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Abstract Reconstructing the recurrent structural con-

nectivity of neuronal networks is a challenge crucial to

address in characterizing neuronal computations. While

directly measuring the detailed connectivity structure

is generally prohibitive for large networks, we develop a

novel framework for reverse-engineering large-scale re-

current network connectivity matrices from neuronal

dynamics by utilizing the widespread sparsity of neu-

ronal connections. We derive a linear input-output map-

ping that underlies the irregular dynamics of a model

network composed of both excitatory and inhibitory

integrate-and-fire neurons with pulse coupling, thereby

relating network inputs to evoked neuronal activity. Us-

ing this embedded mapping and experimentally feasi-

ble measurements of the firing rate as well as voltage

dynamics in response to a relatively small ensemble of
random input stimuli, we efficiently reconstruct the re-

current network connectivity via compressive sensing

techniques. Through analogous analysis, we then re-

cover high dimensional natural stimuli from evoked neu-

ronal network dynamics over a short time horizon. This

work provides a generalizable methodology for rapidly

recovering sparse neuronal network data and underlines

the natural role of sparsity in facilitating the efficient

encoding of network data in neuronal dynamics.

Keywords Network Reconstruction · Nonlinear

Dynamics · Mean-Field Analysis · Signal Processing ·
Integrate-And-Fire Model Networks
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1 Introduction

Obtaining accurate and simultaneous measurements of

both the detailed structure and activity of large-scale

neuronal networks remains a missing yet critical com-

ponent in more completely characterizing cognitive pro-

cesses. While modern technological advances have made

it possible to record the dynamics of increasingly large

numbers of neurons, through, for example, multielec-

trode arrays (Field et al. 2010; Shimono and Beggs

2015; Boulton et al. 1990), genetically encoded indi-

cators (Xu et al. 2017), and calcium imaging (Grewe

et al. 2010), the reconstruction of structural neuronal

connectivity is still limited to relatively small networks.

The scale and fidelity of neuronal connectivity mea-
surements have improved in recent years; however, even

with each novel experimental methodology, numerous

difficulties remain in recovering the complex topology

of large neuronal networks. While tracer injections can

discern the fine-resolution structural connections be-

tween neurons, their application thus far has been pri-

marily restricted to relatively small networks (Markov

et al. 2013; Wall et al. 2010; Briggman and Bock 2012).

As a whole, numerous limitations, such as those aris-

ing from the spatial resolution of measurement devices

(Stevenson et al. 2008), synaptic diversity (Sawatari

and Callaway 2000), hidden neurons (de Abril et al.

2018; Horwitz 2003), and short-time synaptic plasticity

(Boccaletti et al. 2006; Song et al. 2005), still prove

to be additional difficult hurdles to overcome in di-

rectly measuring the detailed connectivity of large neu-

ronal networks. Recent studies have successfully recov-

ered the detailed anatomical connectivity for networks

of thousands of neurons in the cerebral cortex using

cutting-edge approaches (Jiang et al. 2015), but there
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remains a long road forward in characterizing the com-

plete neuronal connection structure for most organisms.

In this work, we formulate a novel methodology for

reconstructing the recurrent connectivity of model neu-

ronal networks with spiking dynamics by taking ad-

vantage of their sparse network structure and intrin-

sic linear input-output mappings. Our method utilizes

short-time measurements of the neuronal firing dynam-

ics and voltage traces in response to an ensemble of

random input stimuli. While we apply our methodol-

ogy to the dynamics generated from a model network,

the developed framework is potentially generalizable

to experimental settings through intracellular or mul-

tielectrode array recordings in response to optogenetic

forcing (Rickgauer et al. 2014; Packer et al. 2015). Re-

sults may be validated in experimental settings using

the measured strengths of recurrent connections in a

smaller subset of the network, which are typically es-

timated based on the number of synaptic contacts and

postsynaptic density area observed via electron micro-

scope or based on measured postsynaptic potential am-

plitudes (Barros-Zulaica et al. 2019; Holler et al. 2021).

Several alternative mathematical and statistical tech-

niques have furnished improvements in recovering net-

work structure from measurements of neuronal activity,

including Granger causality analysis (Zhou et al. 2013),

partial spectral coherence (Dahlhaus et al. 1997), max-

imum likelihood estimation (Zaytsev et al. 2015), phase

response properties (Cestnik and Rosenblum 2017), and

transfer entropy (Vicente et al. 2011; Stetter et al. 2012).

Each previous method, however, has restrictions pre-

venting practical use in effectively recovering large-scale

network connectivity, such as requiring prohibitively

large neuronal activity data sets (Zhou et al. 2013; Za-

ytsev et al. 2015; Stetter et al. 2012), addressing only

excitatory network connections (Cestnik and Rosen-

blum 2017; Vicente et al. 2011), or failing to appro-

priately reconcile nonlinear dynamics in the vicinity of

action potentials (Dahlhaus et al. 1997). Our theoretical

framework addresses each of these issues. It is increas-

ingly efficient for larger networks, requires short-time

measurements, takes into account nonlinear activity,

and reconstructs connections among both excitatory as

well as inhibitory neurons.

Considering the connectivity among individual neu-

rons is generally sparse, as indicated from experimental

measurements in diverse brain regions (Markram et al.

1997; Ganmor et al. 2011; He et al. 2007), our methodol-

ogy makes specific use of the sparse connectivity struc-

ture via compressive sensing (CS) theory (Candes et al.

2006; Donoho 2006), yielding accurate reconstructions

of network data with limited measurements of neuronal

dynamics. While prior methods utilized sparse struc-

ture to reconstruct feed-forward connectivity in pulse-

coupled networks (Barranca et al. 2016b), this work

overcomes the previously unaddressed difficulties in re-

covering recurrent network connectivity, which is in gen-

eral significantly more difficult. Since recurrent connec-

tivity information may be obscured by feed-forward in-

puts and because higher-order functional correlations in

neuronal activity do not necessarily imply a true struc-

tural recurrent connection between neurons due to, for

example, the influence of indirect connections (Salinas

and Sejnowski 2001; Tsodyks and Gilbert 2004; Fris-

ton 2011), an alternative approach is necessary to well

characterize recurrent network structure.

Through direct comparison with the known recur-

rent connectivity matrix generated in silico, we are able

to validate the accuracy of our reconstructions. Based

on the small incurred errors, we view the reconstructed

recurrent connectivity matrix for the neuronal network

of interest as an estimate of the true structural re-

current connectivity, which is known to be correlated

with but generally distinct from the more easily inferred

functional recurrent connectivity (Hagmann et al. 2008;

Honey et al. 2009). We note that there are several limi-

tations involved in applying this methodology in exper-

imental settings, as considered in detail in the Discus-

sion, but nonetheless we lay the theoretical groundwork

for further advances in efficient structural connectivity

reconstructions that may leverage sparsity and linear

network response properties in the asynchronous dy-

namical regime. Beyond reconstructing recurrent net-

work interactions, our framework demonstrates that high

dimensional and detailed input stimuli may be similarly

recovered from the evoked network dynamics by mak-

ing efficient use of the typical sparse structure of natu-

ral stimuli (Field et al. 2010), imparting further insights

into the efficient encoding of network data through neu-

ronal dynamics.

The study is organized as follows. In Section 2.1, we

formulate the pulse-coupled balanced network model

with detailed voltage dynamics to be used in our anal-

ysis and in Section 2.2 we then derive the underlying

linear map between the input stimuli and neuronal net-

work response pivotal in relating the network structure

and function. In Section 3.1, we develop our theoreti-

cal framework for reconstructing the recurrent network

connectivity and, in Section 3.2, we further analyze the

efficiency of our methodology with respect to the time

over which network dynamics are recorded and the in-

put ensemble size utilized. We demonstrate in Section

3.3 how our analysis naturally generalizes to recovering

detailed network inputs and finally examine potential

extensions as well as implications of our work in Section

4.
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2 Model and Methods

2.1 Network Model

The network model we consider is composed of N neu-

rons, such that NE are excitatory and NI are inhibitory,

with each governed by pulse-coupled integrate-and-fire

(I&F) neuronal dynamics. The I&F model has been

shown to well reproduce both subthreshold membrane

potential dynamics as well as firing statistics measured

in experiment and has been utilized in a host of the-

oretical investigations of brain network computations

(Mather et al. 2009; Rauch et al. 2003; Barranca et al.

2014a; Rangan and Cai 2006; Burkitt 2006; Abbott

1999; van Vreeswijk and Sompolinsky 1996). In for-

mulating the network structure and resultant dynam-

ical regime, we utilize balanced network connectivity

(van Vreeswijk and Sompolinsky 1996; 1998; Troyer and

Miller 1997; Miura et al. 2007; Barranca et al. 2019b;

Barranca and Zhou 2019), yielding irregular and asyn-

chronous dynamics important in our subsequent deriva-

tion of the network input-output mapping.

The membrane-potential (voltage) of the ith neuron

in kth population of the I&F network, vik, has activ-

ity dictated by dynamical system (subscripts k = E

and k = I denote excitatory and inhibitory neurons,

respectively)

dvik
dt

=− gL(vik − V Re
k ) +

NE∑
j=1
j 6=i

Rij
kE

∑
l

δ(t− τ jlE )

+

NI∑
j=1
j 6=i

Rij
kI

∑
l

δ(t− τ jlI ) +
∑
j

F ij
k p

j
k, (1)

evolving from reset potential, V Re
k , until arriving at the

threshold potential, V T
k , at which time the neuron is

said to spike (or fire an action potential). Once a neuron

spikes, its membrane potential vik is instantaneously re-

set to the value V Re
k and the membrane potential of all

post-connected neurons is offset as a result of integrat-

ing over the Dirac delta functions δ(·) in Eq. (1). Such

spike times for the ith neuron in the kth population are

denoted τ ilk and indexed by l = 1, 2, . . . in ordering the

spiking events. In simulation, the membrane potential

is nondimensionalized such that V Re
k = 0 and V T

k = 1,

with gL = 50s−1 corresponding to a typical membrane-

potential time-scale of 20ms (McLaughlin et al. 2000;

Barranca et al. 2014b; Brette et al. 2007).

The N × N recurrent connectivity matrix, R, de-

termines the precise structure of neuronal interactions

upon firing events and is indexed such that Rij
kl denotes

the recurrent connection strength between the ith post-

connected neuron in the kth population and the jth pre-

connected neuron in the lth population. The recurrent

connectivity is prescribed by a Bernoulli distribution

such that Rij
kl = Rkl/

√
K with probability K/Nl and

Rij
kl = 0 otherwise. In this case, the excitatory connec-

tion strength RkE > 0 and the inhibitory connection

strength RkI < 0.

In addition to recurrent inputs, each population also

receives upstream external inputs prescribed by con-

stant vector pk, where pjk denotes the jth component

of the vector of upstream inputs driving the kth down-

stream neuronal population. The N ×m feed-forward

connectivity matrix, F, determines the connections be-

tween the upstream and downstream layers, such that

F ij
k denotes the feed-forward connection strength be-

tween the jth component of pk and the ith neuron in

the kth population. Requiring that irregular firing ac-

tivity is the result of the recurrent interactions among

neurons in the downstream network, we assume the

external input is constant and relatively strong, such

that the expected upstream input into a neuron in the

kth population is
√
Kfkm0, with O(1) parameters m0

and fk scaling the overall and relative external drive

strengths for the two populations, respectively.

Assuming sparse connectivity, where 1 � K �
NE , NI , each neuron receives on average K excitatory

incoming connections and K inhibitory incoming con-

nections. Therefore, if Rkl is O(1), then only O(
√
K)

excitatory inputs are necessary for a neuron to fire given

an O(1) threshold potential. For such recurrent connec-

tivity, the mean excitatory and inhibitory inputs into

each neuron are in total of the same order as the thresh-

old potential, making intermittent fluctuations in input

typically responsible for action potentials and their ir-

regular distribution. As the two input types dynami-

cally cancel over time, a nearly constant level of asyn-

chronous neuronal activity is generally produced across

the network, thereby demonstrating balanced network

dynamics (van Vreeswijk and Sompolinsky 1996; Bar-

ranca et al. 2019b).

Coinciding with the irregularity of neuronal firing

events as well as the dynamic balance of large exci-

tatory and inhibitory inputs observed in response to

diverse stimuli in experimental settings (Britten et al.

1993; London et al. 2010; Xue et al. 2014; Haider et al.

2006; Miura et al. 2007), we reconstruct the recurrent

network connectivity given balanced network dynam-

ics in this work. We note, however, that even if the

network parameters are not strictly in the balanced

operating regime, as long as the evoked dynamics are

sufficiently irregular, the subsequent derivation of the

input-output mapping we utilize in our reconstruction

still holds, making our framework robust to alternative
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network settings.

2.2 Balanced Dynamical Regime and Network

Input-Output Mapping

A natural requirement for balanced dynamics is that

the network activity remains non-quiescent and asyn-

chronous in each population in the large network limit.

Hence, we require the network-averaged firing rates,

mk, for k = E, I, to obey 0 < mk < ∞ as N → ∞
and as K → ∞ for fixed ratio NE/NI . Under the as-

sumption of irregular and finite firing activity, in this

section we derive a static and linear input-output re-

lationship crucial to our framework for reconstructing

network data in Section 3. In order to approximately

hold for a finite network realization, the linear input-

output mapping and associated theoretical bounds on

the model parameters require that the network is suffi-

ciently large and composed of enough excitatory and

inhibitory connections to maintain asynchronous ac-

tivity, and since this is generally the case in experi-

mental settings of interest, the assumptions made are

widely applicable. As discussed in detail in the Ap-

pendix, compressive sensing reconstruction techniques

generally require linear measurements of static sampled

data (Candes et al. 2006; Donoho 2006), but the sys-

tem we consider here demonstrates nonlinear dynamics

in time. The derived linear mapping therefore allows us

to address this conceptual obstacle, and combined with

limited observations of the network dynamics, we are

able to efficiently reconstruct sparse network informa-

tion via our extension to the CS theoretical framework.

To derive the underlying network mapping, we con-

sider the expected voltage for each neuron in the long-

time limit. To do so, we must first approximate the

net effect of all recurrent and feed-forward inputs. In

considering the recurrent interactions, it is important

to note that the input into a particular neuron is a

spike train summed over the action potentials from a

relatively large number of neighboring neurons. Since

the firing events of neurons in the balanced regime are

weakly correlated, the summed spike train input over a

large number of incoming neuronal impulses asymptoti-

cally approaches a Poisson point process (Cinlar 1972).

Moreover, because the external input is constant, we

arrive at an analytically tractable statistical character-

ization of the neuronal inputs.

Since the voltage of each neuron in the kth popula-

tion is reset to V Re
k upon firing, we consider Eq. (1)

with initial condition vik(0) = V Re
k for k = E, I in

enforcing asynchronous neuronal dynamics. Assuming

Poisson spike train inputs, the solution to the corre-

sponding initial value problem gives the subthreshold

membrane potential trajectory for the ith neuron in the

kth population and may be expressed as

vik(t) =V Re
k +

NE∑
j=1
j 6=i

Rij
kET

j
E(t) +

NI∑
j=1
j 6=i

Rij
kIT

j
I (t)

+

(
1− e−gLt

gL

)∑
j

F ij
k p

j
k (2a)

T j
l (t) =

Mj
l (t)∑

s=1

e−gL(t−Uj
l,s(t)), (2b)

where Rij
kl · T

j
l (t) yields the total recurrent spike train

input from the jth neuron in the lth population into the

ith neuron in the kth population at time t and M j
l (t) de-

notes the corresponding total number of spikes emitted

by the jth neuron in the lth population through time t.

Note that here M j
l (t) is described approximately by a

Poisson distribution with the average number of events

mj
l t, where mj

l is the firing rate of the jth neuron in the

lth population.

Corresponding to M j
l (t) , the spike train input from

the jth neuron in the lth population has spike times

denoted by U j
l,s(t), for s = 1, 2, . . . , which we assume

are uniformly distributed in the interval [0, t] based

on the irregularity of firing events. Hence, Y j
l,s(t) =

e−gL(t−Uj
l,s(t)) is a random variable that takes on values

in the interval [e−gLt, 1]. Given the probability density

function for random variable U j
l,s(t) is PUj

l,s(t)
(u) = 1/t,

it follows that random variable Y j
l,s(t) has probability

density function PY j
l,s(t)

(y) = 1/(gLty) for y ∈ [e−gLt, 1]

and expected value (1− e−gLt)/(gLt).

Since T j
l (t) is given by a sum of approximately in-

dependent identically distributed random variables, it

has expected value E (T j
l (t)) = 1−e−gLt

gLt mj
l t for a given

time horizon. Temporarily disregarding the impact of

the instantaneous reset condition, the expected voltage

of the ith neuron in the kth population at time t is thus

approximately

ṽik(t) =V Re
k +

1− e−gLt

gL
·
(∑

j

F ij
k p

j
k

+

NE∑
j=1
j 6=i

Rij
kEm

j
E +

NI∑
j=1
j 6=i

Rij
kIm

j
I

)
. (3)

In the long-time limit, t→∞, this reduces to

ṽik = V Re
k +

1

gL

(∑
j

F ij
k p

j
k +

NE∑
j=1
j 6=i

Rij
kEm

j
E +

NI∑
j=1
j 6=i

Rij
kIm

j
I

)
(4)
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The true expected voltage, v̄ik(t), will be lower than

ṽik(t) since upon reaching threshold V T
k , the voltage is

instantaneously reset down to V Re
k . As a result of this

nonlinearity in the dynamics, since the change in volt-

age due to an action potential is −(V T
k −V Re

k ) occurring

with ratemi
k, it follows that the true long-time expected

voltage for the ith neuron in the kth population, v̄ik, is

approximately

v̄ik =V Re
k +

1

gL

(∑
j

F ij
k p

j
k +

NE∑
j=1
j 6=i

Rij
kEm

j
E

+

NI∑
j=1
j 6=i

Rij
kIm

j
I −m

i
k(V T

k − V Re
k )

)
. (5)

Eq. (5) yields a linear input-output mapping, which we

will use to derive conditions on the parameters produc-

ing balanced dynamics and subsequently reconstruct

network data. This key mapping may be expressed com-

pactly across the network in matrix form as

v̄ = VRe +
1

gL

(
Fp + Rm−m

(
VT −VRe

))
, (6)

where R is ordered such that the firstNE rows (columns)

correspond to the NE excitatory neurons and the next

NI rows (columns) correspond to theNI inhibitory neu-

rons, and we assume the same ordering for the remain-

ing terms in Eq. (6) corresponding to the respective

single neuron terms in Eq. (5).

Characterizing the dynamics at the network level,

since each neuron in the lth population is expected to

fire at rate ml and each neuron in the kth population

is expected to receive K incoming recurrent connec-

tions from the lth population with individual connec-
tion strength Rkl/

√
K, the total recurrent input from

the lth population into a neuron in the kth population

is approximately a Poisson spike train with expected

value Rklml

√
K. As a result, taking the expectation of

Eq. (5) over all network realizations, we obtain the av-

erage long-time and leading order offset in voltage from

resting potential due to recurrent and feed-forward in-

puts for a neuron in the kth population

dk =
√
K

1

gL
(fkm0 +RkEmE +RkImI) . (7)

To achieve asynchronous and irregular dynamics in the

large network limit, the neuronal membrane potential

must remain finite as K → ∞. Therefore, fkm0 +

RkEmE +RkImI must be O(1/
√
K) and thus vanish as

K → ∞ (van Vreeswijk and Sompolinsky 1998). Solv-

ing the resultant system of linear equations, we obtain

mE =
|RII |fE − |REI |fI

RIE |REI | −REE |RII |
m0 (8a)
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Fig. 1 Linear Input-Output Mapping. (a) Network gain
curves depicting the firing rate averaged across the network
as a function of the mean external input strength. The exci-
tatory population is plotted in red, the inhibitory population
is plotted in blue, and the theoretical firing rate from Eq.
8 is plotted in dashed green. (b) Absolute error in voltage
computed using the derived input-output mapping (5) com-
pared with true voltages determined via simulation. The in-
jected current vector p is composed of independent and iden-
tically uniformly distributed random O(

√
K) constant exci-

tatory currents with population scaling such that fE > fI . In
each case, a network of 2000 excitatory and 2000 inhibitory
neurons is considered. Unless otherwise specified, parameters
utilized are REE = RIE = 1, RII = −1.8, REI = −2, fE =
1.25, fI = 1, and K = 0.0625NE in accordance with classi-
cal estimates (van Vreeswijk and Sompolinsky 1996) and the
wide-spread sparsity of recurrent connectivity (He et al. 2007;
Achard and Bullmore 2007; Ganmor et al. 2011; Markram
et al. 1997).

mI =
RIEfE −REEfI

RIE |REI | −REE |RII |
m0, (8b)

yielding a linear scaling of the population-averaged fir-

ing rate responses with the external input strength pa-

rameter m0.

Requiring that both the excitatory and inhibitory

population-averaged firing rates are nonnegative and

finite, we obtain parameter bounds

fE
fI

>
|REI |
|RII |

>
REE

RIE
, (9)

which are theoretically necessary for balanced dynam-

ics in the large-network limit. We note that if mE = 0,

then solution mI = fIm0/|RII | satisfies the linear sys-

tem (8); however, in order to accurately reconstruct

complete network data using the derived mapping, it
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is desirable that the entire network produces irregular

firing events and thus we analyze balanced dynamics in

the parameter regime obeying Eq. (9).

The linear scaling of neuronal firing rates with ex-

ternal input strength holds both on the network level as

well as for individual neurons. In Fig. 1a, we empirically

examine the firing rate response of the network to in-

creasingly large random external inputs, adjusting the

external input by increasing the overall scaling strength

m0. We observe that as the mean external drive is in-

creased, the network-averaged firing rate of both the

excitatory and inhibitory populations linearly intensi-

fies, thereby demonstrating linear gain for a finite net-

work realization as expected theoretically in the large

network limit.

On a neuron-by-neuron basis, linear mapping (5)

furnishes an accurate approximation of the individual

time-averaged neuronal voltages provided measurement

of the neuronal firing rates and injected input currents

determining the right-hand side of Eq. (5). The abso-

lute error in the time-averaged voltages estimated us-

ing the network mapping compared to the true voltages

recorded via simulation is shown in Fig. 1b across the

network. For each neuron, the error is generally clus-

tered near 0.01 and never rises above 0.12, demonstrat-

ing the high level of accuracy with which mapping (5)

encodes network data and thus minor contribution of

the approximations made in its derivation to the sub-

sequent reconstructions discussed in the next section.

3 Results

3.1 Reconstruction of Recurrent Connectivity

We reconstruct the recurrent network connectivity by

injecting constant currents into the network in the form

of r random input vectors, denoted by
{
p(i)
}r
i=1

, and

record the evoked firing rates and time-averaged volt-

ages, denoted by
{
m(i)

}r
i=1

and
{
v̄(i)
}r
i=1

, respectively,

over a short-time duration. In this case, the N2 en-

tries of R are to be reconstructed using only r trials,

leading to a highly underdetermined inverse problem

for r � N2. However, since R is sparse, we demon-

strate that compressive sensing techniques nevertheless

yield an accurate reconstruction provided the appropri-

ate network input-output mapping. A schematic of the

recovery process is given in Fig. 2a.

It is important to remark that the injected current

vector p is composed of independent and identically dis-

tributed random O(
√
K) constant excitatory currents

with population scaling such that fE > fI . Although

these external inputs are not homogeneous and there-

fore do not strictly obey Eq. (9), asynchronous and ir-

regular dynamics are statistically well-maintained since

the random inputs have greater expected strength in

the excitatory population, satisfying Eq. (9) on aver-

age for a particular realization of the injected current

vector and likewise across the ensemble of input cur-

rents. Due to the finite network size in simulations, even

when using homogeneous inputs, a certain subset of the

neurons may exhibit unbalanced dynamics for a given

realization of the external drive. However, across suf-

ficiently many random network inputs, there are typi-

cally enough trials for which each neuron demonstrates

irregular dynamics to ultimately facilitate an accurate

reconstruction of recurrent network connectivity infor-

mation.

R

p(2) 

p(1) 

p(r) 

p 

m(1), ̅ (1) 

 

m, ̅ 

m(r), ̅ (r) 

m(2), ̅ (2) 

0 1000 2000 3000 4000 5000

Neuron

0 1000 2000 3000 4000 5000

Neuron

a

b c

Fig. 2 Reconstruction of Recurrent Connectivity. (a)
Schematic of the framework for reconstructing recurrent net-
work connectivity and input data. The network is driven with
an ensemble of r inputs, p(1), . . . ,p(r), where the evoked fir-
ing rates, m(1), . . . ,m(r), and corresponding time-averaged
voltages, v̄(1), . . . , v̄(r), are measured in each case. The de-
rived input-output mapping (5) and recorded data are uti-
lized to reconstruct the recurrent network connectivity ma-
trix, R (indicated by blue arrows). Novel network inputs, akin
to stimuli with detailed structure, p, can then be recovered
(indicated by a red arrow) by measuring the corresponding
evoked neuronal firing rates and time-averaged voltages, fur-
ther utilizing mapping (5) and the reconstructed recurrent
connectivity matrix. (b) Sample row of the recurrent con-
nectivity matrix for a network of 2500 excitatory and 2500
inhibitory neurons. (c) Reconstruction of the corresponding
row of the recurrent connectivity matrix using 3000 inputs
and recording the neuronal dynamics for 2000ms. The corre-
sponding relative reconstruction error is 0.25 and is reduced
to 0.1 if connections are thresholded.
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For each injected current, linear system (5) provides

an input-output map connecting the evoked network

dynamics to the network input and connectivity struc-

ture. First, we consider reconstructing the recurrent

connectivity matrix R, doing so on a row-by-row ba-

sis. To recover the ith row of R, denoted Ri∗, we utilize

the full set of inputs, P =
[
p(1) . . .p(r)

]
, the respective

firing rates of the jth neuron, Mj =
[
m

(1)
j . . .m

(r)
j

]
, for

j = 1, . . . , N , and the respective time-averaged voltages

of the ith neuron only, Vi =
[
v̄
(1)
i . . . v̄

(r)
i

]
.

Aggregating the ith equation of input-output map-

ping (5) across all network inputs yields an r×N linear

system in unknown recurrent connectivity matrix row

Ri∗, having form

Ri∗M = gL
(
Vi − (VRe)i

)
+Mi(V

T −VRe)i−(FP)i∗,

(10)

where matrix M contains the neuronal firing rates across

the network for each external input realization (i.e., vec-

tor Mj is row j of matrix M). Here matrix M is analo-

gous to the sampling matrix in the classical CS theory

framework described in the Appendix, and since the

evoked network firing rate dynamics are very weakly

correlated in the balanced regime, M is sufficiently un-

structured such that it is amenable to compressive sens-

ing sampling. Moreover, since the recurrent connectiv-

ity matrix R and its individual rows are sparse, the

solution to Eq. (10) with minimal `1 norm yields a high

fidelity reconstruction in accordance with CS theory.

Solving all such linear systems for i = 1, . . . , N ulti-

mately yields the reconstruction of the full recurrent

connectivity matrix.

We apply our reconstruction framework to a sam-

ple row of the recurrent connectivity matrix in Fig.

2b-C, depicting the original row and its reconstruc-

tion, respectively. From visual inspection, we see that

the existence of the majority of connections, both ex-

citatory and inhibitory, and their magnitudes are well

captured, with errors primarily manifesting from the

misidentification of small connections. Such extrane-

ous connections, however, could be removed by thresh-

olding the connection strengths in the reconstruction.

To provide a quantitative measure of the reconstruc-

tion accuracy, we use the relative reconstruction error,

‖R−Rrecon‖/‖R‖, and the Frobenius norm for con-

creteness. For a network of 5000 neurons, utilizing only

2000ms of recordings for 3000 random inputs, the re-

constructed row Rrecon produces a relative error of 0.25.

If instead the reconstructed connections were thresh-

olded such that sufficiently small connections were des-

ignated as errors and removed, a yet higher fidelity re-

construction is obtained in general, with a relative er-

ror of 0.1 in the case of our sample row. We remark

that there is no specific enforcement of Dale’s Law or

a priori knowledge of the connection types in the opti-

mization algorithm applied, and nonetheless our recon-

struction framework is largely successful in distinguish-

ing inhibitory and excitatory connections. In strictly

imposing Dale’s Law, sign-constrained optimization al-

gorithms or a priori knowledge of which neurons are in-

hibitory may improve performance (Mishchencko et al.

2011).

It is important to note that in recovering a single

row of R, in addition to measuring the spiking dynam-

ics over the full network, it is necessary to record only

the voltage dynamics of a single neuron corresponding

to the row of interest rather than the voltage of every

neuron in the network. In experiments for which it is

often difficult to take intracellular voltage recordings

of many neurons simultaneously (Xu et al. 2017), re-

covering a large number of afferent connections into a

single neuron may therefore be more feasible than re-

constructing the full recurrent connectivity matrix. To

address this limitation and generalize our methodology

to the full recurrent connectivity matrix in experimen-

tal settings, recently developed near-infrared voltage in-

dicators in combination with optogenetic stimulation

(Adam et al. 2019; Abdelfattah et al. 2019), however,

potentially offer the ability to record the subtreshold

dynamics of neuronal networks in response to carefully

controlled stimuli. As we will demonstrate in the next

section, additional inputs and observation time may

further improve the reconstruction quality, with the effi-

ciency of CS theory generally increasing for larger and

more sparse networks (Barranca et al. 2016a; Candes

et al. 2006).

Analyzing Eq. (5) from a different perspective simi-

larly facilitates the recovery of the network feed-forward

connectivity. To recover the ith row of F, denoted Fi∗,

we aggregate the ith equation of input-output map-

ping (5) across all network inputs to yield r×m linear

system

Fi∗P = gL
(
Vi − (VRe)i

)
+Mi(V

T −VRe)i−(RM)i∗,

(11)

with solution yielding Fi∗. Solving the set of all such lin-

ear systems for i = 1, . . . , N yields the full feed-forward

connectivity. In this case P, the matrix of injected cur-

rents across the external input ensemble, plays the role

of the sampling matrix. Since the external drive is as-

sumed random in our analysis, the sampling matrix in-

deed demonstrates little correlation as necessitated by

CS theory. Similarly, the sparse structure of F facili-

tates efficient recovery.
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In the setting of reconstructing the recurrent net-

work connectivity, we assumed knowledge and control

of the external inputs through experimental design. The

feed-forward connectivity in this particular case is pre-

scribed by an N ×N diagonal matrix F and is chosen

such that Fll = fk scales the strength of the external

input into all neurons in the kth population, isolating

R as the only unknown term in Eq. (10). However, if

the feed-forward and recurrent connectivity are both

unknown, it is generally necessary to eliminate the in-

fluence of one of the two connectivity matrices. If, for

example, the recurrent connectivity is relatively weak or

known, then our methodology yields an accurate recon-

struction of unknown feed-forward connectivity matrix

F of comparable quality to the recurrent connectivity

reconstruction discussed previously.

3.2 Reconstruction Efficiency

In this section, we consider the efficiency of the recon-

struction framework, both in terms of the size of the

input ensemble utilized and the time over which the

neuronal dynamics are recorded. While we determined

the reconstruction of a particular row of the recurrent

connectivity matrix in Fig. 2 for ease of visual compar-

ison, we may consider Eq. (10) for i = 1, . . . , N to re-

construct the entire matrix R and compute its relative

reconstruction error analogously. Though determining

a single row of R required recording all neuronal fir-

ing rates and the membrane potential of a single neu-

ron, the only necessary addition in the data needed for

reconstructing the full recurrent connectivity matrix is

the membrane potential dynamics of the remaining neu-

rons.

To determine the minimal size of the input ensemble

necessary for a viable reconstruction, we plot in Fig. 3a

the relative reconstruction error as the number of in-

put vectors utilized is increased. We observe an initial

rapid decrease in error with input ensemble size, which

saturates once sufficiently many input vectors are uti-

lized. We see that, in comparison to the total number

of connections necessary to recover, a relatively small

input ensemble produces an accurate reconstruction of

R, with further trials yielding only marginal improve-

ments. In particular, reconstructing the entire recurrent

network connectivity using r � N2 inputs injected over

a short observation time of 2s reliably produces recon-

struction errors less than 0.3.

We similarly investigate the necessary observation

time for reconstructing the recurrent connectivity in

Fig. 3b, depicting the relative reconstruction error as a

function of the amount of time over which the neuronal
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Fig. 3 Robustness of Observation Data. (a) Relative
error for the reconstruction of the full recurrent connectivity
matrix as a function of the number of input vectors utilized
in driving the network. (b) Relative error for the reconstruc-
tion of the full recurrent connectivity matrix as a function of
the duration of time over which the neuronal dynamics are
measured for each injected input. The observation time uti-
lized in (a) is 2000ms and the number of inputs utilized in
(b) is 1000. In each case, the network is composed of 1000
excitatory neurons and 1000 inhibitory neurons. (c) Relative
reconstruction error for the recurrent connectivity matrix row
as considered in Fig. 2 with increasingly noisy measurements
of the neuronal dynamics.

dynamics are recorded. We note a precipitous initial

decrease in error with observation time, which levels

off for sufficiently long time horizons. Analogous to the

dependence on input ensemble size, an efficient obser-

vation time can be selected such that further recordings

yield little improvement in reconstruction quality. The

saturation in error with sufficient information regard-

ing the network dynamics suggests that the remaining

error may be a consequence of the finite network size

and corresponding intrinsic error in mapping (5). We

expect that for a larger network, as in experimental
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settings, where the neurons receive orders of magnitude

more connections yet demonstrate sparser overall con-

nectivity than investigated in this work, the dynamics

will yield improved statistics and produce correspond-

ing higher levels of efficiency in their compressive encod-

ing of sparse network information (Candes et al. 2006;

Barranca et al. 2016a).

Considering measurement error in recording neu-

ronal dynamics is a natural source of noise present in ac-

tivity data obtained experimentally (Lutcke et al. 2013;

Williams and Wozny 2011), we address the impact of

noise on the reconstruction quality of our framework. In

recovering the row of the recurrent connectivity matrix

considered in Fig. 2, we subject the voltage measure-

ments to additive Gaussian noise with mean 0 and stan-

dard deviation σ. We observe in Fig. 3c slow growth in

the relative reconstruction error with the noise standard

deviation, producing reconstruction errors less than 0.3

even when σ is approximately 20% of the maximum

neuronal voltage. Hence, in the presence of realistically

strong noise, an accurate reconstruction is achievable.

3.3 Reconstruction of Network Inputs

Assuming the network recurrent connectivity is either

known or weak, we may finally use input-output map-

ping (5) to recover novel network inputs with realistic

structure distinct from the random input vectors uti-

lized to reconstruct the network connectivity. To re-

cover a network input p composed of m components,

we utilize the evoked time-averaged neuronal voltages

and firing rates measured across the network to obtain

N ×m linear system in unknown p

Fp = gL
(
v̄ −VRe

)
+ m

(
VT −VRe

)
−Rm. (12)

For realistic sensory stimuli, p is typically sparse in

an appropriate domain under a sparsifying transforma-

tion L such that p̂ = Lp (Field 1994). In the case of

natural scenes, for example, a host of transformations,

including the discrete versions of the Fourier, cosine,

and wavelet transforms, produce a sparse representa-

tion based on the frequency domain structure of the

image (Haar 1910; Heil and Walnut 1989; Donoho and

Tsaig 2008). While p may not be sparse in its original

representation, if the sparsifying transform is known,

then p = L−1p̂ may be utilized in Eq. (12) to recon-

struct sparse representation p̂ and subsequently obtain

p.

Since F is the sampling matrix in this case, a suf-

ficient degree of randomness in its structure is gener-

ally required for successful recovery of input p. While

experimental measurements indicate feed-forward con-

nectivity is often relatively structured, as in the case
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Fig. 4 Reconstruction of Network Inputs. (a)-(c) In-
jected images. Image (a) is composed of 100 × 100 pixels,
image (b) is composed of 200 × 200 pixels, and image (c) is
composed of 250 × 250 pixels. (d)-(f) Corresponding recon-
structions utilizing a factor of 10 less neurons than pixels.
(g)-(i) Corresponding reconstructions utilizing a factor of 5
less neurons than pixels. The relative reconstruction errors
for (d)-(f) are 0.24, 0.31, and 0.22, respectively. The relative
reconstruction errors for (g)-(i) are 0.16, 0.25 and 0.15, re-
spectively. (j) Relative reconstruction error for image (a) uti-
lizing a factor of 10 less neurons than pixels as a function
of the amount of time over which the neuronal dynamics are
recorded.

of receptive fields, connectivity between network lay-

ers still generally demonstrates some degree of random-

ness and heterogeneity (Wiesel 1960; Hubel and Wiesel

1960; Graziano and Gross 1993; Wilson 2001; Hubel

1995; Sceniak et al. 1999; Drasdo et al. 2007; Bassett

and Bullmore 2006; Humphries et al. 2006). Previous

theoretical analysis demonstrates that sampling matri-

ces exhibiting a mix of localized structure and random-

ness in fact improve upon CS signal recovery relative

to uniformly random sampling for natural stimuli (Bar-

ranca et al. 2016a; Barranca and Zhu 2018), and thus

realistic feed-forward connectivity likely provides a fea-

sible compressive sampling scheme.
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In Fig. 4a-c, we consider three images of various

complexities and numbers of pixel components to gauge

the accuracy of our reconstruction framework for nat-

ural stimuli via Eq. (12). In each case, we assume the

recurrent connectivity is known and the known feed-

forward connectivity matrix is composed of indepen-

dent identically distributed Bernoulli random variable

entries of strength fk for inputs into neurons in the kth

population. We depict in Fig. 4d-f the corresponding

reconstructions using a factor of 10 more pixel compo-

nents than downstream neurons (i.e., m = 10N). We

similarly exhibit in Fig. 4g-i the respective reconstruc-

tions using instead a factor of 5 more pixel compo-

nents in the input stimuli. Since the number of pixel

components to reconstruct is significantly larger than

the number of downstream neurons (i.e., m � N),

each recovery problem is highly underdetermined and

amenable to compressive sensing theory.

For each image, we obtain a recognizable reconstruc-

tion, which is nearly perfect in the case of the simple

dot image. As the number of downstream neurons and

input pixel components becomes more comparable, we

observe improved reconstruction quality. Furthermore,

for images with more pixel components, which gener-

ally have more sparse representations, as in the peppers

image shown in Fig. 4c, we observe greater accuracy

in utilizing compressive sensing theory. This suggests

that the high resolution visual stimuli encountered reg-

ularly by animals in the natural world are in fact highly

compressible, and we posit that the visual system has

evolved to efficiently utilize the sparse representation

of prototypical inputs. Images reconstructed from the

dynamics of a network with the recovered recurrent con-

nectivity Rrecon rather than the true recurrent connec-

tivity R are of comparable quality to those exhibited in

Fig. 4, with generally no more than a 15% difference in

reconstruction error. In light of this, analyzing the en-

coding properties of a reconstructed network may serve

as a faithful surrogate to studying the functionality of

the true network.

To further gauge the efficiency of the recovery frame-

work, in Fig. 4j, we plot the relative reconstruction error

for a sample input image as a function of the amount

of time over which the neuronal dynamics are recorded.

Just as in the case of reconstructing the recurrent net-

work connectivity, the error ultimately saturates for suf-

ficiently long observation time, which in this case is only

approximately 500ms. The short observation time and

relatively high dimensionality of the recovered inputs

indicate stimulus information is effectively encoded by

the network dynamics as is the network structure.

In the early layers of many sensory systems, the

number of downstream neurons is significantly less than

the number of upstream neurons, as reflected in our

reconstructions of natural scenes (Barlow 1981; Buck

1996). For preservation of stimulus information across

networks of such disparate sizes, it is therefore neces-

sary for neuronal network connectivity and dynamics

to facilitate efficient signal processing. We hypothesize

that the sparsity of natural stimuli has resulted in the

selection of a strongly compressive and linear encod-

ing of sensory information. Similarly, the complex net-

work structure commonly found in neuronal connectiv-

ity may further facilitate efficient stimulus encoding by

using a minimal number of neuronal connections and

consequently little energetic resources while rapidly and

accurately processing information (Humphries et al. 2006;

van den Heuvel et al. 2008; Sporns and Honey 2006;

Roxin et al. 2004; Barranca et al. 2019a).

4 Discussion

In the present work, we developed a novel methodology

for reconstructing the recurrent connectivity of model

neuronal networks using limited measurements of neu-

ronal dynamics in response to an ensemble of random

stimuli. The efficiency of our framework was crucially

based on the widespread sparsity of neuronal network

connectivity, utilizing compressive sensing techniques in

conjunction with an embedded linear input-output re-

lationship that we had derived in linking the recorded

neuronal firing rates and voltages to the network in-

puts. Beyond the recurrent network connectivity, the

sparsity of both natural stimuli and feed-forward con-

nectivity furnished their efficient reconstruction using

analogous techniques.
The specific form of the linear mapping we had de-

rived was based on the irregularity of the neuronal dy-

namics in the balanced dynamical regime. If instead

the network were composed of excitatory neurons in

the mean-driven dynamical regime, the expected time-

averaged voltage would be (V Re
E + V T

E )/2 across the

network (Barranca et al. 2016b), which is precisely the

mean of the firing threshold and resting membrane po-

tentials. Therefore, when reverse-engineering network

connectivity in the mean-driven case, it is only neces-

sary to record neuronal firing events and not detailed

voltage dynamics. The limitation, however, is that the

strong feed-forward input generally drowns out the re-

current interactions and consequently makes it feasible

to reconstruct feed-forward connectivity but highly dif-

ficult to reconstruct the recurrent network connectivity.

While we have also verified that our derived map-

ping holds for alternative choices of recurrent connec-

tion strength that produce irregular dynamics, deter-

mining an appropriate embedded input-output relation-
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ship for alternative dynamical regimes would mark an

interesting area for future investigation. In the case of

synchronous dynamics, we observe a marked decrease

in reconstruction accuracy and such a setting would re-

quire an alternative theoretical framework. Prior work

demonstrates that the balanced state yields particularly

accurate connectivity reconstructions, but even when

the network dynamics are not strictly balanced theo-

retically, accurate recovery of recurrent connections is

still achievable when the resultant dynamics are asyn-

chronous (Barranca and Zhou 2019). We particularly

focused on tight and globally balanced dynamics (Hen-

nequin et al. 2017), but since a main theoretical require-

ment of the developed framework stemming from CS

theory is for the neuronal activity to be irregular and

primarily uncorrelated, we anticipate alternative types

of balanced dynamics are amenable. Similarly, though

we assumed no detailed topological structure in the re-

current network connectivity, experimental studies in-

dicate that many brain networks demonstrate small-

world, scale-free, or rich-club structure (Humphries et al.

2006; Massimini et al. 2005; Barranca et al. 2015b;

Markov et al. 2013; Barranca et al. 2015a) and their

connectivity reconstructions are yet to be analogously

addressed.

For additional experimental suitability, it may also

be possible to reconstruct neuronal connectivity using

a similar methodology by injecting external input into

only a subset of neurons in a larger network and then

measuring the response of randomly chosen groups of

neurons across trials. In most experimental settings, un-

observed neurons inject hidden inputs into the recorded

neurons and may potentially result in additional error

in the structural connectivity inferred by our method-

ology (Pillow et al. 2008; Baker et al. 2020), but new

theoretical approaches, such as those used to estimate

the impact of hidden inputs via maximum likelihoods

(Ladenbauer et al. 2019), may provide a means of ac-

counting for the influence of shared connections from

unobserved neurons. The impact of such hidden neu-

rons in combination with potentially strong top-down

inputs, such as those modulating neuronal dynamics in

LGN and V1 (Angelucci and Sainsbury 2006; Sherman

and Guillery 1996), may be viewed together as an ad-

ditional source of the noise reflected in Fig. 3c, which

if sufficiently strong could confound reconstructions.

For analytical and computational tractability, we

considered the reconstruction of network data specifi-

cally in the context of a pulse-coupled integrate-and-fire

neuronal network model, whose linear response prop-

erties have been well documented in the asynchronous

dynamical regime and leveraged in approximating firing

rate statistics as well as characterizing network encod-

ing properties (Lindner et al. 2005; Doiron et al. 2004;

Shea-Brown et al. 2008). In generalizing our frame-

work, it is important to emphasize that alternative,

more detailed, neuron models, such as the Exponential

Integrate-And-Fire and Hodgkin-Huxley models, also

exhibit linear gain in their firing rates in many dynam-

ical regimes (Brunel and Latham 2003; Ostojic et al.

2009; Richardson 2004; Barranca et al. 2014a). This is

also true for recurrently coupled excitatory-inhibitory

spiking networks with conductance-based synapses and

heterogeneous thresholds and has been applied in study-

ing the covariation of pairwise correlations with fir-

ing rate (Barreiro and Ly 2017). We therefore antici-

pate that alternative choices of single neuron models

and synaptic coupling, such as those reflected by al-

pha functions with various rise and decay timescales

(Somers et al. 1995; Cai et al. 2006), are amenable to

our framework upon obtaining linearized input-output

curves across the network.

Similarly, neuronal firing activity measured in ex-

periment often demonstrates a linear increase in re-

sponse with external input strength (Rauch et al. 2003;

La Camera et al. 2006). Thus, once an appropriate lin-

ear input-output mapping is determined through, for

example, fitting a linear mapping to the individual neu-

ronal firing rates across a small set of ramped exter-

nal inputs, it is then feasible to apply our compres-

sive sensing techniques to recover either sparse network

connectivity or input stimuli. Particularly since higher

dimensional signals generally demonstrate more spar-

sity relative to their total number of components, we

expect that for realistic stimuli or network connectiv-

ity matrices with potentially billions or more entries,

a sparsity-based reconstruction will provide yet larger

gains in efficiency as well as accuracy.

The central role of sparsity, demonstrated by both

network connectivity and stimulus structure, in our re-

construction framework underlines the importance of

sparsity in the efficient coding of network information

through evoked neuronal dynamics. It is possible that

cortical circuits may have evolved to efficiently transmit

compressed information based on this very same spar-

sity of natural stimuli, minimizing, for example, energy

consumption while maximizing transmission speed, via

complex neuronal network topologies with sparse con-

nectivity. The precise nature in which neuronal com-

putations interface with this sparse data remains to be

investigated, but it is potentially the case that neurons

intelligently utilize their sparse connectivity structure

in effectively recoding information across network lay-

ers in the brain.
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Appendix: Compressive Sensing Theory

Compressive sensing (CS) theory demonstrates that for sig-
nals with a sparse representation, the number of dominant
components in the sparse domain determines the minimum
sampling rate necessary for an accurate reconstruction. Im-
proving upon conventional signal acquisition theory, which
generally asserts that the sampling rate should instead be de-
termined by the total number of signal components (Shannon
1949), CS theory provides an important new direction for effi-
cient signal sampling and subsequent reconstruction (Donoho
2006; Candes et al. 2006). Considering that common signals
and sensory stimuli, such as scenes, soundwaves, and odor-
ants, as well as network connectivity are sparse in an ap-
propriate domain (Field 1994; Markram et al. 1997; Ganmor
et al. 2011; He et al. 2007), CS theory has amassed numerous
and broad scientific applications (Gross et al. 2010; Lustig
et al. 2007; Dai et al. 2009; Berger et al. 2010).

In developing the mathematical framework for CS theory,
we consider recovering an n-component signal, x, using a set
of weighted linear measurements. Assuming m weighted mea-
surements are utilized, the sampling scheme takes the form
of an m×n sampling matrix, A, such that each row contains
a single weighted measurement. Reconstructing the signal x
thus requires solving linear system Ax = b, where b is the
m-vector obtained from sampling.

To reconstruct the sparsest, and thus most compress-
ible, solution, we must select the x with the minimal num-
ber of non-zero components that satisfies Ax = b. Since
this problem cannot be solved in polynomial time (Bruck-
stein et al. 2009), CS theory demonstrates that minimizing

|x|`1
=

n∑
i=1

|xi| yields a reconstruction equivalent to finding

the sparsest x for a large class of sampling matrices (Candes
and Wakin 2008). The reconstruction thus requires solving

arg min
x∈Rn

|x|`1
subject to Ax = b. (13)

This specific `1 minimization problem can be efficiently solved
using a host of algorithms, such as the orthogonal match-
ing pursuit (OMP), the least angle regression (LARS), and
the least absolute shrinkage and selection operator (LASSO)
methods (Tropp and Gilbert 2007; Donoho and Tsaig 2008),
making the reconstruction computationally feasible even for
relatively large signals. Moreover, if signal x is not sparse
in the sampled domain, but is instead sparse under a trans-
form, L, then the linear system φx̂ = b, where φ = AL−1

and x̂ = Lx, can be considered similarly. In this particular
work, OMP is applied in all reconstructions. The recovered
recurrent connectivity exhibits minor variations when utiliz-
ing other standard optimization algorithms, but the optimal
reconstruction accuracy is comparable in each case.

In determining an appropriate sampling scheme, it is im-
portant to note CS theory demonstrates that sampling matri-
ces exhibiting sufficiently little correlation among their columns
and approximately preserving the magnitude of sampled sig-
nals generally yield successful reconstructions of sparse sig-
nals (Candes and Wakin 2008; Baraniuk 2007). A broad class
of matrices demonstrating randomness in their structure have
been proven to exhibit these properties (Candes et al. 2006;
Candes and Wakin 2008), and there are consequently numer-
ous sampling schemes amenable to CS reconstruction.
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