
the average distance of measurements upon training. Via localized penal-
ization, we observe an initial sharp decrease in distance with learning that
saturates upon sufficient training, showing the same qualitative structure as
the CS reconstruction error and minimizing distance when high reconstruc-
tion accuracy is achieved. We conclude that by adding some degree of spatial
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Figure 3: Mean sampling distance averaged across the rows of A, computed upon the
completion of each epoch using: (a) no penalization, (b) localized penalization, and (c) `1
penalization. The distance measure utilized is discussed in detail in Section 3.2.

localization into the CS sampling, as demonstrated by realistic neuronal net-
works, improved reconstructions are indeed obtainable. Since nearly compa-
rable accuracy is yielded via training using the other penalization methods,
we also note that alternative types of sampling structure may yield improved
CS recovery, but likely the physical constraints of sensory systems encourage
the implementation of localized sampling and engineered sampling devices
may similarly be subject to such spatial limitations [15–17].

With the aim of investigating the general structure introduced in CS sam-
pling with learning beyond distance-dependence, we next analyze correlations
between columns in the effective measurement matrix M = AT . To quantify

15



0 5 10 15

Epoch

0.034

0.036

0.038

0.04

0.042

0.044

0.046

0.048

A
v
e

ra
g

e
 C

o
h

e
re

n
c
e

0 5 10 15

Epoch

0.04

0.042

0.044

0.046

0.048

0.05

0.052

A
v
e

ra
g

e
 C

o
h

e
re

n
c
e

0 5 10 15

Epoch

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

A
v
e

ra
g

e
 C

o
h

e
re

n
c
e

(a)

(b)

(c)

Figure 4: Average mutual coherence in sampling, computed upon the completion of each
epoch using: (a) no penalization, (b) localized penalization, and (c) `1 penalization.

the mutual coherence between the measurement matrix A and transforma-
tion matrix T = (D ⊗D)−1 while not over-weighting a single outlier as the
network learns, we utilize the following average mutual coherence measure

µavg(M) =
1

n(n− 1)

∑
1≤i,j≤n

i6=j

|Mi ·Mj|
‖Mi‖‖Mj‖

,

which gives a more global analogue to the maximum mutual coherence mea-
sure µmax, discussed in Section 2.1, typically utilized in CS theory because
it lends itself to theoretical results [11–13].

We depict in Fig. 4, the average mutual coherence with training, which
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initially increases and then levels off for each learning method. This suggests
that increasing the average mutual coherence up to a sufficient level, based
on the training input signal structure, improves CS reconstruction quality.
The average mutual coherence reaches a clear plateau since further increases
in coherence may prove counterproductive to the demands of CS theory and
would instead cause the reconstruction error to increase.

It is important to remark that neural network learning in our CS frame-
work indeed coincides with the mechanisms observed in explaining the success
of feedback alignment. Given the feedback connectivity matrix F remains
fixed throughout learning whereas the feedforward measurement matrix A is
adjusted, we demonstrate that the two align with learning as the network is
trained to make the feedback information useful.

To gauge the correlation between the feedforward and feedback signals,
we compute the angle between them with training, which was shown to
diminish with training in the original formulation of feedback alignment [40].
Specifically, we use the angle measure

θ(v, w) = cos−1
(

v · w
‖v‖‖w‖

)
for v = F (xrec − x) and w = A(xrec − x).

Before training, the angle between the feedforward and feedback signals
is near π/2 radians, and thus the signals are unaligned. However, as shown
in Fig. 5, with each penalization method, this angle precipitously decreases
before ultimately saturating once the signals are well aligned upon sufficient
training. Thus, fixed random feedback connections, which are not recipro-
cal with the feedforward connections as observed for physiological neuronal
networks [16, 36–39], send instructive training signals for rewiring the feed-
forward measurement matrix and thereby improve CS reconstructions in a
biologically plausible manner. We posit that connectivity between layers
of disparate sizes in physiological neuronal networks may develop according
to similar learning principles in order to facilitate an efficient compressive
coding of information.

3.3. Sampling Structure

For the signal class of natural scenes analyzed in this work, we may visu-
ally inspect the sampling structure that arises from our learning framework.
For each penalization type, we observe that the sampling shifts from the
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Figure 5: Angle between feedforward and feedback signals using: (a) no penalization, (b)
localized penalization, and (c) `1 penalization.

independent identically distributed Gaussian entries conventional in CS the-
ory with which the network was initialized to a more structured though still
relatively incoherent sampling scheme.

In Fig. 6, the spatial domain representation of the sampling across 400
representative rows of the measurement matrix yielding minimal mean re-
construction error over the validation set is depicted for each penalization
method. Note that the spatial domain representation for a given row of size
n is computed by reshaping the weighting vector into the form of a

√
n×
√
n

image matrix with entries corresponding to the weight given to each respec-
tive spatial location sampled.
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(a)

(b)

(c)

Figure 6: Spatial domain representation of each row of A yielding minimal mean validation
error using (a) no penalization, (b) localized penalization, and (c) `1 penalization. Positive
entries are scaled in white and negative entries are scaled in black.

Likewise, we similarly plot in Fig. 7 the frequency domain representation
of the sampling, which corresponds to the two-dimensional discrete Fourier
transform of the spatial domain representation for each constituent row. Ini-
tially, the uniformly random structure of the measurement matrix A weights
all constituent frequency components in the sparse domain approximately
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(a)
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(c)

Figure 7: Frequency domain representation of each row of A yielding minimal mean vali-
dation error using (a) no penalization, (b) localized penalization, and (c) `1 penalization.
Entries distant from the center correspond to higher frequency components, and brighter
(warmer) coloring indicates higher amplitude.

equally for each row measurement. As a result of learning, the dominant low
frequency components composing natural scenes are given more weighting.

Particularly when a large reduction factor is imposed, corresponding to a
relatively small number of measurements, higher CS reconstruction quality
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may be obtained from sampling that captures components carrying the most
signal information even if some lower amplitude component information is
lost as a result. While additional spatial structure clearly manifests for opti-
mal CS sampling, it is generally not smooth and demonstrates some degree of
randomness so as to maintain sufficient incoherence with the sparse domain
basis and thereby produce samples that yield distinct information.

We remark that while sampling structure more heavily weighting domi-
nant components in the sparse domain is introduced from learning even with
no penalization or `1 penalization, the localized sampling scheme visually
demonstrates the clearest clustering in the spatial domain. In the sparse do-
main, this is indicated in the localized penalization sampling by a particularly
rapid decrease in amplitude with increasing frequency.

We characterize the distribution of amplitudes in the sampled frequency
components for a given measurement matrix row, corresponding to one set
of weighted measurements, using the frequency entropy

H = −
∑
i

pi log2 pi,

where pi denotes the probability of observing the ith frequency-component
amplitude, binned over the amplitudes corresponding to all frequency compo-
nents composing the sparse domain representation [65]. An average frequency
entropy over the set of all measurement matrix rows, H̄, can then be used to
quantify the overall spread of frequency amplitudes corresponding to all con-
stituent weighted measurements. In Fig. 8, we plot the measurement matrix
average frequency entropy after each epoch for each penalization type. We
observe that while the average frequency entropy ultimately saturates upon
sufficient training regardless of the penalization scheme, only in the case of lo-
calized penalization does the average frequency entropy increase initially with
learning. For the alternative penalizations, the average frequency entropy ei-
ther decreases initially or remains approximately the same, and thus localized
sampling ultimately achieves the greatest frequency entropy after training.
Note that while uniformly random sampling, as in the case of the untrained
measurement matrices, generally yields high H̄ because of the unstructured
diversity of sampled frequencies, it lacks concentration of amplitudes about
the lower frequency components and therefore should be distinguished from
the frequency entropies obtained after training. Hence, the abrupt transi-
tion in amplitudes from the heavily-weighted low frequency components to
the lightly-weighted moderate frequency components that manifests through
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Figure 8: Average frequency entropy of A after each epoch. The average frequency entropy
using no penalization is plotted in solid blue, using localized penalization in dashed red,
and using `1 penalization in dotted green.

training with localized penalization produces sampling with both structure
and relatively large frequency entropy.

The key differences in structural organization between the trained mea-
surement matrices using the `1 and localized sampling penalizations support
the notion that beyond energetic constraints on the number of synapses, as
enforced by the `1 penalty, evolutionary pressure towards spatial locality was
a potentially necessary ingredient in forming the largely distance-dependent
and modular neuronal connectivity observed in vivo. The localized connec-
tions learned were often all of the same sign for a given row of A, with some
demonstrating a sharp transition between excitatory and inhibitory weights
in the spatial domain as observed in center-surround or simple cell receptive
fields. We note that altering the penalization scheme and reduction factor
may change the spatial structure of samples, therefore producing different
types as well as distributions of receptive fields. However, the broad region
of locally minimal CS reconstruction error upon sufficient training depicted in
Fig. 2 across penalization schemes indicates that there are numerous means
of achieving a relatively accurate compressive encoding of signals, and thus
numerous specific system constraints are likely still amenable to improved
reconstructions by introducing some degree of structure in sampling. This
speaks to the robustness of CS across applications as well as a possible ex-
planation for the variety of receptive field types found downstream in many
sensory systems whose constituent layers may be optimized for the compres-
sive encoding of specific signal features via particular sparse representations
[66–68].
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4. Discussion

Formulating a neural network framework for the compressive sensing sam-
pling and reconstruction of sparse signals, we develop a new data-driven
methodology for learning more effective CS measurement protocols. Our
training method significantly improves signal reconstruction quality across
several connection weight penalization schemes and classes of signals. The
methodology demonstrates both logistical pragmatism and biological plausi-
bility, utilizing asymmetric feedforward and feedback connectivity as well as
only requiring neuronal knowledge of local connectivity information. Learn-
ing results in more structured sampling, driven by the potentially unknown
structural characteristics of the class of signals analyzed in the sparse do-
main, while still maintaining a sufficient degree of incoherence as typically
suggested by conventional CS theory. When utilizing spatially localized pe-
nalization of measurements in particular, we demonstrate that learning yields
sparse and distance-dependent sampling weights, as commonly observed in
the feedforward connectivity of physiological neuronal networks, suggesting
that the brain may learn to encode information across neuronal layers of
diverse sizes in agreement with CS principles.

We conjecture that the numerous convergent brain pathways in which
the number of neurons encoding information is significantly reduced down-
stream may serve to facilitate efficient processing in low dimensional spaces
while preserving information via compressive coding so that it is available
across subsequent expansive pathways [46–48]. This is made possible by
the ubiquity of sparse representations in high dimensional spaces, which is
likely leveraged in the brain through evolutionary selection. Note that while
solving the minimization problem given by Eq. (2) facilitates our CS re-
construction of signals in silico, whether and how the brain implements `1
minimization is still an area of investigation. One implementation argued
to be potentially biologically feasible is a locally competitive algorithm with
thresholding, which takes the form of a nonlinear system of ordinary dif-
ferential equations mimicking more detailed computations across a neuronal
network with inhibitory interactions [69].

Considering prior theoretical work demonstrates that the firing rate dy-
namics in model neuronal networks can provide a successful compressive en-
coding of sensory information [70, 71], investigating if it is possible for such
systems to learn improved CS sampling based on their nonlinear network
dynamics, analogous to the method in this work, marks an interesting area
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for future analysis. Through the conduit of learning receptive field structure
in a biologically plausible way that is motivated by compressive coding, it
would be informative to study if differences in receptive fields across species,
such as the salt-and-pepper organization of the rodent primary visual cortex
and the pinwheel orientation columns of many higher mammals, may mani-
fest from learned sampling based on distinctions in encountered stimuli and
resultant training data [72, 73].

Though here we primarily investigated learned CS sampling of natural
scenes, with particularly well known structure [19], our data-driven method-
ology may be analogously applied to alternative classes of sparse signals in
engineering applications or non-visual stimuli in the context of sensory sys-
tem models. For example, we have applied our framework to both sound data
as well as handwritten text data and obtained similar improvements in CS
reconstructions, but other reduction factors or training data may yield alter-
native sampling characteristics furnishing new application-specific insights.
In contrast to modern deep learning, which leverages many layers to help
improve performance, we focus on a three-layer network for interpretability.
This allows us to consider the natural case in which only a single measure-
ment matrix is utilized and trained, with adaptability to any nonlinear or
iterative optimization scheme that produces the final layer CS reconstruc-
tion output. In engineered systems, one measurement matrix is typically
utilized for practical purposes and our work gives insight into amenable mea-
surement matrix structures beyond those considered in classical CS theory.
However, in the realm on neuroscience, the primary visual cortex is composed
of many layers that are often optimized for processing different stimulus fea-
tures [74, 75], and hence investigating information encoding across multiple
compressive-and-expansive pathways provides a natural avenue for further
biologically-motivated studies.

Since using uniformly random samples is costly or infeasible due to the
spatial scale between sampling locations in most engineered systems across
the natural sciences [14–17], it is promising that the space of measurement
matrices over which learned CS sampling improves reconstructions is demon-
strated to be extensive. This grants much needed flexibility in effective sam-
pling designs. Considering improved CS reconstructions are learned even un-
der highly limited, distance-dependent measurement constraints, it is likely
possible to use spatially localized random clusters of measurements, which
are often more feasible to implement in practice, and still yield particularly
accurate CS reconstructions.

24



5. Acknowledgments

This work was supported by NSF grant DMS-1812478 and a Swarthmore
Faculty Research Support Grant.

[1] C. E. Shannon, Communication in the Presence of Noise, Proceedings
of the IRE 37 (1) (1949) 10–21.

[2] E. Candes, J. Romberg, T. Tao, Stable signal recovery from incomplete
and inaccurate measurements, Commun. Pur. Appl. Math. 59 (8) (2006)
1207–1223.

[3] D. Donoho, Compressed sensing, IEEE Trans. Inform. Theory 52 (2006)
1289–1306.

[4] M. Lustig, D. Donoho, J. M. Pauly, Sparse MRI: The application of
compressed sensing for rapid MR imaging, Magn. Reson. Med. 58 (6)
(2007) 1182–1195.

[5] M. A. Herman, T. Strohmer, High-resolution radar via compressed sens-
ing, Trans. Sig. Proc. 57 (6) (2009) 2275–2284.

[6] J. H. Ender, On compressive sensing applied to radar, Signal Processing
90 (5) (2010) 1402–1414.

[7] D. Hayden, Y. H. Chang, J. Goncalves, C. J. Tomlin, Sparse network
identifiability via compressed sensing, Automatica 68 (2016) 9–17.

[8] J. B. Lee, A. Yonar, T. Hallacy, C.-H. Shen, J. Milloz, J. Srinivasan,
A. Kocabas, S. Ramanathan, A compressed sensing framework for effi-
cient dissection of neural circuits, Nature methods 16 (1) (2019) 126.

[9] Y. Mishchenko, L. Paninski, A Bayesian compressed-sensing approach
for reconstructing neural connectivity from subsampled anatomical data,
J. Comput. Neurosci. 33 (2) (2012) 371–388.

[10] W. Dai, M. A. Sheikh, O. Milenkovic, R. G. Baraniuk, Compressive
sensing DNA microarrays, J. Bioinform. Syst. Biol. (2009) 162824.

25



[11] E. J. Candes, M. B. Wakin, An Introduction To Compressive Sampling,
Signal Process. Mag., IEEE 25 (2) (2008) 21–30.

[12] R. Baraniuk, Compressive sensing, IEEE Signal Processing Mag (2007)
118–120.

[13] A. Bruckstein, D. Donoho, M. Elad, From sparse solutions of systems
of equations to sparse modeling of signals and images, SIAM Review
51 (1) (2009) 34–81.

[14] M. Rani, S. Dhok, R. Deshmukh, A systematic review of compressive
sensing: Concepts, implementations and applications, IEEE Access 6
(2018) 4875–4894.

[15] G. Hennenfent, F. J. Herrmann, Simply denoise: Wavefield reconstruc-
tion via jittered undersampling, Geophysics 73 (3) (2008) V19–V28.

[16] N. T. Markov, M. Ercsey-Ravasz, D. C. Van Essen, K. Knoblauch,
Z. Toroczkai, H. Kennedy, Cortical high-density counterstream archi-
tectures, Science 342 (6158) (2013) 1238406.

[17] I. H. Stevenson, J. M. Rebesco, L. E. Miller, K. P. Kording, Inferring
functional connections between neurons, Curr. Opin. Neurobiol. 18 (6)
(2008) 582–588.

[18] M. L. Malloy, R. D. Nowak, Near-optimal adaptive compressed sensing,
IEEE Transactions on Information Theory 60 (7) (2014) 4001–4012.

[19] E. P. Simoncelli, B. A. Olshausen, Natural image statistics and neural
representation, Annual review of neuroscience 24 (1) (2001) 1193–1216.

[20] B. Adcock, A. C. Hansen, C. Poon, B. Roman, Breaking the coherence
barrier: A new theory for compressed sensing, in: Forum of Mathemat-
ics, Sigma, Vol. 5, Cambridge University Press, 2017.

[21] M. Elad, Optimized projections for compressed sensing, IEEE Transac-
tions on Signal Processing 55 (12) (2007) 5695–5702.
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