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K-CLASSES OF BRILL-NOETHER LOCI

AND A DETERMINANTAL FORMULA

DAVE ANDERSON, LINDA CHEN, AND NICOLA TARASCA

Abstract. We compute the Euler characteristic of the structure sheaf of the Brill-Noether locus of
linear series with special vanishing at up to two marked points. When the Brill-Noether number ρ is
zero, we recover the Castelnuovo formula for the number of special linear series on a general curve;
when ρ = 1, we recover the formulas of Eisenbud-Harris, Pirola, and Chan-Mart́ın-Pflueger-Teixidor
for the arithmetic genus of a Brill-Noether curve of special divisors.

These computations are obtained as applications of a new determinantal formula for the K-theory
class of certain degeneracy loci. Our degeneracy locus formula also specializes to new determinantal
expressions for the double Grothendieck polynomials corresponding to 321-avoiding permutations,
and gives double versions of the flagged skew Grothendieck polynomials recently introduced by
Matsumura. Our result extends the formula of Billey-Jockusch-Stanley expressing Schubert poly-
nomials for 321-avoiding permutations as generating functions for flagged skew tableaux.

Given a smooth projective curve C of genus g over an algebraically closed field, the classical
Brill-Noether theorem describes the locus of special line bundles

W r
d (C) =

{
L ∈ Picd(C) |h0(C,L) ≥ r + 1

}
.

A parameter count — reviewed at the end of this introduction — estimates the dimension of W r
d (C)

as ρ = ρ(g, r, d) := g − (r + 1)(g − d + r), and the Brill-Noether theorem states that when C has
general moduli, the locus W r

d (C) is in fact nonempty of dimension ρ whenever ρ ≥ 0. A connection
with degeneracy loci for maps of vector bundles was implicit in the original work by Brill and
Noether, and was brought into focus by Kleiman and Laksov in one of the several modern proofs
of the theorem given in the 1970s.

In this article we prove two main theorems. The first gives a formula for the holomorphic
Euler characteristic (that is, the arithmetic genus) of the Brill-Noether locus — and in fact, for
the generalized Brill-Noether loci parametrizing linear series having specific vanishing profiles at
one or two points. Our results extend the classical computation by Castelnuovo, who studied the
zero-dimensional case ρ = 0; Eisenbud-Harris [EH87] and Pirola [Pir85], who studied the case
ρ = 1; and Chan-Mart́ın-Pflueger-Teixidor [CLMPTiB18], whose remarkable computation uses the
combinatorics of tableaux and the geometry of limit linear series to treat the case when the two-
pointed locus is one-dimensional. As a by-product of our formulas, we obtain a new proof of an
existence criterion for special linear series, originally due to Osserman.

Our genus formulas are deduced from the second main theorem of the article: a new determinan-
tal formula for the K-theory class of a certain type of degeneracy loci. These loci arise naturally

2010 Mathematics Subject Classification. 14H51, 14M15 (primary), 19E20, 05E05 (secondary).
Key words and phrases. Brill-Noether loci, K-theory classes, determinantal formulas, Young diagrams,
double Schubert and Grothendieck polynomials.
DA was partially supported by NSF Grant DMS-1502201.
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2 DAVE ANDERSON, LINDA CHEN, AND NICOLA TARASCA

not only from the Brill-Noether problem, but also in combinatorics — they are built from a class
of permutations called 321-avoiding permutations. As another application of our degeneracy locus
formula, we find new determinantal formulas for families of polynomials occurring in algebraic com-
binatorics known as the double Schubert and double Grothendieck polynomials. These results extend
recent work of Matsumura [Mat19], Hudson-Matsumura [HM18], and Hudson-Ikeda-Matsumura-
Naruse [HIMN17, HIMN20].

Another goal of this work is to highlight the connection between recent developments in Schubert
calculus and the geometry of curves. The results of this paper expand on the fruitful interactions
which led to the growth of both subjects, as discussed extensively in [ACGH85]. On one hand,
an approach to linear series via degeneracy loci unifies, and perhaps simplifies, several results in
Brill-Noether theory — for example, one may compute the Euler characteristic of a one-pointed
Brill-Noether locus by applying the determinantal formula of [HIMN17]. On the other hand,
constructions arising in the study of linear series led us to the geometric proof of the general
determinantal formula presented in §2. It seems natural to expect that further progress can be
made in both subjects by exploiting this bridge.

We now turn to more precise statements of the main results. The locus W r
d (C) of special line

bundles on a smooth curve C has a canonical desingularization by the variety of linear series Gr
d(C),

which parametrizes pairs ℓ = (L, V ) with L ∈ Picd(C) and V ⊆ H0(C,L) an (r + 1)-dimensional
subspace. For a given linear series ℓ and a point P ∈ C, the vanishing sequence of ℓ at P is the
sequence

aℓ(P ) =
(
0 ≤ aℓ0(P ) < aℓ1(P ) < · · · < aℓr(P ) ≤ d

)

of distinct orders of vanishing of sections in V at P .
The two-pointed Brill-Noether locus is defined as follows. Fix two points P and Q on a smooth

curve C. Given sequences of integers

a = (0 ≤ a0 < a1 < · · · < ar ≤ d) and

b = (0 ≤ b0 < b1 < · · · < br ≤ d),

we wish to parametrize linear series ℓ of projective dimension r and degree d on C with aℓ(P )
dominating a, and aℓ(Q) dominating b. That is,

Ga,b
d (C,P,Q) :=

{
ℓ ∈ Gr

d(C) | aℓi(P ) ≥ ai and aℓi(Q) ≥ bi for all 0 ≤ i ≤ r
}
.

We will require the following nontrivial fact about curves as input. The two-pointed Brill-Noether
theorem says that for a general two-pointed curve (C,P,Q) of genus g, the Brill-Noether locus

Ga,b
d (C,P,Q) is either empty or has dimension equal to the two-pointed Brill-Noether number:

ρ := ρ(g, r, d,a, b) = g −
r∑

i=0

(g − d+ ai + br−i).

This was first proved by Eisenbud and Harris using limit linear series and a construction on a
singular curve [EH87, §1]. More recently, explicit examples of smooth two-pointed curves satisfying
the two-pointed Brill-Noether theorem in any genus have been constructed, by studying curves
on decomposable elliptic ruled surfaces [FT17, §2]. In contrast to the situation with Gr

d(C), the

condition ρ ≥ 0 is not sufficient to guarantee that the pointed locus Ga,b
d (C,P,Q) is nonempty.
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A numerical criterion for nonemptiness was given by Osserman [Oss14], and also follows from our
results, see Proposition 5.2.

Our first main theorem computes the holomorphic (sheaf) Euler characteristic of the locus

Ga,b
d (C,P,Q) when this has expected dimension ρ. To state it, we need some more notation.

Given sequences a and b as above, we define two partitions λ and µ by setting

λi = n+ ar+1−i − (r + 1− i), and

µi = n− bi−1 + i− 1− g + d− r

for 1 ≤ i ≤ r + 1, where n is a fixed, sufficiently large nonnegative integer.
Partitions are commonly represented as Young diagrams, so λ is a collection of boxes with λi

boxes in the i-th row. When µi ≤ λi for all i, one has µ ⊆ λ, and one represents the sequence
λi−µi as a skew Young diagram λ/µ (the complement of µ in λ). Borrowing this notation, we will

write |l/m| =
∑r+1

i=1 (li − mi) for any sequences of integers l and m of length r + 1, regardless of
whether li −mi ≥ 0.

Theorem A. Let (C,P,Q) be a smooth two-pointed curve of genus g. If G := Ga,b
d (C,P,Q) has

dimension equal to ρ, then its Euler characteristic is

χ(OG) =
∑

l,m

(
r+1∏

i=1

(
µi

µi −mi

)(
−λi

li − λi

))
g!

∣∣∣∣
1

(li −mj + j − i)!

∣∣∣∣
1≤i,j≤r+1

(1)

the sum being taken over all nonnegative integer sequences l and m such that mi ≤ µi and li ≥ λi

for all i, and such that |l/m| = |λ/µ|+ ρ.

The proof is given in §4. In the statement, the binomial coefficients for a negative integer −s are

given by
(−s
k

)
= −s(−s−1)···(−s−k+1)

k! = (−1)k
(s+k−1

k

)
, for k ≥ 0. Also, the sequences l and m need

not be partitions, and even when they are, l/m need not be a skew Young diagram — indeed, λ/µ
itself may not be skew. However, with a more detailed combinatorial analysis, one can rewrite the
formula so that terms where l and m are partitions are the only ones which contribute to the sum
— see Theorem C.

We now turn to the degeneracy locus formulas. Hudson-Ikeda-Matsumura-Naruse gave a deter-
minantal formula for the K-theory class of the structure sheaf of a Schubert variety in a Grassmann
bundle [HIMN17], and this formula may be applied to obtain the one-pointed case of Theorem A.
The formula of [HIMN17] was subsequently refined in [And19] and [HM18], but the loci considered
by these authors are not sufficient to compute the class of a two-pointed Brill-Noether variety —
so we require a new determinantal formula in K-theory, which is of independent interest. A special
case of our formula is related algebraically to a formula of Matsumura [Mat19].

Here is the general setup. Given decreasing sequences of integers p and q, consider vector bundles

Ept →֒ · · · →֒ Ep1
ϕ
−→ Fq1 ։ · · ·։ Fqt

on a nonsingular variety X, with the ranks indicated by subscripts. The degeneracy locus is

Wp,q =
{
x ∈ X | dimker(Epj → Fqi) ≥ 1 + i− j for all i, j

}
.

From the data p, q, we define partitions λ and µ by

λi = qi − t+ i, µj = pj − (t+ 1− j).
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These partitions are related to the ones associated to the Brill-Noether loci; see the discussion at
the end of this introduction for a special case, and §3 for more detail.

In order for the rank conditions defining Wp,q to be feasible and nontrivial, one should require
λi ≥ µi, so that λ/µ forms a skew Young diagram. The expected codimension of the locus Wp,q

equals |λ/µ|.
We compute the class of Wp,q as a variation of a skew Schur determinant. Given partitions

λ = (λ1 ≥ · · · ≥ λt) and µ = (µ1 ≥ · · · ≥ µt), and doubly indexed series c(i, j) =
∑

m≥0 cm(i, j),
for 1 ≤ i, j ≤ t, let us define the determinant

∆λ/µ(c;β) :=

∣∣∣∣∣∣

∑

k≥0

(
λi − µj + k − 1

k

)
βkcλi−µj+j−i+k(i, j)

∣∣∣∣∣∣
1≤i,j≤t

.

The notation for the entries of this determinant can be condensed by using the operator T which
raises the index of c(i, j), so T k · cm(i, j) = cm+k(i, j). Then

∆λ/µ(c;β) =
∣∣∣(1 − βT )−λi+µjcλi−µj+j−i(i, j)

∣∣∣
1≤i,j≤t

.

When β = 0 and c(i, j) =
∏n

k=1(1− xk)
−1 for all i, j, this is the classical Jacobi-Trudi formula for

the skew Schur function sλ/µ(x).

Theorem B. Assume that λi − µi ≥ 0 for all i, and that W := Wp,q has codimension |λ/µ|. The
class of W in the Grothendieck group of coherent sheaves K◦(X) is

[OW ] = ∆λ/µ(c;−1) · [OX ],

where c(i, j) = cK(Fqi − Epj) is the K-theoretic Chern class.

This is proved in §2, as part (ii) of Theorem 2.1. Part (i) of Theorem 2.1 provides a more general
statement needed for the proof of Theorem A. In fact, all the formulas we prove take place in
the connective K-theory of X, a module over Z[β] which interpolates K-theory (at β = −1) and
Chow groups (at β = 0). So our formulas also specialize directly to cohomology. Moreover, in
Theorem 2.1 we remove the assumption that X is smooth, allowing rational singularities.

There is a general correspondence between degeneracy loci and permutations, as explained in
[Ful92], for example. Our loci Wp,q are exactly those corresponding to 321-avoiding permutations,
i.e., permutations with no decreasing subsequence of length three. Under this correspondence,
the formulas for general degeneracy loci are related to the (double) Schubert polynomials and
Grothendieck polynomials of Lascoux and Schützenberger. Our K-theoretic results therefore give
new determinantal formulas for the double Grothendieck polynomials of 321-avoiding permutations,
extending work by Matsumura [Mat19]. Specializing to cohomology, we recover formulas of Billey-
Jockusch-Stanley [BJS93] and Chen-Li-Louck [CLL02], giving new proofs via geometry. The details,
including the correspondence between (p, q) and 321-avoiding permutations, are described in §6.

In §5, we explain how our results can be phrased in terms of the combinatorics of tableaux. A
row semi-standard Young tableau on a skew diagram λ/µ is a filling of the boxes of λ/µ whose
entries are strictly increasing along rows and weakly decreasing down columns. A strict Young
tableau is a filling whose entries are strictly increasing across each row and down each column. A
standard Young tableau is a strict Young tableau using the numbers 1, . . . , |λ/µ|.

The number of standard Young tableaux on a skew shape λ/µ is denoted by fλ/µ. We will use

αλ/µ to denote the number of row semi-standard Young tableaux on λ/µ whose entries in row i
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are in {1, . . . , λi}; and ζλ/µ for the number of strict Young tableaux whose entries in row i are in
{1, . . . , λi − 1}.

Theorem C. If dimGa,b
d (C,P,Q) = ρ, then the Euler characteristic is

χ
(
O

Ga,b
d

(C,P,Q)

)
=
∑

λ+,µ−

(−1)|λ
+/λ| · αµ/µ−

· ζλ
+/λ · fλ+/µ−

where the sum is over partitions µ− ⊆ µ and λ+ ⊇ λ of length r+1 such that |λ+/µ−| = |λ/µ|+ ρ.

Special cases of Theorem C include Castelnuovo’s formula and the Eisenbud-Harris-Pirola for-
mula. Its proof is given in §5, along with a discussion of other special cases and further connections
to the combinatorics of tableaux. We also establish the one-pointed case of a conjecture of Chan
and Pflueger, expressing χ(OGa

d
(C,P )) as an enumeration of set-valued tableaux.1

To conclude this introduction, we briefly sketch the argument for the classical case of our main
theorem, describing the Euler characteristic of the locus W r

d (C) ⊆ Picd(C). The construction of
W r

d (C) as a degeneracy locus is standard; see [KL74], [ACGH85, §VII], or [Ful98, (14.4.5)].

Fix a point P on a smooth curve C, and let L be a Poincaré bundle on C ×Picd(C), normalized
so that L|{P}×Picd(C) is trivial. Choose a nonnegative integer n large enough so that all divisors

of degree n + d are non-special; any nonnegative n ≥ 2g − 1 − d will do. Writing π1 and π2 for
the projections from C × Picd(C) to C and Picd(C), respectively, let E = π2∗(L⊗ π∗

1OC(nP )) and
F = π2∗(L ⊗ π∗

1OnP ). Then the exact sequence on C

0→ OC → OC(nP )→ OnP → 0

transforms via π2∗(L ⊗ π∗
1(·)) into an exact sequence

0→ π2∗L → E
ϕ
−→ F

on Picd(C). The Brill-Noether variety W r
d (C) is thereby identified with the locus in Picd(C) where

dimker(ϕ) ≥ r + 1.
Since L(nP ) is non-special for all L in Picd(C), Riemann-Roch shows that the sheaf E is locally

free of rank equal to h0(C,L(nP )); that is,

rk(E) = n+ d− g + 1.

The sheaf F is also locally free, of rank

rk(F) = n,

and, in fact, F has a filtration F = Fn ։ Fn−1 ։ · · ·։ F1 = OC with Ker(Fi ։ Fi−1) trivial for
all i — to see this, apply π2∗(L ⊗ π∗

1(·)) to the exact sequence

0→ OP → OnP → O(n−1)P → 0

and use that π2∗(L ⊗ π∗
1(OP )) = OC , from the normalization of L. This means the Chern classes

of F are trivial, so c(F − E) = c(−E).
The Brill-Noether dimension estimate comes from a basic fact about matrices: the locus of q× p

matrices having kernel of dimension at least t has codimension t(q − p + t) inside the affine space

1Chan and Pflueger have now proved their conjecture in the general two-pointed case, expressing χ
(

O
G

a,b
d

(C,P,Q)

)

as an enumeration of set-valued skew tableaux in [CP17].
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of all matrices. (Take t = r + 1, p = n + d − g + 1, and q = n to get the Brill-Noether number.)
Applying the K-theoretic Giambelli formula of [And19] yields

[
OW r

d
(C)

]
=

∣∣∣∣∣∣

∑

k≥0

(
g − d+ r + k − 1

k

)
(−1)kcg−d+r+j−i+k(−E)

∣∣∣∣∣∣
1≤i,j≤r+1

in K(Picd(C)), whenever dimW r
d (C) = ρ(g, r, d). The Euler characteristic formula is then deduced

from Hirzebruch-Riemann-Roch and some linear algebra (see §5).

Acknowledgements. Our initial motivation for this project came from studying [CLMPTiB18] and
[HIMN17], and we thank these authors for their inspiring work. This collaboration began at the
Fields Institute Thematic Program on Combinatorial Algebraic Geometry, and we are grateful to
the organizers and the Institute for providing a stimulating working environment. We would like to
thank Melody Chan for pointing us to [Len00], and Allen Knutson for discussion about intersecting
Schubert varieties. For §6 we borrow the latex code for displaying pipe dreams from [KMY09],
whose original version is credited there to Nantel Bergeron. We are grateful to the anonymous
referees for their careful reading and for numerous suggestions which have resulted in a much
improved manuscript.

1. Background and preliminaries

We begin by reviewing some of the basic facts we will need in proving Theorem B.

1.1. Connective K-theory. Our main theorem about degeneracy loci gives formulas in the con-
nective K-homology of an algebraic variety X. Foundational facts about this theory can be found
in [Cai08, DL14], and briefer digests are in [HIMN17], [HIMN20], and [And19, Appendix A]. The
main features we will require are the following:

(a) The connective K-homology CK∗(X) is a graded module over Z[β], with deg β = 1.

(b) There are Chern classes operators for vector bundles; for a vector bundle E on X, if α ∈
CK∗(X), then ck(E) · α ∈ CK∗−k(X).

(c) Specializing β = 0 and β = −1 induces natural isomorphisms

CK∗(X)/(β = 0) ∼= A∗(X) and CK∗(X)/(β = −1) ∼= K◦(X)

with Chow homology and the Grothendieck group of coherent sheaves, respectively.

(d) There are fundamental classes [Z] ∈ CK∗(X) for closed subvarieties Z ⊆ X, specializing to
[Z] ∈ A∗(X) and [OZ ] ∈ K◦(X).

A degeneracy locus inherits its scheme structure by pullback from a universal degeneracy lo-
cus. In exploiting this, the key statement we need is this (cf. [FP98, Lemma, p. 108] and [DL14,
Theorem 7.4]):

Lemma 1.1. Let f be a morphism from a pure-dimensional Cohen-Macaulay scheme X to a
nonsingular variety Z. Suppose Y ⊆ Z is a Cohen-Macaulay subscheme of pure codimension d.
Then W = f−1Y has codimension ≤ d. If W has pure codimension d in X, then it is Cohen-
Macaulay and [W ] = f∗[Y ] in CK∗(X).
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Proof. Everything except the last statement is contained in [FP98, Lemma, p. 108], and the equality
[W ] = f∗[Y ] is also proved there for cohomology (or Chow) classes. So it suffices to prove this
equality for K-theory, which we do by a slight refinement of the standard argument for cohomology.
Let Γf ⊆ X × Z be the graph of f , so W is identified with Γf ∩ (X × Y ) via the first projection.

If dimZ = m, then the graph Γf ⊆ X × Z is locally cut out by a regular sequence z1, . . . , zm;
that is, the Koszul complex K•(z) is exact and resolves OΓf

. Indeed, there is an exact sequence

0← OΓf
← T ←

∧2 T ← · · · ←
∧m T ← 0,

where T = pr∗2 T
∨
Z is the cotangent bundle of Z, pulled back to X × Z.

Since X × Y is Cohen-Macaulay and W ∼= Γf ∩ (X × Y ) has codimension d+m in X × Z, the
restrictions z1, . . . , zm to X × Y also form a regular sequence. This means the Koszul complex
K•(z) = K•(z) ⊗ OX×Y is also exact, so by restricting the above resolution to X via the graph
morphism, we obtain an exact sequence

0← OW ← T ⊗OX ←
∧2 T ⊗OX ← · · · ←

∧m T ⊗OX ← 0.

Since f∗[OY ] =
∑

i(−1)
i [TorZi (OX ,OY )] by definition, we see that f∗[OY ] = [OX⊗OZ

OY ] = [OW ],
since exactness of the above sequence shows that the higher Tor terms vanish. �

Remark 1.2. In [HIMN17], formulas are proved in connective K-cohomology CK∗(X), under the
hypothesis that X is smooth. The relationship with our more general setup is best described in
the framework of the operational cohomology theory associated to a (generalized oriented Borel-
Moore) homology theory [AP15, GK15]. One can define CK∗ to be the operational cohomology
ring associated to the homology theory CK∗, so that CK∗(X) is defined for any scheme. This is a
graded algebra over Z[β], where now β has degree −1, and CK∗(X) is a module for CK∗(X), with
c ∈ CKi(X) acting as a homomorphism CK∗(X)→ CK∗−i(X).

Specializing at β = 0 and β = −1 produces natural isomorphims

CK∗(X)/(β = 0) ∼= A∗(X) and CK∗(X)/(β = −1) ∼= opK◦(X),

where A∗(X) is the Fulton-MacPherson operational Chow ring, and opK◦(X) is the operational
K-theory developed in [AP15]. When X is smooth, Poincaré isomorphisms show that the opera-
tional CK∗(X) agrees with the connective K-cohomology used in [HIMN17], and that CK∗(X) ∼=
CKdimX−∗(X).

Remark 1.3. Higher connective K-groups are defined and studied in [Cai08] and [DL14]. The
two versions coincide in the part corresponding to the Grothendieck group K◦, but they diverge
in general. Both work in the category of quasi-projective schemes. For an explanation of how to
extend results to general schemes, see [And20]. In particular, one can construct Chern classes using
the projective bundle formula and Grothendieck’s method, as in [Cai08] (and [And19]).

1.2. The degeneracy loci Wp,q and Ωp,q. Now we turn to the degeneracy locus setup. We have
a sequence of vector bundles

Ept →֒ · · · →֒ Ep1 = E
ϕ
−→ F = Fq1 ։ · · ·։ Fqt

on a (now possibly singular) variety X, where subscripts indicate rank, so that

0 < pt < · · · < p1 and q1 > · · · > qt > 0.
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It will be convenient to assume that the flag Ept →֒ · · · →֒ Ep1 extends to a full flag E1 →֒ · · · →֒ Ep1

of sub-bundles of E defined on X, and similarly, the flag Fq1 ։ · · · ։ Fqt extends to a full flag
Fq1 ։ · · ·։ F1 of quotients of F defined on X. This is harmless, as there exists always a full flag
extending a given partial flag, possibly after replacing X with X ′ such that X ′ → X is a tower of
projective bundles, so that CK∗(X) →֒ CK∗(X

′).
Let V := E ⊕ F . The vector bundle V includes isomorphic copies of the sub-bundles E• via the

graph Eϕ of ϕ:
Ept ⊂ · · · ⊂ Ep1 = Eϕ ⊆ V,

and it also comes with natural projections V ։ Fqi for all i.
Our degeneracy loci lie in X, and in a Grassmann bundle over X:

(2)

Ωp,q Gr(t, V )

Wp,q X.

π

The locus Wp,q ⊆ X is defined by the conditions

dimker(Epj → Fqi) ≥ 1 + i− j for all i, j,

where here we usually assume

(∗) qi ≥ pi − 1 for all i.

(Evidently, it suffices to require these conditions only for j ≤ i. Later we will see that the ones for
j = i are enough.)

To define the locus Ωp,q ⊆ Gr(t, V ), let S ⊆ V be the tautological rank t sub-bundle on Gr(t, V ).
(Here V should be understood as π∗V — following a common abuse, we omit notation for such
pullbacks.) Using the inclusions and projections Epj →֒ V ։ Fqi described above, Ωp,q ⊆ Gr(t, V )
is defined by the conditions

dim(S ∩ Epj) ≥ t+ 1− j and dimker(S→ Fqi) ≥ i for all 1 ≤ i, j ≤ t.(3)

No restrictions on p and q are needed here. Note that Ωp,q′ ⊆ Ωp,q if q′i ≥ qi for all i. (And
likewise, Ωp′,q ⊆ Ωp,q if p′j ≤ pj for all j.) From the definition, the fiber of Ωp,q → X over any

point x ∈ X is an intersection of two Schubert varieties in the Grassmannian Gr(t, V |x).

1.3. 321-avoiding permutations. In analyzing the relationship between Ωp,q and Wp,q, we will
need some combinatorics of permutations and Schubert varieties. For any permutation v, there is
a rank function

rv(a, b) := #{i ≤ a | v(i) > b}.

These define Schubert varieties in the flag variety (or a degeneracy locus on any variety with flagged
vector bundles), by imposing conditions

dimker(Ea → Fb) ≥ rv(a, b) for all (a, b).

The Bruhat order on permutations describes containment of Schubert varieties; equivalently, given
two permutations u and v, one has u ≤ v if and only if ru(a, b) ≤ rv(a, b) for all (a, b).

In fact, the above conditions are redundant, and one can find a much shorter list of conditions.
Suppose one has a collection of pairs S = {(ai, bi)}i and corresponding integers ki such that the
set of permutations u satisfying ru(a, b) ≥ ki has a unique minimum v in Bruhat order. Then the
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Schubert variety (or degeneracy locus) corresponding to v is determined (scheme-theoretically) by
the conditions

dimker(Eai → Fbi) ≥ ki for (ai, bi) in S.

One choice of S is given by Fulton’s essential set for the permutation v [Ful92, Lemma 3.10]. For
the permutations arising in our situation, we will use a different choice.

For any p, q, we define an associated permutation w by setting

w(pi) := max{qi + 1, pi} for 1 ≤ i ≤ t,

and then filling in the remaining entries minimally with unused numbers in increasing order. For
example, if p = (5, 4, 1) and q = (5, 2, 1) then

(4) w = 2 1 3 4 6 5.

Given p, q, let us also define a sequence q′ by

q′i = max{qi, pi − 1}.

The associated permutations for p, q and for p, q′ are the same, but note that w(pi) = q′i + 1 for
all i. The new pair p, q′ satisfies (∗) by definition.

In fact, the permutation w is a 321-avoiding permutation (i.e., there are no a < b < c such that
w(c) > w(b) > w(a)), and all 321-avoiding permutations arise this way for some p, q, since any
such permutation is a shuffle of two increasing subsequences (see e.g., [EL95]). More precisely,
w is obtained by shuffling (q′t + 1, . . . , q′1 + 1) with the sequence of left-over numbers. We have
w(pi) = q′i + 1 ≥ pi for all i, and w(p) ≤ p for all p not among the pi. It follows that

(5) rw(pi, q
′
i) = 1 and rw(pi+1, q

′
i) = 0,

which will be useful later, in the proof of Proposition 1.5.
From the construction, one sees that w may also be characterized as the (unique) minimal element

among all u such that ru(pi, q
′
i) ≥ 1, for p, q′ as above.

Lemma 1.4. The permutation w is the unique minimal one in Bruhat order such that

#{p ≤ pi |w(p) > qi} ≥ 1 for all i.

Its length is equal to
∑t

i=1(q
′
i − pi + 1).

The length of w is defined to be #{a < b |w(a) > w(b)}; it is the codimension of the corresponding
Schubert variety in the flag variety. The lemma implies that the conditions specified by p, q are
equivalent to those given by p, q′, that is, Wp,q = Wp,q′ . Its proof is fairly straightforward, since
the condition is trivial whenever qi ≤ pi − 1.

It follows that among the conditions

dimker(Epj → Fqi) ≥ 1 + i− j

defining Wp,q, those with i = j are sufficient.
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1.4. Schubert varieties in flag bundles. Next we consider a special case of the degeneracy locus
problem (which turns out to be the universal situation). We have a variety Y , with a vector bundle
VY of rank p1 + q1 and quotient bundles VY ։ Fqi of ranks qi. Let X = Fl(p, VY ) → Y be the
flag bundle, and let E• be the tautological flag of sub-bundles. As usual, we suppress notation for
pullbacks, writing V = VY and F• for the corresponding bundles on X.

In this setting, the diagram (2) takes the form

(6)

Ωp,q Fl(p, VY )×Y Gr(t, VY )

Wp,q X = Fl(p, VY ).

π̂

The degeneracy locus Wp,q is a Schubert variety in the flag bundle X, so it corresponds to a
permutation; in fact, this is the permutation w of Lemma 1.4.

Proposition 1.5. Assume the above situation, so X = Fl(p, VY ). Given p, q, let q′ be defined as
before, that is, q′i = max{qi, pi − 1}. Then π̂(Ωp,q) = Wp,q′ = Wp,q.

Proof. The statement is local, so in proving it we may reduce to the case where Y is a point. In
this case, X = Fl(p, V ) is a partial flag variety, and Ωp,q ⊆ Fl(p, V )×Gr(t, V ). Let π : Fl(p, V )×
Gr(t, V )→ Fl(p, V ) and φ : Fl(p, V )×Gr(t, V )→ Gr(t, V ) be the projections.

The conditions (3) defining Ωp,q imply that after forgetting the t-dimensional subspace S ⊆ V ,
one has

(7) dimker(Epj → Fqi) ≥ 1 + i− j for all i, j.

By Lemma 1.4, these conditions with i = j imply the rank conditions given by the permutation
w associated to p, q, and thus define the Schubert variety Wp,q′ ⊆ Fl(p, V ). So it follows that
π(Ωp,q) ⊆Wp,q′ .

On the other hand, the projection π : Ωp,q → Wp,q′ is B-equivariant, for the standard action on
Fl(p, V )×Gr(t, V ) of a Borel subgroup B ⊆ GL(V ) fixing the flag F•. To show that π is surjective,
it suffices to show that the fiber is nonempty over a general flag A• in Wp,q′ , i.e., a flag A• such
that

Ki,i := ker(Api → Fq′i
) satisfies dimKi,i = 1 for all i,

and

Ki+1,i := ker(Api+1 → Fq′i
) = 0 for all i.

The dimensions here follow from (5). We see that the vector spaces Ki,i give independent lines,
since Ki+1,i = 0 means Ki,i ∩Api+1 = 0. So

S = K1,1 ⊕K2,2 ⊕ · · · ⊕Kt,t ⊆ Ap1

has dimension t, and S ∩Apj = Kj,j ⊕ · · · ⊕Kt,t has dimension t+1− j. Since there is a surjection
Fq′

i
։ Fqi , one sees ker(S → Fqi) contains K1,1 ⊕ · · · ⊕Ki,i, and therefore has dimension at least i.

We conclude that π(Ωp,q) = Wp,q′ . �

Next we turn to the singularities and dimensions of our degeneracy loci. At this point it will
help to use partition notation. As in the introduction, we define partitions λ and µ by

λi = qi − t+ i and µj = pj − (t+ 1− j).
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The condition (∗) is equivalent to requiring that λi ≥ µi for all i, i.e., λ/µ is a skew shape. We use
the notation λ′ to denote the partition given by λ′

i = q′i − t+ i.

Proposition 1.6. Assuming X = Fl(p, VY ), the locus Ωp,q is reduced (or is Cohen-Macaulay, or
has rational singularities) if Y is reduced (resp., is Cohen-Macaulay, has rational singularities).
The same is true of Wp,q′ .

The dimensions of these loci are dimΩp,q = dimX − |λ|+ |µ| and dimWp,q′ = dimX − |λ′/µ|.

Proof. Again the statements are local on Y (and preserved by products), so we will assume Y is
a point and show that the varieties in question have rational singularities (which implies Cohen-
Macaulay and reduced). Since Wp,q′ is a Schubert variety, it has rational singularities; its codi-
mension is the length of w, which was calculated in Lemma 1.4 and is equal to |λ′/µ|. We focus on
Ωp,q, using a description which will be useful later.

Recall that φ : Fl(p, V )×Gr(t, V )→ Gr(t, V ) is the second projection. Then

Ωp,q = Ω′ ∩ φ−1Ωλ,

where

Ωλ := {S | dimker(S → Fqi) ≥ i for all i} ⊆ Gr(t, V ), and

Ω′ := {(A•, S) | dim(S ∩Apj) ≥ t+ 1− j for all j} ⊆ Fl(p, V )×Gr(t, V ).

Restricting the projections π and φ to Ω′ produces flat morphisms (which we will denote by the
same letter). In fact, they are locally trivial fiber bundles, and we can describe their fibers explicitly.

The fiber of the first projection π : Ω′ → Fl(p, V ) over a flag A• is a Schubert variety Ων(A•) ⊆
Gr(t, V ). Here ν = µ∨ is the complementary partition to µ inside the t × (p1 + q1 − t) rectangle;
specifically, νj = p1 + q1 − t− pt+1−j + j. It follows that

dimΩ′ = dimFl(p, V ) + |µ|,

which we will use again in the proof of Theorem 2.1.
The fiber of the second projection φ : Ω′ → Gr(t, V ) is a Schubert variety in Fl(p, V ). Its

corresponding permutation is the inverse of the Grassmannian permutation for the partition ν. In
particular, intersecting with φ−1Ωλ, the morphism

φ : Ωp,q → Ωλ

is again flat, and both the base and fibers have rational singularities. By [Elk78, Théorème 5], we
conclude that Ωp,q has rational singularities. The formula for dimΩp,q also follows. �

We conclude this section with the following statement:

Proposition 1.7. Assume X = Fl(p, VY ). Given p, q, let q′ be defined as q′i = max{qi, pi − 1}.
When restricted to Ωp,q′ ⊆ Ωp,q, the map π̂ : Ωp,q′ →Wp,q′ is birational.

Proof. As the statement is local on Y , we can reduce to the case where Y is a point. The argument
in the proof of Proposition 1.5 to construct an element S in the fiber of π : Ωp,q → Wp,q′ over a
generic point A• of Wp,q′ shows that ker(S → Fq′i

) = K1,1 ⊕ · · · ⊕ Ki,i, so S ∈ Ωp,q′ is uniquely
determined. It follows that π : Ωp,q′ →Wp,q′ is generically bijective.

Being a Schubert variety, Wp,q′ ⊆ Fl(p, V ) is the closure of a Schubert cell W ◦, which in turn is
a principal homogeneous space for a certain subgroup of B. By Proposition 1.6, Ωp,q′ is reduced.
Since π is B-equivariant, it follows that the restriction π−1(W ◦)→W ◦ is an isomorphism. �
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2. A determinantal formula in K-theory

Now we can state and prove the main theorem. Given doubly indexed series c(i, j) =
∑

m≥0 cm(i, j)
for 1 ≤ i, j ≤ t, we define the determinant

∆λ/µ(c;β) =
∣∣∣(1− βT )−λi+µjcλi−µj+j−i(i, j)

∣∣∣
1≤i,j≤t

=

∣∣∣∣∣∣

∑

k≥0

(
λi − µj + k − 1

k

)
βkcλi−µj+j−i+k(i, j)

∣∣∣∣∣∣
1≤i,j≤t

(8)

as in the introduction. In the statement of the theorem, we return to the general setting, no longer
requiring X to be a flag bundle.

Theorem 2.1. Let X be a variety with rational singularities, and let c(i, j) = cK(Fqi −Epj) be the
K-theoretic Chern classes.

(i) The locus Ωp,q ⊆ Gr(t, V ) has codimΩp,q ≤ |λ/µ|+ t(p1+ q1− t). If equality holds, then Ωp,q

is Cohen-Macaulay, and

π∗[Ωp,q] = ∆λ/µ(c;β) · [X] in CK∗(X).

(ii) Assume λi ≥ µi for all i. Then Wp,q ⊆ X has codimWp,q ≤ |λ/µ|. If equality holds, then
Wp,q is Cohen-Macaulay, and

[Wp,q] = ∆λ/µ(c;β) · [X] in CK∗(X).

The statement in (ii) specializes to Theorem B from the introduction.
In the course of the proof, we require some formulas from [And19]. The first is the determi-

nantal formula for a Grassmannian degeneracy locus. (This appeared originally in [HIMN17], in
a slightly different form.) Let Ωλ be a Grassmannian degeneracy locus, defined by conditions
dimker(Et → Fqi) ≥ i for all i, where λi = qi − t+ i as above. Then

(9) [Ωλ] =
∣∣∣(1− βT )−λicλi+j−i(Fqi − Et)

∣∣∣
1≤i,j≤t

.

Next, the formal determinantal identity used in proving the “general case” of [And19, Theorem 1]
shows that

(10)
∣∣∣(1− βT )−λicλi+j−i(Fqi − Et)

∣∣∣
1≤i,j≤t

=
∣∣∣(1− βT )−λicλi+j−i(Fqi −Et+1−j)

∣∣∣
1≤i,j≤t

.

Finally, suppose we have a tower of projective bundles

(11) P(Ep1/St−1)
π̃(t)

−−→ · · ·
π̃(3)

−−→ P
(
Ept−1/S1

) π̃(2)

−−→ P(Ept)
π̃(1)

−−→ X,

where Sj+1/Sj ⊂ Ept−j
/Sj is the tautological line bundle on the projective bundle P

(
Ept−j

/Sj
)

(suppressing notation for pullbacks of bundles under the natural projections π̃(i), as usual). Then

(12) π̃
(j)
∗

(
(1− βT )−mcm(F − St+1−j)

)
= (1− βT )−m+pj−(t+1−j)cm−pj+t+1−j

(
F − Epj

)

for any bundle F on X and all m. (This is [And19, Eq. (5)].)
In broad strokes, the idea of the proof is simple. As before, we first treat the case where

X = Fl(p, V ) is a flag bundle. There we use the description of Ωp,q as an intersection Ω′ ∩ φ−1Ωλ,
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together with a resolution of Ω′ and the determinantal formula (9) to produce the desired formula.
This case is universal, and we deduce the general case by pullback, using Lemma 1.1.

Now we turn to the details.

Proof of Theorem 2.1. As before, we first suppose X = Fl(p, VY ) → Y is a flag bundle over a
variety Y with rational singularities, so Gr(t, V ) = Fl(p, VY )×Y Gr(t, VY ). In this case, we have
already seen in Proposition 1.6 that the degeneracy loci have the expected codimensions:

codimΩp,q = |λ/µ|+ t(p1 + q1 − t)

and (when the pair p, q satisfies (∗))

codimWp,q = |λ/µ|

in Gr(t, V ) and X, respectively. In Proposition 1.6, we also saw that Ωp,q and Wp,q have rational
singularities, hence they are in particular Cohen-Macaulay.

Recall from the proof of Proposition 1.6 that Ωp,q = Ω′ ∩φ−1Ωλ, and this intersection is proper:
the codimensions of Ω′ and φ−1Ωλ add to that of Ωp,q. In particular, [Ωp,q] = [Ω′] · φ∗[Ωλ].

The locus Ω′ admits a desingularization by the variety Ω̃′ parametrizing flags of sub-bundles
S1 ⊂ S2 ⊂ · · · ⊂ St such that rank(Sj) = j and St+1−j ⊆ Epj . In the tower of projective bundles

(11) this is Ω̃′ = P(Ep1/St−1). The rank t bundle St ⊆ Ep1 ⊂ V on Ω̃′ defines a map

f : Ω̃′ → Ω′ ⊆ Gr(t, V ), (S1 ⊂ S2 ⊂ · · · ⊂ St) 7→ St

which is a desingularization. (This is one of the standard desingularizations of Grassmannian

Schubert varieties, going back to Kempf and Laksov.) Write π′ : Ω̃′ → X for the composition
π′ = π ◦ f .

Since Ω′ has rational singularities, f∗[Ω̃
′] = [Ω′]. By the projection formula, we obtain

f∗f
∗[Ωλ] = [Ω′] · φ∗[Ωλ] = [Ωp,q].

Now we can compute the pushforward as

π∗[Ωp,q] = π∗f∗f
∗φ∗[Ωλ] = π′

∗f
∗φ∗[Ωλ].

The formula (9) for [Ωλ] is preserved under pullback, and we can rewrite it using the identity (10):

f∗φ∗[Ωλ] =
∣∣∣(1− βT )−λicλi+j−i(Fqi − S)

∣∣∣
1≤i,j≤t

=
∣∣∣(1− βT )−λicλi+j−i(Fqi − St+1−j)

∣∣∣
1≤i,j≤t

.

Finally, applying (12) to the entries of the determinant gives

π∗[Ωp,q] = π′
∗

(∣∣∣(1− βT )−λicλi+j−i(Fqi − St+1−j)
∣∣∣
1≤i,j≤t

)

=
∣∣∣(1− βT )−λi+pj−(t+1−j)cλi−pj+(t+1−j)+j−i

(
Fqi − Epj

)∣∣∣
1≤i,j≤t

=
∣∣∣(1− βT )−λi+µjcλi−µj+j−i

(
Fqi − Epj

)∣∣∣
1≤i,j≤t

,

so we have the asserted formula for this locus. When p, q satisfy (∗), that is, qi ≥ pi − 1 for
all i, then by Proposition 1.7 the map π : Ωp,q → Wp,q is birational. Since both loci have rational
singularities, it follows that π∗[Ωp,q] = [Wp,q], and the theorem is proved in this case.
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Now we turn to the general situation where X is an arbitrary variety with rational singularities.
We have the vector bundle V = Ep1 ⊕ Fq1 on X, as usual, and we form the flag bundle Fl =
Fl(p, V )→ X and Grassmann bundle Gr = Gr(t, V )→ X. On Fl, we have the tautological flag

U• : Upt ⊂ · · · ⊂ Up1 ⊂ V

and the flag E• on X determines a section σ : X → Fl such that σ∗(U•) = E•. The universal loci

Wp,q ⊆ Fl and Ωp,q ⊆ Fl×X Gr

are defined by the same conditions defining Wp,q and Ωp,q, respectively, using U• in place of E•.
The situation and notation are summarized in Figure 1.

Ωp,q Fl×X Gr

Ωp,q Gr

Wp,q Fl

Wp,q X

π̂

σ̂

π

σ

Figure 1. The universal loci Wp,q and Ωp,q.

The just-proved case of the theorem applies to these universal loci; in particular, they have
rational singularities (so they are Cohen-Macaulay) and we have the asserted formulas for π̂∗[Ωp,q]
and [Wp,q]. By construction, we have

Wp,q = σ−1(Wp,q) and Ωp,q = σ̂−1(Ωp,q).

Since the loci Ωp,q and Wp,q are Cohen-Macaulay, we may apply Lemma 1.1 to deduce the general
statement of the theorem. �

Remark 2.2. In fact, one can further relax the hypothesis on X, requiring only that it be Cohen-
Macaulay. Instead of using the flag bundle Fl as in the proof of Theorem 2.1, after possibly
replacing X by X ′ for an affine bundle X ′ → X, one can assume that the vector bundles E• and
F• are pulled back from a product of flag varieties

Z = Fl
(
p,CN

)
× Fl

(
CN , q

)

for some sufficiently large N ; here Fl
(
CN , q

)
is the flag variety parametrizing quotients of CN . (See

for example [Gr97].) The loci Wp,q and Ωp,q are then pulled back from Z and a Grassmann bundle
over Z, respectively. Since Z is nonsingular, the formula on Z is then given by Theorem 2.1, so we
can deduce it on X via pullback, using Lemma 1.1 as in the proof of Theorem 2.1 (we require X
to be Cohen-Macaulay to apply Lemma 1.1).
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In the rest of the paper, we will discuss some applications of the degeneracy locus formula. One
of them is a direct generalization of Kleiman and Laksov’s proof of the existence theorem [KL74]:
by standard intersection theory, one can deduce a criterion for non-emptiness of a degeneracy locus
from a formula for its class.

Corollary 2.3. Let p, q, and q′ be as above, so the pair p, q′ satisfies (∗), and let λ′/µ be the skew
diagram corresponding to p, q′. If ∆λ′/µ(c; 0) · [X] 6= 0 in A∗(X), then Wp,q′ is nonempty, and so
Ωp,q is also nonempty.

The converse holds when X is projective: If codimWp,q′ ≥ |λ′/µ| and Wp,q′ (or equivalently,
Ωp,q) is nonempty, then codimWp,q′ = |λ′/µ| and ∆λ′/µ(c; 0) · [X] is nonzero in A∗(X).

3. Varieties of linear series as degeneracy loci

We apply here Theorem 2.1 to the study of the Brill-Noether theory of a smooth algebraic curve
C of genus g. We start by describing the degeneracy locus structure of two-pointed Brill-Noether
varieties. Given a linear series ℓ = (L, V ) in Gr

d(C) and a point P ∈ C, the definition of the
vanishing sequence

aℓ(P ) =
(
0 ≤ aℓ0(P ) < · · · < aℓr(P ) ≤ d

)

from the introduction can be equivalently phrased by saying that aℓ(P ) is the maximal sequence
verifying the condition

dim
(
V ∩H0

(
C,L

(
− aℓr+1−i(P ) · P

)))
≥ i for 1 ≤ i ≤ r + 1.

Fixing two points P and Q in C and two sequences a and b, the variety of linear series Ga,b
d (C,P,Q)

is therefore defined by the conditions

dim
(
V ∩H0(C,L(−ar+1−iP )

)
≥ i

and dim
(
V ∩H0(C,L(−br+1−iQ)

)
≥ i

for all 1 ≤ i ≤ r + 1.(13)

We will construct Ga,b
d (C,P,Q) as a degeneracy locus of type Ωp,q inside a certain Grassmann

bundle π : Gr→ Picd(C), with indices p and q determined below.
The construction generalizes the description of W r

d (C) reviewed in the introduction. As before,
choose n ≥ 0 large enough so that line bundles of degree d + n − br are non-special, that is,
n ≥ 2g− 1− d+ br. Fix a Poincaré line bundle L on C×Picd(C), normalized so that L|{P}×Picd(C)

is trivial. Let π1 and π2 be the projections from C × Picd(C) to C and Picd(C), and set

Ej := (π2)∗(L ⊗ π∗
1OC(nP − bj−1Q)) and

Fi := (π2)∗
(
L ⊗ π∗

1O(n+ar+1−i)P

)

for 1 ≤ i, j ≤ r + 1. The sheaf Ej is a vector bundle of rank

pj := rk(Ej) = n+ d− bj−1 + 1− g,

and Fi is a vector bundle of rank

qi := rk(Fi) = n+ ar+1−i.

One thus obtains a sequence

Er+1 →֒ Er →֒ · · · →֒ E1 =: E
ϕ
−→ F := F1 ։ F2 ։ · · ·։ Fr+1
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of vector bundles over Picd(C).
Define V := E ⊕ F , with natural maps V ։ Fi, and with Ej →֒ V included via the graph of ϕ.

Consider the Grassmann bundle

π : Gr(r + 1,V)→ Picd(C),

and let S be the tautological rank r + 1 sub-bundle on Gr(r + 1,V). The locus in Gr(r + 1,V)
defined by the conditions

dim(S ∩ E1) ≥ r + 1 and dimker(S→ Fi) ≥ i for all i,

coincides with the locus of linear series (L, V ) ∈ Gr
d(C) such that

dim
(
V ∩H0(C,L(−ar+1−iP − b0Q)

)
≥ i for all i.

Imposing the additional conditions

dim(S ∩ Ej) ≥ r + 2− j for all j,

as in (3), one obtains the locus of linear series also satisfying

dim
(
V ∩H0(C,L(−a0P − bj−1Q)

)
≥ r + 2− j for all j,

hence satisfying (13). Thus Ga,b
d (C,P,Q) can be identified with the degeneracy locus Ωp,q ⊆

Gr(r + 1,V).

We now study the image of Ga,b
d (C,P,Q) in Picd(C) via the map π. Let Wa,b

d (C,P,Q) be the

degeneracy locus Wp,q in Picd(C) as in §2, that is,

Wa,b
d (C,P,Q) :=

{
L ∈ Picd(C) | dimker(Ej → Fi) ≥ 1 + i− j

}
.

Equivalently, Wa,b
d (C,P,Q) is the locus of line bundles L ∈ Picd(C) such that

h0(C,L(−ar+1−iP − bj−1Q)) ≥ 1 + i− j for all i, j.

Recall the definition of the two partitions λ and µ associated to the data g, d,a, b:

λi := n+ ar+1−i − (r + 1− i)

µi := n− bi−1 + i− 1− g + d− r
for 1 ≤ i ≤ r + 1.

From Proposition 1.7, when λ/µ is a skew shape, one has π(Ga,b
d (C,P,Q)) = Wa,b

d (C,P,Q), and in

this case π : Ga,b
d (C,P,Q)→Wa,b

d (C,P,Q) is birational. In general, let a′ be the sequence defined
as

a′i := ai +max{0, d− g − ai − br−i} for all i.

The diagram λ′/µ is a skew shape by construction, where

λ′
i = n+ a′r+1−i − (r + 1− i) for all i.

If λ/µ is already a skew shape, then a′ = a and λ′ = λ. We have the following diagram

Ga,b
d (C,P,Q) Gr(r + 1,V)

Wa′,b
d (C,P,Q) Picd(C)

π

fitting into the framework studied in §2, so we can apply Theorem 2.1.
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Since the vector bundles Fi have trivial Chern classes and therefore the K-theoretic Chern classes
c(i, j) = cK(Fi − Ej) are equal to cK(−Ej), the determinantal formula in (8) gives

∆λ/µ(c;β) =
∣∣∣(1− βT )−λi+µjcKλi−µj+j−i(−Ej)

∣∣∣
1≤i,j≤r+1

=

∣∣∣∣∣∣

∑

k≥0

(
λi − µj + k − 1

k

)
βkcKλi−µj+j−i+k(−Ej)

∣∣∣∣∣∣
1≤i,j≤r+1

.
(14)

Recall that the expected dimension of the pointed Brill-Noether locus Ga,b
d (C,P,Q) is

ρ(g, r, d,a, b) = g −
r∑

i=0

(g − d+ ai + br−i) = g − |λ/µ|.

Assume thatGa,b
d (C,P,Q) has dimension equal to ρ. Then by Theorem 2.1 it is Cohen-Macaulay and

π∗

[
Ga,b

d (C,P,Q)
]
= ∆λ/µ(c;β) in CK∗

(
Picd(C)

)
.(15)

Similarly, assume λ/µ is a skew shape. If Wa,b
d (C,P,Q) has dimension equal to ρ, then it is

Cohen-Macaulay, and has class given by (14) in CK∗
(
Picd(C)

)
.

The determinant in (14) will be further manipulated in §4. We conclude this section with the
following statement:

Proposition 3.1. Let (C,P,Q) be any smooth two-pointed curve of genus g. If both Ga,b
d (C,P,Q)

and Wa′,b
d (C,P,Q) have the expected codimension, then they are Cohen-Macaulay and

π∗

[
Ga,b

d (C,P,Q)
]
= (−β)|a

′|−|a|∆λ′/µ(c;β)

= (−β)|a
′|−|a|

[
Wa′,b

d (C,P,Q)
]

in CK∗
(
Picd(C)

)
.

Proof. For the first equality, we start by observing that for partitions λ and µ, the determinant
|cKλi−µj+j−i| vanishes, unless λ/µ is a skew shape. Indeed, if λk < µk for some k, then the matrix

is singular, since it has 0 in position (i, j), for all i ≥ k ≥ j. Using (15), the entries of the
determinants ∆λ/µ(c;β) and ∆λ′/µ(c;β) from (14) differ in those bottom rows i where λi < µi. For
∆λ′/µ(c;β), such rows have entries equal to 1 in position (i, i), and 0 in position (i, j), for j < i.
For ∆λ/µ(c;β), expanding by linearity in these bottom rows, one has vanishing contributions by
the above observation, unless for each such row i, one considers the term with k = −λi + µi. It
follows that the nonzero contribution to the left-hand side is given by the determinant with entries
equal to (−β)−λi+µi in position (i, i), and 0 in position (i, j), for j < i. The first equality follows
since −λi + µi = a′i − ai, for each i such that λi < µi. The second equality follows from Theorem
2.1 and the fact that λ′/µ is a skew shape. �

Remark 3.2. When b = (0, . . . , r), the two-pointed Brill-Noether varieties specialize to the one-
pointed Brill-Noether varieties Ga

d (C,P ) and Wa
d (C,P ) which parametrize respectively linear series

and line bundles on C with imposed vanishing sequence a at a single point P . In this case, the role
of the flag of sub-bundles of E is redundant in the above construction, as it is enough to consider
maps from E to the flag of quotients of F . With this description in place, the degeneracy locus
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formula from [HIMN17] suffices to compute the K-theory class π∗[G
a
d (C,P )]. Explicit computations

in the one-pointed case will be given in §§5.2 and 5.3.

4. Euler characteristics

Our next goal is to give a formula for the Euler characteristic of the two-pointed Brill-Noether

loci Ga,b
d (C,P,Q). In order to simplify the determinantal formula (14) for the K-classes of varieties

of linear series, we prove some general lemmas on K-theoretic Chern classes and apply them to the
bundles Ei in §3.

Throughout this section, we specialize at β = −1, and take all Chow and numerical groups with
coefficients in Q.

Lemma 4.1. Suppose a rank-r vector bundle E has ch(E)i = 0 for i > 1. Then ch
(
cKi (E)

)
= ci(E).

That is, if the Chern character of E is ch(E) = r + c1(E), then K-theory Chern classes agree
with cohomology Chern classes under the Chern character isomorphism.

Proof. First recall that the Chern class of a line bundle has Chern character ch
(
cK1 (L)

)
= 1−e−c1(L),

where ex is the formal power series
∑

k≥0
xk

k! . Now let L1, . . . , Lr be the K-theoretic Chern roots

of E, i.e., line bundle classes so that cK(E) = cK(L1) · · · c
K(Lr). Then

ch
(
cKi (E)

)
= ch

(
ei
(
cK1 (L1), . . . , c

K
1 (Lr)

))

= ei
(
ch
(
cK1 (L1)

)
, . . . , ch

(
cK1 (Lr)

))

= ei

(
1− e−c1(L1), . . . , 1− e−c1(Lr)

)
,

where ei(x1, . . . , xr) is the i-th elementary symmetric polynomial. The lowest-degree term in the
last line is equal to ci(E). The higher-degree terms vanish, thanks to the hypothesis ch(E)i = 0,
for i > 1, and Lemma 4.2. �

Given formal variables x1, . . . , xn, let ei(x1, . . . , xn) be the i-th elementary symmetric polynomial,
and let pi(x1, . . . , xn) := xi1 + · · ·+ xin be the i-th power sum symmetric polynomial.

Lemma 4.2. Consider the ideal I := (p2, . . . , pn)+(x1, . . . , xn)
n+1 in QJx1, . . . , xnK. For 1 ≤ i ≤ n,

one has

ei
(
1− e−x1 , . . . , 1− e−xn

)
≡ ei(x1, . . . , xn) modulo I.

Proof. Write ei := ei(x1, . . . , xn) and ei := ei(1− e−x1 , . . . , 1− e−xn), and similarly, write pi :=
pi(x1, . . . , xn) and pi := pi(1− e−x1 , . . . , 1− e−xn). Since

p1
(
1− e−x1 , . . . , 1− e−xn

)
=
∑

k≥1

(−1)k−1 pk
k!

and pk ∈ (x1, . . . , xn)
n+1 for k > n, we have p1 ≡ p1 modulo I. It follows from Newton’s identities

that

ei ≡
pi1
i!

mod (p2, . . . , pn) and ei ≡
pi1
i!

mod (p2, . . . , pn)

for 1 ≤ i ≤ n. Since p2, . . . , pn ∈ I, we conclude that ei ≡
pi1
i!
≡

pi1
i!
≡ ei mod I, for each i. �
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Let (C,P,Q) be a smooth two-pointed curve of genus g, and consider the vector bundles Ei from
§3. Lemma 4.1 applies to these bundles. Indeed, modulo numerical (or homological) equivalence,
the Chern classes of −Ei are

cj(−Ei) =
θj

j!
,

where θ is the cohomology class of the theta divisor. (The proof given in [ACGH85, §VII] is for
singular cohomology, but it works as well in numerical or homological equivalence.) Equivalently,
ch(−Ei) = rank(−Ei) + θ. We therefore have

ch
(
cKj (−Ei)

)
=

θj

j!
.(16)

Now we can compute the Euler characteristic of the loci Ga,b
d (C,P,Q) via Hirzebruch-Riemann-

Roch. The Todd class of Picd(C) is trivial, so

χ
(
O

Ga,b

d
(C,P,Q)

)
=

∫

Picd(C)
ch
(
π∗

[
O

Ga,b

d
(C,P,Q)

])
.

Combining (15) and (16) with the specialization of (14) at β = −1, the Euler characteristic is

χ
(
O

Ga,b
d

(C,P,Q)

)
=

∫

Picd(C)

∣∣∣(1 + T )−g+d−ar+1−i−bj−1+j−icg−d+ar+1−i+bj−1

∣∣∣
1≤i,j≤r+1

.(17)

From the Poincaré formula
∫
θg = g!, it follows that the Euler characteristic is g! times the coefficient

of θg in the expansion of the determinant. The next step is to analyze this expansion.
Let ρ := ρ(g, r, d,a, b), and recall that

λi − µj + j − i = g − d+ ar+1−i + bj−1.

If we expand the operators (1+T )−λi+µj in powers of T , the constant term is the cohomology class
∣∣cλi−µj+j−i

∣∣
1≤i,j≤r+1

,(18)

and is a multiple of θg−ρ (possibly zero). The determinant in (17) is obtained by applying the
operator (1+T )µj to the j-th column of the matrix in (18), and the operator (1+T )−λi to its i-th

row. With binomial coefficients for negative integers −s given by
(−s

k

)
= −s(−s−1)···(−s−k+1)

k! , for
k ≥ 0, we have by linearity:

∑

|l/m|=|λ/µ|+ρ

(
r+1∏

i=1

(
µi

µi −mi

)(
−λi

li − λi

))∣∣∣T li−λi+µj−mjcλi−µj+j−i

∣∣∣
1≤i,j≤r+1

,

the sum being over all sequences l and m with li ≥ λi and mi ≤ µi. (Here l and m are not required
to be partitions, but we still use the notation |l/m| =

∑
(li −mi).)

This proves Theorem A. More precisely, we have proved:

Theorem 4.3. Let (C,P,Q) be any smooth two-pointed curve of genus g. If Ga,b
d (C,P,Q) has

dimension equal to ρ, then the Euler characteristic χ
(
O

Ga,b
d

(C,P,Q)

)
equals

∑

|l/m|=|λ/µ|+ρ

g!

(
r+1∏

i=1

(
µi

µi −mi

)(
−λi

li − λi

))∣∣∣∣
1

(li −mj + j − i)!

∣∣∣∣
1≤i,j≤r+1

.
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Assume furthermore that λi ≥ µi for all i. If Wa,b
d (C,P,Q) has dimension equal to ρ, then

χ
(
O

Wa,b
d

(C,P,Q)

)
= χ

(
O

Ga,b
d

(C,P,Q)

)
.

5. Determinantal and tableau formulas

In this section, we will give a simplified expression for the Euler characteristic of the loci

Ga,b
d (C,P,Q), expressing it as a weighted enumeration of standard Young tableaux, by performing

a combinatorial analysis of the sum. Along the way, we find a nonemptiness criterion for these loci,
stated in Proposition 5.2. Then we examine several special cases of particular interest.

We use the convention that a partition λ corresponds to the shape with λi boxes in the i-th
row, where rows are indexed from top to bottom. There is a containment of shapes µ ⊆ λ when
two partitions λ and µ satisfy λi ≥ µi for all i. The skew Young diagram λ/µ is represented as
the complement of µ in λ. A standard Young tableau on a skew shape λ/µ is a filling of the boxes
of λ/µ by numbers 1, . . . , |λ/µ| such that the entries in each row and in each column are strictly
increasing. The number of standard Young tableaux on λ/µ is commonly denoted by fλ/µ, and is
given by the determinantal formula

(19) fλ/µ = |λ/µ|!

∣∣∣∣
1

(λi − µj + j − i)!

∣∣∣∣
1≤i,j≤r+1

(see [Ait43]). For example, for λ = (3, 1), µ = (1, 0), one has

λ/µ = and fλ/µ = 3!

∣∣∣∣∣∣

1

2!

1

4!

0 1

∣∣∣∣∣∣
= 3.

We extend the above notation to arbitrary sequences l = (l1, . . . , lr+1) and m = (m1, . . . ,mr+1)
of nonnegative integers, writing l/m for a “generalized skew diagram” — note that we allow the
differences li −mi to be negative. Extending the notation for skew shapes, we will write

|l/m| :=
r+1∑

i=1

(li −mi)

and

(20) f l/m := |l/m|!

∣∣∣∣
1

(li −mj + j − i)!

∣∣∣∣
1≤i,j≤r+1

.

There are two basic facts underpinning our arguments in this section:

Fact 1. Suppose λ and µ are partitions of length r + 1. Then

fλ/µ = |λ/µ|!

∣∣∣∣
1

(λi − µj + j − i)!

∣∣∣∣
1≤i,j≤r+1

is nonzero if and only if λi ≥ µi for all i. (Here one should read reciprocals of factorials of
negative integers as 0.)
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Fact 2. Suppose λ = (λ1, . . . , λr+1) is a partition, and l = (l1, . . . , lr+1) is any sequence of nonneg-
ative integers such that li ≥ λi for all i. If the sequence (l1 − 1, . . . , lr+1 − (r+1)) consists
of distinct integers, and w is the permutation which sorts them into decreasing order, then
the sequence λ+

i = lw(i) − w(i) + i is a partition with λ+
i ≥ λi for all i.

Proof of Theorem C. We can rewrite the formula of Theorem 4.3 as

χ
(
O

Ga,b

d
(C,P,Q)

)
=

∑

|l/m|=|λ/µ|+ρ

(
r+1∏

i=1

(
µi

µi −mi

)(
−λi

li − λi

))
f l/m

=
∑

|l/m|=|λ/µ|+ρ

(
r+1∏

i=1

(
µi

µi −mi

)(
li − 1

li − λi

))
(−1)|l/λ|f l/m,(21)

since |λ/µ|+ρ = g. (Recall that the sums are over sequences l and m such that li ≥ λi and mi ≤ µi

for all i.)
When the determinant

1

|l/m|!
f l/m =

∣∣∣∣
1

(li −mj + j − i)!

∣∣∣∣
1≤i<j≤r+1

is nonzero, there is a unique permutation w ∈ Sr+1 acting on the columns of the matrix which sorts
the entries across rows into decreasing order; equivalently,

(22) µ−
j := mw(j) + j − w(j)

defines a partition µ− ⊆ µ, using a variation of Fact 2. Then f l/m = (−1)sgn(w) f l/µ−

, and collecting
terms gives

(23) χ
(
O

Ga,b
d

(C,P,Q)

)
=
∑

µ−⊆µ

αµ/µ−

(
r+1∏

i=1

(
li − 1

li − λi

))
(−1)|l/λ|f l/µ−

,

where the sum is over partitions µ− ⊆ µ and sequences l = (l1, . . . , lr+1) of nonnegative integers
such that li ≥ λi for all i, |µ/µ

−|+ |l/λ| = ρ, and

αµ/µ−

:=
∑

w∈Sr+1

(−1)sgn(w)




r+1∏

j=1

(
µw(j)

µw(j) − µ−
j + j − w(j)

)


=

∣∣∣∣∣

(
µi

µi − µ−
j + j − i

)∣∣∣∣∣
1≤i,j≤r+1

.(24)

Similarly, using Fact 2 again, when the determinant

1

|l/µ−|!
f l/µ−

=

∣∣∣∣∣
1

(li − µ−
j + j − i)!

∣∣∣∣∣
1≤i<j≤r+1

is nonzero, there is a unique permutation w ∈ Sr+1 acting on the rows which sorts the entries into
decreasing order down columns. Equivalently,

(25) λ+
i := lw(i) − w(i) + i, for 1 ≤ i ≤ r + 1,



22 DAVE ANDERSON, LINDA CHEN, AND NICOLA TARASCA

defines a partition λ+ ⊇ λ. Then f l/µ−

= (−1)sgn(w) fλ+/µ−

. Collecting terms gives

(26)

(
r+1∏

i=1

(
li − 1

li − λi

))
f l/µ−

=
∑

λ+⊇λ

ζλ
+/λ · fλ+/µ−

,

where the sum is over partitions λ+ of length r + 1 (so λ+/µ− is a skew diagram) such that
|λ+/λ| = |l/λ|, and

ζλ
+/λ :=

∑

w∈Sr+1

(−1)sgn(w)

(
r+1∏

i=1

(
λ+
i + w(i) − i− 1

λ+
i − λw(i) + w(i) − i

))

=

∣∣∣∣
(
λ+
i + j − i− 1

λ+
i − λj + j − i

)∣∣∣∣
1≤i,j≤r+1

.(27)

The binomial determinants αµ/µ−

and ζλ
+/λ enumerate tableaux, by the method of Gessel-

Viennot. A (column) semi-standard Young tableau on a given shape is a filling of the boxes by
positive integers such that the entries are weakly increasing across each row and strictly increasing
down each column. A filling is a row semi-standard Young tableau if the transpose condition holds:
the entries are strictly increasing across each row and weakly increasing down each column. A
strict Young tableau is a filling whose entries are strictly increasing across each row and down each
column.

By [GV89, Theorem 14], the determinant αµ/µ−

is equal to the number of row semi-standard
Young tableaux on µ/µ− whose entries in row i are between 1 and µi, inclusive, and the determinant

ζλ
+/λ is equal to the number of semi-standard Young tableaux on λ+/λ whose entries in row i are

between −λi and −1, inclusive. Such tableaux are in bijection with strict Young tableaux on λ+/λ
whose entries in row i are between 1 and λ+

i − 1: given a semi-standard tableau on λ+/λ with i-th
row entries in {−λi, . . . ,−1}, add to each entry the index of its column to obtain a strict tableau
with i-th row entries in {1, . . . , λ+

i − 1}. Combining equations (23) and (26) concludes the proof of
Theorem C. �

Next we will prove a nonemptiness criterion for the variety Ga,b
d (C,P,Q), using Corollary 2.3.

By setting β = 0 in (15), and passing to numerical equivalence, we obtain a variation on the formula
for the cohomology class of W r

d (C):

Proposition 5.1. Let (C,P,Q) be a smooth two-pointed curve of genus g. If λi ≥ µi for all i and

Wa,b
d (C,P,Q) has dimension equal to ρ, then its numerical class is

[
Wa,b

d (C,P,Q)
]
=

∣∣∣∣
1

(ar−i + bj + g − d)!

∣∣∣∣
0≤i,j≤r

θg−ρ.

If Ga,b
d (C,P,Q) has dimension equal to ρ, then π∗[G

a,b
d (C,P,Q)] equals [Wa,b

d (C,P,Q)] when
λ/µ is a skew diagram, and vanishes otherwise.

In comparing with (15), note the shift of indexing of the matrix, and recall that the definitions of
λ and µ imply λi−µj+ j− i = ar+1−i+ bj−1+ g−d. The vanishing statement follows algebraically

from Fact 1, or geometrically from the fact that dimπ(Ga,b
d (C,P,Q)) < dim(Ga,b

d (C,P,Q)), unless
λ/µ is a skew diagram; see also the specialization of Proposition 3.1 at β = 0.

Now we can state the nonemptiness criterion.
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Proposition 5.2. Let (C,P,Q) be a smooth two-pointed curve of genus g. If

ρ′ := g −
r∑

i=0

max{0, ai + br−i + g − d} ≥ 0,(28)

then the locus of special linear series Ga,b
d (C,P,Q) is non-empty.

This was first proved by Osserman, using degeneration techniques [Oss14]. When b = (0, 1, . . . , r),
it recovers the statement for the one-pointed case in [EH87, Proposition 1.2].

Proof. The nonemptiness of Ga,b
d (C,P,Q) is equivalent to the nonemptiness of its image W =

Wa′,b
d (C,P,Q) in Picd(C). By Corollary 2.3, W is nonempty when the class ∆λ′/µ(c; 0) is nonzero.

By Proposition 5.1, this class is numerically equivalent to

(29)

∣∣∣∣
1

(a′r−i + bj + g − d)!

∣∣∣∣
0≤i,j≤r

θg−ρ′,

where, as before, a′ is the sequence defined by

a′i := ai +max{0, d − g − ai − br−i}.

This means ρ′ = ρ(g, r, d,a′, b).
Associating partitions λ′ and µ to the data g, d,a′, b as usual, the definition of a′ guarantees

that λ′
i ≥ µi for all i. It follows that the determinantal coefficient is nonzero (see Fact 1), so the

expression (29) is nonzero if and only if ρ′ ≥ 0. This is equivalent to the condition in (28). �

Now we turn to some special cases.

5.1. The curve case. Let us write λ+ ǫi for the diagram obtained by adding one box to the right
of the i-th row of λ, and µ− ǫi for the diagram obtained by subtracting one box from the i-th row
of µ. (This means the diagram λ/(µ− ǫi) is obtained by adding one box to the left of the i-th row
of λ/µ.)

Now assume ρ(g, r, d,a, b) = 1. The reformulation in (21) of Theorem A reduces to

χ
(
O

Ga,b
d

(C,P,Q)

)
=

r+1∑

i=1

µi f
λ/(µ−ǫi) −

r+1∑

i=1

λi f
(λ+ǫi)/µ.

By Fact 1, fλ/(µ−ǫi) vanishes when λ/(µ − ǫi) is not a skew diagram, and f (λ+ǫi)/µ vanishes when
(λ+ ǫi)/µ is not a skew diagram. Using the identity

(r + 1)(|λ/µ| + 1)fλ/µ =

r+1∑

i=1

(λi + r + 2− i)f (λ+ǫi)/µ −
r+1∑

i=1

(µi + r + 1− i)fλ/(µ−ǫi),

for the number of standard skew Young tableaux, we recover [CLMPTiB18, Theorem 1.2].
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5.2. The one-pointed case. When b = (0, . . . , r), the locus Ga,b
d (C,P,Q) is identical to the

one-pointed locus

Ga
d (C,P ) :=

{
ℓ ∈ Gr

d(C) |aℓ(P ) ≥ a

}
.

On the other hand, when the points P and Q collide together on the curve C, the locus Ga,b
d (C,P,Q)

specializes to the locus of linear series (L, V ) ∈ Gr
d(C) such that

dim
(
V ∩H0(L(−(ai + br−j)P ))

)
≥ 1 + j − i.

Fix l such that li ≥ λi and |l/λ| = ρ. By an application of the Vandermonde identity,
∣∣∣∣

θli+j−i

(li + j − i)!

∣∣∣∣
1≤i,j≤r+1

= g!

∏
1≤i<j≤r+1(li − lj + j − i)
∏r+1

i=1 (li + r + 1− i)!
,

so Theorem A reduces to

χ
(
OGa

d
(C,P )

)
=

∑

|l/λ|=ρ

(
−λ1

l1 − λ1

)
· · ·

(
−λr+1

lr+1 − λr+1

)
× g!

∏
1≤i<j≤r+1(li − lj + j − i)
∏r+1

i=1 (li + r + 1− i)!
.

When in addition ρ(g, r, d,a, b) = 1, this sum becomes

χ
(
OGa

d
(C,P )

)
= −g!

r∑

k=0

(g − d+ r + ak − k)

∏
0≤i<j≤r(aj − ai + δkj − δki )∏r
i=0(g − d+ r + ai + δki )!

,

where δ is the Kronecker delta.

5.3. Set-valued tableaux and the one-pointed case. In the one-pointed case, we can re-write
the Euler characteristic in terms of numbers of certain tableaux. A set-valued tableau on a shape
λ is a labelling of the boxes of λ by finite non-empty subsets of N such that the maximum element
of the label of any box (i, j) is at most the minimum element of the label at (i, j + 1), and smaller
than the minimum element of the label at (i+1, j) (see [Buc02]). Given a nonnegative integer ρ, a
ρ-standard set-valued tableau on λ is a set-valued tableau on λ such that the labels of the boxes of
λ are subsets of {1, . . . , |λ|+ ρ} and each of 1, . . . , |λ| + ρ appears exactly once. (See §6 for more
about set-valued tableaux and the connection with Grothendieck polynomials.)

Chan and Pflueger conjectured a formula expressing the Euler characteristic of a two-pointed
Brill-Noether locus via set-valued tableaux on a skew shape. The following establishes the one-
pointed version of their conjecture.2

Corollary 5.3. Suppose dimGa
d (C,P ) = ρ, and let λ be the partition corresponding to a. Then

χ
(
OGa

d
(C,P )

)
= (−1)ρ ·#{ρ-standard set-valued tableaux on λ}.

This is zero if and only if Wa
d (C,P ) = Picd(C).

Proof. In the one-pointed case, Theorem C becomes

χ
(
OGa

d
(C,P )

)
= (−1)ρ

∑

|λ+/λ|=ρ

ζλ
+/λ · fλ+

,

so we must identify the sum on the RHS with the number of ρ-standard set-valued tableaux on λ.

2Chan and Pflueger have now proved their conjecture using different methods in [CP17].
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For any partition ν, it follows from a theorem of Lenart [Len00, Theorem 2.2] that3

#{ρ-standard set-valued tableaux on ν} =
∑

|ν+/ν|=ρ

gν
+/νf ν+,

where gν
+/ν is the number of strict Young tableaux on ν+/ν whose entries in row i are between 1

and i−1, inclusive, and f ν+ is the number of standard Young tableaux on ν+. (To deduce this from
Lenart’s theorem, which writes the Grothendieck polynomial for ν as a sum of Schur polynomials,
compare the coefficient of the monomial x1 · · · x|ν|+ρ on each side of his formula.)

Our claim follows by taking ν to be the conjugate partition λ′, i.e., the diagram obtained by
reflecting across the diagonal, so that rows and columns are interchanged. It is easy to see that
ρ-standard set valued tableaux on λ and ν are in bijection. Similarly, standard Young tableaux on

λ+ and ν+ = (λ+)′ are also in bijection, so fλ+
= f ν+. Finally, ζλ

+/λ = gν
+/ν , for ν = λ′ and

ν+ = (λ+)′, because sending a tableau T to its conjugate T ′ defines a bijection from strict tableaux
on λ+/λ with i-th row entries in {1, . . . , λ+

i − 1} to strict tableaux on ν+/ν with i-th row entries
in {1, . . . , i− 1}. �

5.4. The classical case. Here there are no point conditions, and in the formulas one can take
µ = ∅, and let λ = (g − d + r)r+1 be the rectangular shape. Any partition λ+ ⊇ λ of length r + 1

can be written as λ+ γ, for some partition γ of length r+1. The determinant ζλ
+/λ can therefore

be written as

ζλ
+/λ =

∣∣∣∣
(g − d+ r + γi + j − i− 1)γi+j−i

(γi + j − i)!

∣∣∣∣
1≤i,j≤r+1

,

where (n)k = n(n − 1) · · · (n + 1 − k) is the falling factorial. Manipulating the matrix leads to a
factorization of this determinant as

∣∣∣∣
1

(γi + j − i)!

∣∣∣∣
1≤i,j≤r+1

·
r+1∏

i=1

(g − d+ r + γi − i)γi .

Applying this simplification to Theorem C, we obtain:

Corollary 5.4. If dimGr
d(C) = ρ(g, r, d) ≤ g, then

χ
(
OGr

d
(C)

)
= χ

(
OW r

d
(C)

)

=
(−1)ρ

ρ!

∑

|γ|=ρ

fγ ·
r+1∏

i=1

(g − d+ r + γi − i)γi · f
λ+γ

where the sum is over partitions γ = (γ1 ≥ · · · ≥ γr+1 ≥ 0), and λ+γ is the partition (g−d+r+γ1,
. . . , g − d+ r + γr+1).

In low dimensions, the Euler characteristic can be written in a fairly simple closed form.

3The result of Lenart has now been extended to skew shapes in [CP17, Theorem 6.8]. By means of this extension,
the argument in the proof of Corollary 5.3 can be applied to prove the two-pointed version of the statement.
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When ρ(g, r, d) = 0, the formula in Corollary 5.4 recovers Castelnuovo’s count for the number of
line bundles of degree d with r + 1 sections:

N r
g,d := χ

(
OGr

d
(C)

)
= g!

r∏

i=0

i!

(g − d+ r + i)!
.

When ρ(g, r, d) = 1, we recover [EH87, Theorem 4]:

χ
(
OGr

d
(C)

)
= −

(g − d+ r)(r + 1)

g − d+ 2r + 1
N r

g,d.

When ρ(g, r, d) = 2, we obtain

χ
(
OGr

d
(C)

)
=

(r + 1)2(g − d+ r)2

2(g − d+ 2r)(g − d+ 2r + 2)
N r

g,d.

Finally, when ρ(g, r, d) = 3, set s := g − d+ r, and we have

χ
(
OGr

d
(C)

)
= −

(r + 1)2s2
[(
(r + s+ 1)2 − 2

)
s(r + 1)− 2

]

6(s+ r − 1)(s + r)(s+ r + 1)(s + r + 2)(s + r + 3)
N r

g,d.

6. Schubert and Grothendieck polynomials

As one more application of the degeneracy locus formula of Theorem B, we deduce determinan-
tal formulas for (double) Schubert and Grothendieck polynomials for 321-avoiding permutations.
Indeed in this section, we identify our K-theory formulas with double versions of the flagged skew
Grothendieck polynomials recently introduced by Matsumura [Mat19].

For decreasing sequences p = (p1, . . . , pt) and q = (q1, . . . , qt), we defined partitions λ and µ by

λi = qi − t+ i, µj = pj − (t+ 1− j)

in §1.2. When p and q satisfy

(∗) qi ≥ pi − 1 for all i,

the partitions form a skew diagram λ/µ, and we defined an associated permutation w by setting

w(pi) = qi + 1 for 1 ≤ i ≤ t,

and then filling in the remaining entries with the unused numbers in increasing order. As noted in
§1.2, this is a 321-avoiding permutation, and all 321-avoiding permutations arise this way.

Remark 6.1. The above is equivalent to the bijection of 321-avoiding permutations with labeled
skew tableaux of Billey-Jockusch-Stanley ([BJS93]), which can be re-formulated as follows. For a
321-avoiding permutation w, the skew shape σ(w) considered in [BJS93] is a 180 degree rotation
of our skew shape λ/µ, that is, σ(w) = η/τ where ηi = λ1 − µt+1−i and τi = λ1 − λt+1−i. Let
fw = (f1, f2, . . . , ft) be the increasing sequence of indices j such that w(j) > j, and let ei = w(fi)−1.
Then the labeling ω(w) of the skew shape σ(w) is obtained by placing the entries ei, ei − 1, . . . , fi
in the i-th row of σ(w) such that the entries increase by one in each column, and decrease by one
in each row. In our setup, the labeling ω(w) is determined by fi = pt+1−i and ei = qt+1−i.
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6.1. Schubert polynomials. For any permutation w, the double Schubert polynomial Sw(x, y)
of Lascoux and Schützenberger is a canonical representative for the cohomology class of the corre-
sponding Schubert variety or degeneracy locus [Ful92]. Similarly, the double Grothendieck polyno-
mial Gw(x, y) represents the structure sheaf of a Schubert variety or degeneracy locus in K-theory
[FL94, Theorem 3]. These polynomials are defined inductively, but for special types of permu-
tations, one can give direct formulas. Our goal here is to give such formulas for 321-avoiding
permutations.

First we state the formula for Schubert polynomials. Given sets of variables x and y, let

c(i, j) =

∏qi
a=1(1− uya)∏pj
b=1(1− uxb)

,

and define ck(i, j) by collecting the coefficient of uk in the expansion of this rational function (in
positive powers of x and y). For example, if y = 0, then ck(i, j) is the complete homogeneous
symmetric polynomial hk(x1, . . . , xpj) (for any i), and if x = 0, then ck(i, j) is the elementary

symmetric polynomial (−1)kek(y1, . . . , yqi) (for any j).

Corollary 6.2. Let w be a 321-avoiding permutation, with associated tuples p, q satisfying (∗),
and let λ/µ be the corresponding skew Young diagram. The double Schubert polynomial for w has
the following determinantal expression:

Sw(x, y) = ∆λ/µ(c; 0) =
∣∣cλi−µj+j−i(i, j)

∣∣
1≤i,j≤t

,

where ck(i, j) is the polynomial in x and y defined above.

Since double Schubert polynomials are obtained by specializing double Grothendieck polynomials
at β = 0, the statement is a special case of Corollary 6.4, proved below.

This recovers a formula of Lascoux and Chen-Yan-Yang (see [CYY04]), which in turn generalized
a formula of Billey-Jockusch-Stanley [BJS93] for the single Schubert polynomials of 321-avoiding
permutations — that is, the case y = 0. More precisely, the matrices computing these formulas in
[CYY04] are obtained by reflecting about the anti-diagonal the matrices computing the determi-
nants in Corollary 6.2. The right-hand side is a flagged double skew Schur function, a variant of
the flagged double Schur function introduced by Chen-Li-Louck [CLL02]. (“Flagging” refers to the
nested sets of variables appearing along rows and columns of the determinant: the i-th row uses
{y1, . . . , yqi}, and the j-th column uses {x1, . . . , xpj}.)

Example 6.3. An example of a 321-avoiding permutation which is not also vexillary (another class
having determinantal expressions, thanks to an older theorem of Wachs) is w = 3 1 2 5 4. Here
p = (4, 1) and q = (4, 2), so λ = (3, 2) and µ = (2, 0), and the formula says

S31254 =

∣∣∣∣
c1(1, 1) c4(1, 2)

0 c2(2, 2)

∣∣∣∣ = c1(1, 1) · c2(2, 2)

= (x1 + x2 + x3 + x4 − y1 − y2 − y3 − y4)·(x
2
1 − x1y1 − x1y2 + y1y2).

Comparing with [BJS93], and using their notation, the labeled skew diagram (σ(w) = η/τ, ω(w))
associated to w = 3 1 2 5 4 is given by:

2 1

4
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where η = (3, 1), τ = (1, 0), f = (1, 4), and e = (2, 4). The matrix computing the determinant
S31254 in [BJS93] is obtained by reflecting the above matrix about the anti-diagonal.

6.2. Grothendieck polynomials. Now we turn to Grothendieck polynomials. Here the variables
should be identified as follows. Let

c(i, j) =

qi∏

a=1

pj∏

b=1

(1 + βya − uya)(1 + βxb)

(1 + βya)(1 + βxb − uxb)
.

The term ck(i, j) is obtained as before, by expanding and collecting the coefficient of uk.

Corollary 6.4. Let w be a 321-avoiding permutation, with associated tuples p, q satisfying (∗),
and let λ/µ be the corresponding skew Young diagram. The double Grothendieck polynomial for w
has the following determinantal expression:

Gw(x, y) = ∆λ/µ(c;β)

=

∣∣∣∣∣∣

∑

k≥0

(
λi − µj + k − 1

k

)
βkcλi−µj+j−i+k(i, j)

∣∣∣∣∣∣
1≤i,j≤t

,

where ck(i, j) is the polynomial in x, y, and β defined above.

Proof. This follows directly from Theorem 2.1(ii), by choosing a base and vector bundles so that
there are no relations among the relevant Chern classes.

Here is one way to do this. Let Fl(p, V ) and Fl(V, q) be the partial flag varieties of subspaces of
dimesions pj and quotients of dimensions qi, respectively, so they come with tautological bundles
Epj ⊆ V and V ։ Fqi . Let X = Fl(p, V ) × Fl(V, q), and identify variables x and y with Chern
classes of the tautological bundles by writing

c(Epj ) =

pj∏

b=1

1 + βxb − uxb
1 + βxb

and c(Fqi) =

qi∏

a=1

1 + βya − uya
1 + βya

;

that is, the x variables are the Chern roots of E∗
pj , the y variables are the Chern roots of F ∗

qi , and

we have c(i, j) = c(Fqi −Epj). For any fixed degree d, one can take dimV sufficiently large so that

there are no relations among the Chern classes of Epj and Fqi in CKd(X).
Via the projection X → Fl(V, q), one can regard X as a (partial) flag bundle. By Lemma 1.4,

the degeneracy locus Wp,q ⊆ X, defined by the conditions

dimker
(
Epj → Fqi

)
≥ 1 + i− j for all i, j,

is identified with the Schubert locus corresponding to w in this flag bundle. Now [FL94, Theo-
rem 3] says this locus is represented by the double Grothendieck polynomial Gw(x, y) in K-theory,
while Theorem 2.1(ii) says it is represented by ∆λ/µ(c;β). Since there are no relations among the
variables, we must have an equality of polynomials. �

We conclude with a tableau formula for the Grothendieck polynomials Gw(x) = Gw(x, 0). As
in Section 5.3, a set-valued tableau of skew shape λ/µ is a labelling of the boxes of λ/µ by finite
non-empty subsets of N such that the maximum element of the label of any box (i, j) is at most
the minimum element of the label at (i, j +1), and smaller than the minimum element of the label
at (i+ 1, j) (see [Buc02]). Given a skew shape λ/µ and a flagging f = (f1, . . . , ft), a flagged skew
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set-valued tableau of skew shape λ/µ with flagging f is a set-valued tableau on λ/µ such that every
entry in the i-th row is a subset of {1, 2, . . . , fi}. Let FSV T (λ/µ, f) denote the set of all such
flagged skew tableaux. For a (flagged) set-valued tableau T , let xT be the monomial in which the
exponent of xi is the number of boxes of T which contain i.

Corollary 6.5. Let w be a 321-avoiding permutation and let σ(w) = η/τ be the skew Young diagram
with flagging fw corresponding to w via the Billey-Jockusch-Stanley bijection, as in Remark 6.1.
The Grothendieck polynomial Gw(x) = Gw(x, 0) is equal to

(30)
∑

T∈FSV T (σ(w),fw)

β|T |−|σ(w)|xT .

Proof. Matsumura [Mat19, §4] defined flagged skew Grothendieck polynomials to be generating
functions of flagged set-valued tableaux given by (30), and proved that they have determinantal
expressions. Corollary 6.4 also holds after the matrix is reflected about the anti-diagonal — by
replacing the (i, j) entry with the (t+1−j, t+1−i) entry — since the determinant is unchanged by
this operation. The entries of this reflected matrix are equal to those in the determinantal formulas
of [Mat19, §4], as explained in [And19, Remark 1.1]. �

6.3. Flagged set-valued skew tableaux and pipe dreams. Corollary 6.5 recovers the tableau
formulas for Schubert polynomials of 321-avoiding permutations [BJS93, Theorem 2.2] and for
Grothendieck polynomials of Grassmann permutations [KMY09, Theorem 5.8]. The proofs of those
formulas rely on writing Schubert and Grothendieck polynomials in terms of pipe dreams (after
[KM05]) along with bijections between certain tableaux and pipe dreams ([BJS93, Theorem 2.2],
[KMY09, Proposition 5.3]). To conclude, we give a bijection between flagged set-valued skew
tableaux and pipe dreams for 321-avoiding permutations that extends these bijections and gives an
alternative proof of Corollary 6.5.

For a flagged set-valued skew tableau T ∈ FSV T (σ(w), fw), let T be the flagged skew tableau
obtained by taking the smallest element of each box of T (see Figure 2).

T =
1 1

23

T =
1 1

2

Figure 2. For the permutation w = 31254 in Example 6.3, and the given T ∈
FSV T (σ(w), fw), T is the associated flagged skew tableau.

A pipe dream is a tiling of the fourth quadrant of the plane by crosses and elbows ✆✞. A
reduced pipe dream (or rc-graph) for a permutation w is a tiling such that the pipe that starts at
the beginning of the i-th row exits the top of the wi-th column, with no two pipes of P crossing
each other more than once. For a pipe dream P , we write P for the reduced pipe dream obtained
by replacing all but the northeasternmost cross between two pipes by an elbow, and say that P is
a pipe dream for a permutation w if P is a reduced pipe dream for w.

Following the notation of Remark 6.1, to T ∈ FSV T (σ(w), fw) we can associate a pipe dream
Ω(T ) as follows:

Place a cross in position (i, ω(b) − i+ 1) for each entry i in a box b of σ(w), and
an elbow in all other positions.
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P =

1 2 3 4 5

1 ✆✞ ✆✞ ✆✞

2 ✆✞ ✆✞ ✆✞ ✆✞

3 ✆✞ ✆✞ ✆✞ ✆✞

4 ✆✞ ✆✞ ✆✞ ✆✞ ✆✞

5 ✆✞ ✆✞ ✆✞ ✆✞ ✆✞

P =

1 2 3 4 5

1 ✆✞ ✆✞ ✆✞

2 ✆✞ ✆✞ ✆✞ ✆✞

3 ✆✞ ✆✞ ✆✞ ✆✞ ✆✞

4 ✆✞ ✆✞ ✆✞ ✆✞ ✆✞

5 ✆✞ ✆✞ ✆✞ ✆✞ ✆✞

Figure 3. A pipe dream P and related reduced pipe dream P for the permutation
w = 31254.

Given a pipe dream P , let xP :=
∏

(i,j) xi, where the product is over crosses (i, j) in P , and let

|P | be the total number of crosses. Fomin and Kirillov ([FK94], [FK96]; see also [KM05] for the
language of pipe dreams) show that

(31) Gw(x) =
∑

P

β|P |−ℓ(w)xP

where the sum is over P such that P is a reduced pipe dream for w. This specializes to [BJS93,
Theorem 1.1] when β = 0.

Example 6.6. For T as in Figure 2, we have crosses in exactly positions (1, 1), (1, 2), (2, 3), and
(3, 2), so that Ω(T ) is equal to the pipe dream P of Figure 3. Similarly, for T as in Figure 2, Ω(T )

is equal to the reduced pipe dream P of Figure 3. Here, xT = x21x2 = xP and xT = x21x2x3 = xP ,
where P = Ω(T ) and P = Ω(T ).

Proposition 6.7. Let w be a 321-avoiding permutation and let σ(w) = η/τ be the skew Young
diagram with flagging fw corresponding to w. Then the map Ω gives a weight-preserving bijection
from FSV T (σ(w), fw) to the set of pipe dreams for w.

The map Ω generalizes the bijecton between flagged skew tableaux and reduced pipe dreams of
321-avoiding permutations in [BJS93, Theorem 2.2] and the bijection between flagged set valued
tableaux and pipe dreams of Grassmann permutations in [KMY09, Proposition 5.3].

Proof. By its definition the map Ω is an injection and specializes to the bijection between flagged
skew tableaux and reduced pipe dreams for w. Therefore, if P is a pipe dream for w, there is a
flagged skew tableau T such that Ω(T ) = P . Since the proof of [KMY09, Proposition 5.3(a)] for
ordinary shapes carries through for skew shapes, no pipe of P passes horizontally through one cross
and vertically through another. (For straight shapes, the pipe dreams in [KMY09] and here differ
by a reflection across the vertical axis.)

We claim that if a horizontal and vertical pipe cross at a and pass through a ✆✞ tile
southwest of it, then the two tiles lie on the same anti-diagonal. This holds since if a pipe crosses
horizontally at position (i0, j0) it cannot cross any pipe vertically, hence to the west of (i0, j0), the
pipe is bounded to be at or above the anti-diagonal through (i0, j0). Similarly, if a pipe crosses
vertically at (i0, j0), it cannot cross any pipe horizontally, hence going south of (i0, j0), the pipe
is bounded to be at or below the anti-diagonal through (i0, j0). If the two pipes also meet at an
elbow, then that elbow must lie on the anti-diagonal containing (i0, j0).

The pipe dream P is obtained from P by altering some such ✆✞ tiles to tiles. This
corresponds exactly to inserting extra entries in the box of T corresponding to the original
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tile of P . More specifically, let b be a box in the labelled skew diagram σ(w). Let i0 be the
smallest entry of b. Then for i > i0, the additional entries of b correspond to crosses in positions
(i, ω(b) − i+ 1) in the pipe dream Ω(T ) (these are southwest of the entry (i0, ω(b)− i0 + 1) in the
anti-diagonal {(i, j) | i + j = ω(b) + 1}), and conversely.

The bijection in [BJS93] and [BB93] between flagged skew tableaux and reduced pipe dreams

satisfies xT = xΩ(T ). By the description of the extra entries in fillings of T , we conclude that
xT = xΩ(T ) and so Ω is a weight-preserving bijection. �

We observe that |σ(w)| = |T | = |Ω(T )| = l(w). Comparing the summands in (30) and (31) under
the above bijection, this shows that the generating function formulas (30) and (31) agree term by
term, and therefore, this bijection gives an alternative proof of Corollary 6.5.
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