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CORRECTION FACTORS FOR KAC-MOODY GROUPS AND t-DEFORMED

ROOT MULTIPLICITIES

DINAKAR MUTHIAH, ANNA PUSKÁS, AND IAN WHITEHEAD

Abstract. We study a correction factor for Kac-Moody root systems which arises in the theory of
p-adic Kac-Moody groups. In affine type, this factor is known, and its explicit computation is the
content of the Macdonald constant term conjecture. The data of the correction factor can be en-
coded as a collection of polynomials mλ ∈ Z[t] indexed by positive imaginary roots λ. At t = 0 these
polynomials evaluate to the root multiplicities, so we consider mλ to be a t-deformation of mult(λ).
We generalize the Peterson algorithm and the Berman-Moody formula for root multiplicities to
compute mλ. As a consequence we deduce fundamental properties of mλ.

1. Introduction

In [Mac72], Macdonald proved the following remarkable identity for finite root systems Φ:

∑

w∈W

tℓ(w) =
∑

w∈W

w





∏

α∈Φ+

1− teα

1− eα



 (1.1)

Here W is the Weyl group, ℓ : W → Z≥0 is the length function, and Φ+ is the set of positive roots.
Still more remarkably, this formula no longer holds for infinite type Kac-Moody root systems.
Instead one has:

∑

w∈W

tℓ(w) = m

∑

w∈W

w





∏

α∈Φ+
re

1− teα

1− eα



 (1.2)

where Φ+
re is now the set of positive real roots, and the correction factor m is a W -invariant power

series supported on the positive imaginary cone of the root lattice. In [Mac03b], Macdonald com-
putes m in the affine Kac-Moody case. An explicit formula for m can be obtained from the so-called
constant term of the Macdonald kernel. In fact, the computation of m in affine type is equivalent
to the Macdonald constant term conjecture [Mac82], proven by Cherednik [Che95]. We will review
the formula for m in affine type in §4.

In this paper, our goal is to initiate the explicit study of the correction factor m beyond affine
type to arbitrary Kac-Moody type. In §5 we give an algorithm to compute the power series m,
based only on knowledge of the real roots in Φ. In §6 we give a closed formula for m. These tools
are used to establish properties of m which hold across all finite, affine, and indefinite Kac-Moody
types.

In addition to its appearance in (1.2) the power series m appears as a correction factor in many
other formulas. In this sense m captures much of the complexity that arises when passing from
finite to infinite type. Below, we briefly recall some situations where m appears.

1.0.1. p-adic groups and Macdonald’s formula for the spherical function. Our initial motivation
for studying the factor m comes from the theory of p-adic Kac-Moody groups. In [BGKP14],
Braverman, Garland, Kazhdan, and Patnaik show that the discrepancy between the affine Gindikin-
Karpelevich formula and the naive generalization from finite type is this factor m. The same is true
in Macdonald’s formula for the spherical function [BKP16] and the Casselman-Shalika formula for

1
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2 DINAKAR MUTHIAH, ANNA PUSKÁS, AND IAN WHITEHEAD

the spherical Whittaker function [Pat17]. Work of Patnaik and the second author [PP17] extends
these formulas to metaplectic p-adic Kac-Moody groups, and m similarly appears.

Gaussent and Rousseau have recently initiated the study of (not necessarily affine) p-adic Kac-
Moody groups using their theory ofmasures, previously known as hovels. The work of Bardy-Panse,
Gaussent, Rousseau [BPGR16, Theorem 7.3] show that the role of m in affine type generalizes to
arbitrary Kac-Moody type for the Macdonald formula for the spherical function. We expect that
this should continue to hold for the Gindikin-Karpelevich and Casselman-Shalika formulas. We
mention Hébert’s [Héb17] work on the well-definedness of Gindikin-Karpelevich formula in the
general Kac-Moody setting.

The general principle appears to be that formulas from finite dimensional p-adic groups directly
generalize to the Kac-Moody case, and the sole new phenomenon is the appearance of the factor
m.

1.0.2. Symmetrizers for Kac-Moody Hecke algebras. Identities relating Hecke symmetrizers, the
Weyl-Kac characters formula, and the factor m appear in the study of the infinite-dimensional (or-
dinary and metaplectic) generalizations of the Casselman-Shalika formula for spherical Whittaker
functions. The classical Casselman-Shalika formula expresses a spherical Whittaker function in
terms of the character of a representation. By the Weyl character formula, this character can be
produced by acting on a highest-weight monomial by a “symmetrizer”, which is a certain sum over
the Weyl group.

A Hecke symmetrizer is a sum:
∑

w∈W

Tw (1.3)

where the Tw are Demazure-Lusztig operators. Each Tw can be expanded in terms of Weyl group
elements that are bounded by w in the Bruhat order, giving rise to an identity relating Weyl and
Hecke symmetrizers.

The spherical Whittaker function can be expressed in terms of an operator as in (1.3) acting on a
highest weight monomial in finite, affine, and indefinite Kac-Moody type. In the finite dimensional
setting the sum (1.3) satisfies an operator Casselman-Shalika formula [Pat17, §2.12], an identity of
operators similar to the Demazure character formula, connecting the Whittaker function expressed
with (1.3) to its usual expression in terms of a Weyl character. In this case the correction factor is
just m = 1.

The analogous identity between (1.3) and the Weyl-Kac character in the affine and indefinite
Kac-Moody setting [Pat17, PP17] involves the Weyl invariant correction factor m. In this case, both
symmetrizers are infinite sums. Indeed, the proof that the Hecke symmetrizer (1.3) yields a well-
defined operator depends on its relation to the Weyl symmetrizer. The proof proceeds by comparing
two similar versions of (1.3) corresponding to spherical and Whittaker functions respectively. (See
[PP17, Section 3] for details.)

1.0.3. Dolbeault cohomology and the failure of the Hodge theorem. AsMacdonald explains in [Mac72],
formula (1.1) can be interpreted as a computation of the Betti numbers of a flag variety using Hodge
theory. The left hand side is the computation given by counting Schubert cells. The right hand side
corresponds to a computation of Dolbeault cohomology using localization at fixed points for the
action of the maximal torus. Because the flag variety is smooth and projective, the Hodge theorem
establishes that Dolbeault cohomology is equal to Betti cohomology. Equation (1.1) results.

The fact that this argument no longer holds in Kac-Moody type is an indication that the Hodge
theorem no longer holds for Kac-Moody flag varieties. This is very counterintuitive. It is known
that Kac-Moody flag varieties are (ind-)projective. This means that they are not smooth for the
purposes of the Hodge theorem. Because they are homogeneous for a group action, Kac-Moody
flag varieties are in a sense everywhere singular.
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In affine type, the situation is well-understood by the work of Fishel-Grojnowski-Teleman [FGT08].
They explicitly compute the Dolbeault cohomology of the affine flag variety. In particular, their
work shows how the Hodge theorem fails in affine type. One of their results is a proof of the “strong
Macdonald conjecture,” a conjecture on Lie algebra cohomology which implies the constant term
conjecture.

The work of [FGT08] suggests that the generalization of the strong Macdonald conjecture to
general Kac-Moody types should consist of an explicit computation of Dolbeault cohomology for
Kac-Moody flag varieties. This should contain strictly more information than the factor m because
one loses the bigrading of Dolbeault cohomology. In finite type only (p, p) classes occur, so no
information is lost, but in general other classes must occur.

1.1. Our work. Our approach is based on the idea that the problem of computing m generalizes
the problem of computing multiplicities of imaginary roots. In fact, when specialized at t = 0,
a product formula for m exactly encodes the imaginary root multiplicities. Our main results are
two methods for computing this product formula. The methods are t-deformations of two existing
approaches to computing imaginary root multiplicities: the Peterson algorithm [Pet83], [KKO01],
[Kac90, Exercises 11.11, 11.12] and the Berman-Moody formula [BM79].

Let us write Q+
im for the positive imaginary root cone, which consists of all elements of Q+

(the positive root cone) which remain in Q+ after applying any element of the Weyl group. Our
generalized Peterson algorithm is a recursive procedure that allows us to express:

m =
∏

λ∈Q+

im

∏

n≥0

(1− tneλ)−m(λ,n) (1.4)

For fixed λ, the m(λ, n) are integers that vanish for n sufficiently large (the bound depends on λ).
The exponent m(λ, 0) is the multiplicity of λ. In particular it lies in Z≥0 and it is non-zero precisely
when λ is a root. Our generalized Peterson algorithm is fast, depending only on operations with
polynomials. We have implemented it in SageMath, and a small sample of the output is included
in the appendix.

It is convenient to package the coefficients m(λ, n) into a polynomial mλ(t) =
∑

n≥0

m(λ, n)tn. The

generalized Berman-Moody formula is the following closed expression for the polynomial mλ(t).

Theorem 6.5. For all λ ∈ Q+
im, we have:

mλ(t) =
∑

κ|λ

µ (λ/κ)

(

λ

κ

)−1
∑

κ∈Par(κ)

(−1)|κ|
B(κ)

|κ|

|κ|
∏

i=1

Pκi
(tλ/κ) (1.5)

We refer the reader to §6 for an explanation of the symbols appearing here. Although not
as efficient as the generalized Peterson algorithm, this formula is useful for answering theoretical
questions about m. For example, we prove the following:

Theorem 7.5. For all λ ∈ Q+
im, mλ(t) is nonzero if and only if λ is a root.

Theorem 7.6. For imaginary roots λ, the polynomial mλ(t) is divisible by (1− t)2.

We note that in affine type Theorem 7.6 is inherent in Macdonald’s formatting of the constant

term conjecture. Moreover, in affine type, the polynomial χλ(t) =
mλ(t)
(1−t)2 is more fundamental. It

has positive coefficients which are manifestly equal to the cardinalities of certain finite sets. For
example, in untwisted affine type, if λ is imaginary then χλ(t) is the generating polynomial of
heights of positive roots of the underlying finite root system (see §4 for details).

Beyond affine type the polynomials χλ no longer have positive coefficients. However, from
computer calculation via the generalized Peterson algorithm, we conjecture the following.
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Conjecture 1.6. In rank two hyperbolic type, the polynomials χλ have alternating sign coefficients.

Beyond rank two, this does not hold. It is conceivable that the positivity phenomena of affine
type is present in the general χλ in a more subtle form.

1.2. Further directions. The constant term of the polynomial χλ is precisely the multiplicity
of the root λ. It must be positive as it is the dimension of the corresponding root space in the
Kac-Moody Lie algebra. It would be illuminating to give a similar interpretation for the other
coefficients.

Problem 1.7. Interpret all coefficients of χλ in terms of the Kac-Moody Lie algebra.

Computing imaginary root multiplicities is a well-known difficult problem. We propose that one
should try to instead study χλ, which of course contains the information of root multiplicities. Our
hope is that this generalized problem might be more tractable. For example, a long-standing prob-
lem is Frenkel’s conjecture, which provides a conjectural bound for hyperbolic root multiplicities.
A natural question is to phrase (and prove) a generalization of this conjecture.

Problem 1.8. Give upper bounds for the degree and coefficients of χλ(t) in terms of λ.

1.3. Acknowledgments. We thank Alexander Braverman, Paul E. Gunnells, Kyu-Hwan Lee,
Dongwen Liu, Peter McNamara, Manish Patnaik for helpful conversations. At the beginning of
this project the first author was partially supported by a PIMS postdoctoral fellowship and the
second author was supported through Manish Patnaik’s Subbarao Professorship in Number Theory
and an NSERC Discovery Grant at the University of Alberta. The project started at the workshop
“Whittaker functions: Number Theory, Geometry and Physics” at the Banff International Research
Station in 2016; we thank the organizers of this workshop.

2. Preliminaries and Notation

2.1. The inverse with respect to a cone. We begin by introducing some terminology about
lattices, cones, and series supported on subsets of them. Let Q be a lattice, and let Q+ ⊆ Q be
a subset. We say Q+ is a cone if it is closed under taking linear combinations with non-negative
integer coefficients. In particular a cone contains 0. For every γ ∈ Q+ one may consider the set of
pairs (α, β) ∈ (Q+)2 such that γ = α+ β. We call Q+ a strict cone if the set of such pairs is finite
for every element. We say that Q+ is graded if there is an additive height function ht : Q+ → Z≥0

such that the set of vectors in Q+ of a fixed height is finite. Note that a graded cone is strict. We
call Q+ saturated if Q+ ⊗ R≥0 ∩Q = Q+. Finally, we say that a saturated cone Q+ has full rank
if Q+ generates the lattice Q. In this case Q = {α− β | α, β ∈ Q+}.

Consider a formal sum of exponentials f =
∑

λ∈Q cλe
λ with coefficients cλ in a ring R. We say

the sum f has support Supp(f) = {λ ∈ Q | cλ 6= 0}. If Supp(f) ⊆ Q+ we call f a power series
with respect to Q+ and write f ∈ R[[Q+]]. If the support of f is contained in the translate of Q+

by some λ0 ∈ Q, then we call f a Laurent series with respect to Q+. If Q+ is a strict cone then
the power series and Laurent series with respect to Q+ form a ring. If Q+ has full rank then if
Supp(f) is finite then f is a Laurent series.

The graded cone condition allows us to characterize units and inverses in R[[Q+]]. A power series
of the form f =

∑

λ∈Q+ cλe
λ is a unit if and only if c0 ∈ R is a unit. The inverse f−1 can be

constructed explicitly via induction on height. We will use a more general version of this. Suppose
that Q+ is a graded cone and Q++ is a subcone. We denote the restriction of a power series
f =

∑

λ∈Q+ cλe
λ to Q++ as f |Q++ =

∑

λ∈Q++ cλe
λ. We have the following:

Proposition 2.1. Suppose that Q+ is a graded cone, and Q++ is a subcone. If f ∈ R[[Q+]] is a

unit, then there exists a unique g ∈ R[[Q++]] such that such that (fg)|Q++ = 1. Furthermore, g is

a unit in R[[Q++]].
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The series g may be constructed explicitly by induction on height. It is manifest from the
construction that g is unique. We call g the inverse of f relative to Q++. The ring of Laurent
series has analogous constructions; there a unit has the form f =

∑

λ∈Q+ cλe
λ+λ0 , with λ0 ∈ Q and

c0 a unit in R.

2.2. Weyl action and the positive imaginary cone. Let Φ be a Kac-Moody root system. We
refer the reader to [Kac90], especially Chapter 5, for details on such root systems. Let α1, . . . αr

denote the simple roots of Φ, s1, . . . sr the corresponding simple reflections and let W be the Weyl
group. Let Q be the root lattice, and Q+ the set of positive integer linear combinations of simple
roots. Then Q+ is a saturated graded cone of full rank in Q. We shall consider rings of power
series and Laurent series with coefficients in several different rings: Z, Z[t], Z[t, t−1] and Z[[t]][t−1].

A Weyl group element w ∈ W acts on a formal sum f =
∑

λ cλe
λ by w(f) =

∑

λ cλe
w(λ). This

action takes a power series (resp. a Laurent series) with respect to Q+ to a power series (resp.
Laurent series) with respect to w(Q+). A certain subring of power series (resp. Laurent series) with
respect to Q+ are also power series (resp. Laurent series) with respect to w(Q+) for all w ∈ W. A
priori, we only have a well-defined W -action on this subring.

We define the positive imaginary cone Q+
im as the cone generated by positive imaginary roots,

and call λ ∈ Q+ imaginary if it lies in this cone. We can make a similar definition for Q−
im. The

imaginary vectors form 0 and 1 dimensional subspaces in finite and affine type. In indefinite type
by [Kac90, Proposition 5.8, Theorem 5.4] the positive imaginary roots generate a saturated graded
cone of full rank. This cone is Q+

im. It is W -invariant; indeed it is the largest W -invariant subcone
of Q+ [Kac90, Theorem 5.4]. That is, every non-imaginary vector λ is W -equivalent to one outside
Q+. By contrast, each imaginary λ is W -equivalent to a vector in λ′ ∈ Q+ of minimal height, which
is necessarily antidominant, i.e. 〈λ, αi〉 ≤ 0 for all simple roots αi. If λ ∈ Q+ satisfies 〈λ, λ〉 > 0,
then 〈λ, αi〉 > 0 for some simple root αi, and since 〈λ, λ〉 is W -invariant, we see then that λ is
imaginary only if 〈λ, λ〉 ≤ 0. This condition is sufficient in finite, affine, and hyperbolic type [Kac90,
Proposition 5.10] but not in general.

We define the imaginary part of a formal sum f =
∑

λ cλe
λ as Im(f) = f |Q+

im

, and call f

imaginary if Supp(f) ⊆ Q+
im. In light of the discussion above, we have Q+

im =
⋂

w∈W w(Q+), so

R[[Q+
im]] is the largest subring of R[[Q+]] with a W -action. The situation with Laurent series is

somewhat more subtle. A formal sum which is a Laurent series with respect to w(Q+) for each
w ∈ W may not be a Laurent series with respect to Q+

im. This is clear in finite and affine type
and it persists in indefinite type. For a counterexample consider a series

∑

α e
nαα, where the α are

positive real roots, and the vectors nαα grow arbitrarily far from the imaginary cone.

2.3. Good products. We wish to extend the W -action to a larger class of Laurent series units.
We shall make use of the following proposition, which allows us to represent a Laurent series unit
as a product of linear terms.

Proposition 2.2. Suppose that f is a Laurent series unit with respect to a graded cone Q+, with

coefficients in Z[[t]][t−1]. Then f has a unique product form:

f = ueλ0

∏

λ∈Q+\{0}

∏

n

(1− tneλ)m(λ,n) (2.3)

where m(λ, n) ∈ Z and the set {n ∈ Z | m(λ, n) 6= 0} is bounded from below for each λ. If

furthermore f has coefficients in Z[t, t−1], Z[t], or Z then this set is a bounded subset of Z, Z≥0, or
{0}, respectively.

The strict cone condition implies that the Laurent series expansion of an expression of type (2.3)
is well-defined. It can be shown by induction on ht(λ) that every Laurent series is the expansion
of some product of the form (2.3), and that two distinct products of this form yield distinct series.
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We call a product of the form (2.3) a good product if all vectors λ in the product are multiples of
roots α ∈ Φ, and the set of factors corresponding to any real root α is finite. Good products form
a multiplicative subgroup of all Laurent series units. Next we define a Weyl group action on this
set. For λ ∈ NΦ, let:

w(1− tneλ) =

{

1− tnew(λ) if w(λ) > 0

(−tnew(λ))(1− t−ne−w(λ)) if w(λ) < 0
(2.4)

This gives an action of W on linear factors which extends to all good products by multiplicativity.
The restriction to multiples of roots is necessary so that w(λ) is either inQ+ or inQ−. The finiteness
condition guarantees that the w-image of a good product is a well-defined Laurent series, since the
inversion set Φ(w) = Φ+ ∩ w−1(Φ−) is finite. Earlier, we defined a W -action on formal sums of
exponentials. That action respects Laurent series multiplication. It follows that the two W -actions
agree when both make sense. However, the action on good products is well-defined in some cases
where the action on Laurent series is not. For the simplest example consider si((1 − eαi)−1). It is
the good product action which allows us to interpret the definition of m in (1.2).

3. A Formal Definition of the Factor m

3.1. The definition of m. Let Ω0, Ω1, and Ω2 denote the power series rings with respect to the
positive root lattice Q+, with coefficients in Z, Z[t, t−1], and Z[[t]][t−1] respectively.

We wish to use (1.2) as the definition of m. However, it is not a priori clear what type of object
m is. Below, we will define m as an element of Ω2 and later show that it lies in Ω1.

Let:

∆re =
∏

α∈Φ+
re

(1− eα), ∆t,re =
∏

α∈Φ+
re

(1− teα) (3.1)

power series in Ω0 and Ω1 respectively. The quotient
∆t,re

∆re
is a unit and a good product in Ω1. Let

P (t) ∈ Z[[t]] be the Poincaré series P (t) =
∑

w∈W tℓ(w), where ℓ(w) denotes the length of the Weyl
group element w in the simple reflections.

Lemma 3.2. Consider the sum
∑

w∈W

w

(

∆t,re

∆re

)

(3.3)

interpreting each term by the good product action of W . It converges to a unit in Ω2 that is regular

at t = 0. Its constant coefficient is P (t).

Proof. According to the definition of the good product action:

w

(

∆t,re

∆re

)

=
∏

α∈Φ(w)

t

(

1− t−1e−w(α)

1− e−w(α)

)

∏

α∈Φre−Φ(w)

(

1− tew(α)

1− ew(α)

)

= tℓ(w)
∏

α∈Φ(w−1)

(

1− t−1eα

1− eα

)

∏

α∈Φre−Φ(w−1)

(

1− teα

1− eα

)

(3.4)

where Φ(w) = Φ+∩w−1(Φ−) and Φ(w−1) = Φ+∩w(Φ−) are inversion sets, both of size ℓ(w). Notice

that this expression remains a power series unit in Ω1, because of the structure of the product
∆t,re

∆re
.

Moreover, this expression is regular at t = 0, and the coefficient of some λ ∈ Q+ is divisible by at
least tℓ(w)−ht(λ). Since there are finitely many elements of W for any fixed length, it follows that
the coefficient of λ in the sum over all w ∈ W is a well-defined power series in Z[[t]]. Therefore (3.3)
is a well-defined power series in Ω2, regular at t = 0. The constant coefficient of each w-summand
is tℓ(w), hence the total constant coefficient is precisely P (t). �
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As P (t) is also a unit in Ω2 regular at t = 0, we define m by the expression:

m

∑

w∈W

w

(

∆t,re

∆re

)

= P (t) (3.5)

We conclude that m is a unit in Ω2, regular at t = 0, with constant coefficient 1.

3.2. Weyl invariance of m. Next we show that m is invariant underW , and is therefore supported
on Q+

im, the maximal the maximal Weyl invariant subcone of Q+. In particular this implies that m
is 1 when Φ is of finite type, and is a single-variable power series in affine type. Weyl invariance is
strongly suggested by the form of (3.5), but the proof requires care. We record the following useful
identities:

∆re

w(∆re)
= (−1)ℓ(w)

∏

α∈Φ(w−1)

eα (3.6)

w(∆t,re)

∆t,re
=

∏

α∈Φ(w−1)

−te−α

(

1− t−1eα

1− teα

)

(3.7)

which are both interpreted via the good product action of W . In each case the left side is a ratio
of infinite products, but all but the finitely many factors corresponding to Φ(w−1) cancel out.

Multiply both sides of (3.5) by ∆re to obtain:

m

∑

w∈W

tℓ(w)
∏

α∈Φ(w−1)

(1− t−1eα)
∏

α∈Φre−Φ(w−1)

(1− teα) = ∆reP (t) (3.8)

Consider both sides of this equation as power series in Ω2 (not as good products) and act on them
by a simple reflection si. The right side becomes:

si(∆re)P (t) = −e−αi∆reP (t) (3.9)

One may check that applying si to the sum over W on the left side interchanges the summands of
w and siw, and multiplies both by −e−αi .

Comparing the original form of (3.8) to the equality obtained after applying si, we see immedi-
ately that si(m) = m. Thus m is fixed by W , and therefore is a power series with respect to the
imaginary subcone Q+

im.

3.3. Viewing m
−1 as an inverse with respect to the positive imaginary cone. Our final

goal in this section is to characterize m
−1 as the inverse of ∆re

∆t,re
relative to the cone Q+

im, in the

sense of Proposition 2.1. Recall that though m and m
−1 were originally defined in the ring Ω2 since

∆re

∆t,re
∈ Ω1 it follows that m−1 and m in fact belong to Ω1 as well.

Since m is a power series unit on the cone Q+
im, its inverse m

−1 is one as well. Multiplying (3.5)

by ∆re

m∆t,re
we obtain:

∑

w∈W

tℓ(w)
∏

α∈Φ(w−1)

1− t−1eα

1− teα
=

P (t)∆re

m∆t,re
(3.10)

Both sides are power series units in Ω2, regular at t = 0, with constant coefficient P (t). Moreover,
observe that the restriction of the left side to the cone Q+

im is only P (t). Indeed, each w summand
is a power series supported in the cone Q+ ∩ w(Q−), which intersects the imaginary cone only at
the origin. Therefore the support of the left side does not contain any nonzero imaginary λ. We
conclude that:

(

m
−1 ∆re

∆t,re

)∣

∣

∣

∣

Q+

im

= 1 (3.11)

By Proposition 2.1, this equation characterizes m
−1 uniquely.



8 DINAKAR MUTHIAH, ANNA PUSKÁS, AND IAN WHITEHEAD

We summarize the results of this section in the following theorem:

Theorem 3.12. The series m and m
−1 are power series units in Z[t, t−1][[Q+]], regular at t = 0,

with constant coefficient 1. Both are fixed by the Weyl group W and supported on the positive

imaginary cone Q+
im, and m

−1 is the inverse of ∆re

∆t,re
relative to Q+

im.

3.4. Remarks. We conclude this section with two remarks: first, in affine and indefinite Kac-
Moody type, the full Weyl denominator ∆ and t-twisted Weyl denominator ∆t are defined similarly
to ∆re and ∆t,re, but with additional factors of (1− eα)mult(α) and (1− teα)mult(α), respectively, for
all positive imaginary roots α. The positive integers mult(α), called root multiplicities, have been
the subject of extensive study. We have defined m to include the root multiplicities as part and
parcel. Indeed, specializing equation (3.10) at t = 0 gives the Kac-Weyl denominator formula:

∑

w∈W

(−1)ℓ(w)
∏

α∈Φ(w−1)

eα = ∆rem
−1|t=0 (3.13)

from which we see that the specialization of m−1 at t = 0 is
∏

α∈Φ+

im

(1 − eα)mult(α). Specializing

equation (3.11) at t = 0 shows that this product is the inverse of ∆re relative to the cone Q+
im. The

Peterson algorithm [Pet83] and the formula of Berman and Moody [BM79] are means of computing
imaginary roots and their multiplicities based on knowledge of the real roots in Φ. We generalize
these results to compute all of m in the sequel.

The second remark concerns root systems Φ of affine type. In this case, Q+
im is a one-dimensional

cone generated by the minimal imaginary root δ. This means that m is a single-variable power
series. The restriction map |Q+

im

is linear over imaginary series in this case. Therefore m
−1 can be

pulled out of equation (3.11) to give:
(

∆re

∆t,re

)∣

∣

∣

∣

Q+

im

= m (3.14)

This argument does not apply in indefinite Kac-Moody type. The restriction map is not generally
linear over imaginary series because the sum of an imaginary vector with a real vector can be either
real or imaginary. Formula 3.14 is not true in the general Kac-Moody case.

4. The Affine Case

In this section we give an explicit formula for m in the affine case. This formula is equivalent
to Macdonald’s Constant Term conjecture [Mac82], which was proven by Cherednik [Che95]–the
equivalence is explained in [Mac03b]. The formula we give in Theorem 4.2 can be deduced from
formulas which have appeared in the literature before. Our contribution is to phrase it in a uniform

way for all affine types, in particular including A
(2)
2r . Such a concrete formula is probably unavailable

in indefinite Kac-Moody type, but §7 below generalizes some properties of this formula to all types.
Consider an affine Kac-Moody root system Φ. We specify a zeroth vertex in the Dynkin diagram

as follows. Except in the case of A
(2)
2r , we choose 0 to agree with [Kac90]. In the case of A

(2)
2r , our

vertex 0 is Kac’s vertex r. Note that these are the conventions of [BN04], which are chosen to
interact well with Drinfeld’s loop presentation of the quantum affine algebra. The Dynkin diagram
with vertex 0 removed defines a finite root subsystem Φfin. Let Qfin be the root lattice corresponding
to this subsystem, and Q+

fin its positive cone.
Recall that every imaginary root of g is of the form kδ, where δ is the minimal imaginary root.

For each imaginary root η we define S(η) = {β ∈ Q+
fin | β + η ∈ Φre} and let:

mη =
∏

β∈S(η)

(1− tht(β)eη)2

(1− tht(β)−1eη)(1 − tht(β)+1eη)
(4.1)
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Then we have the following theorem, which is equivalent to Cherednik’s resolution of the constant
term conjecture.

Theorem 4.2. [Che95], [Mac03b, 3.12], [Mac03a, 5.8.20]

m =
∏

η∈Φ+

im

mη (4.3)

For every affine Kac-Moody root system other than A
(2)
2r , the identity (4.3) follows from [Mac03b,

3.12]. For the root system A
(2)
2r we may can derive the constant term formula [Mac03a, 5.8.20] from

that of the root system (C∨
r , Cr) following the specialization choices of Sharma and Viswanath

[SV12, Section 3].

4.1. Divisibility by (1−t)2. The results of §7 below are generalizations of some aspects of Theorem
4.2 to arbitrary Kac-Moody type. Specifically, Theorem 7.5 will assert that m can always be
expressed as a product over imaginary roots, as in (4.3).

The shape of the factors mη in (4.1) motivates Theorem 7.6, which asserts that a certain poly-

nomial is divisible by (1− t)2. Write mη in product form, as in (1.4): mη =
∏Nη

n=0(1− tneη)−m(η,n).

By (4.1), the polynomial mη(t) =
∑Nη

n=0m(η, n)tn is divisible by (1 − t)2. We see that mη(t) =
(1− t)2χη(t), where:

χη(t) =
∑

β∈S(η)

tht(β) (4.4)

In indefinite type, it is no longer true that χη(t) is a polynomial with positive coefficients, but
Conjecture 1.6 points to the possibility of some interesting positivity properties.

5. The Generalized Peterson Algorithm

We now describe an efficient algorithm to compute m from (3.11). This process relies on manip-
ulations of power series via Propositions 2.1 and 2.2. It requires a list of positive real roots in Φ
as input. The power series m in height up to H is computed with runtime polynomial in H. The
algorithm generalizes the Peterson algorithm [Pet83] to compute root multiplicities, and in fact
recovers the root multiplicities when specialized at t = 0. It could be used for more general power
series computations, but for concreteness we will describe its use to compute m only.

By Proposition 2.2, m can be uniquely expressed as a product of the form:

m =
∏

λ∈Q+

im

Nλ
∏

n=0

(1− tneλ)−m(λ,n) (5.1)

with Nλ ∈ N and m(λ, n) ∈ Z. We have seen from (3.13) that m(λ, 0) = mult(λ) for λ ∈ Q+
im. We

extend the functions m(λ, n) to all λ ∈ Q+ by setting Nα = 1, m(α, 0) = 1, m(α, 1) = −1 for real
roots α, and m(λ, n) = 0 for all n if λ is not an imaginary vector or a real root. Then we can write:

m
−1 ∆re

∆t,re
=
∏

λ∈Q+

Nλ
∏

n=0

(1− tneλ)m(λ,n) (5.2)

The restriction of this product to Q+
im is 1 by (3.11). We use this fact to compute its imaginary

factors one at a time, inductively by the height of λ.
For λ ∈ Q+, let:

mλ =

Nλ
∏

n=0

(1− tneλ)−m(λ,n) (5.3)
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To initialize the algorithm, we set m0 = 1. We must determine mλ for λ ∈ Q+
im, assuming that

all mµ for ht(µ) < ht(λ) have already been computed. For the vectors µ ∈ Q+
im, mµ is computed

inductively. For µ 6∈ Q+
im, mµ is known because a list of positive real roots of height less than ht(λ)

is known. By (3.11), the expansion of the finite product:

m
−1
λ

∏

µ∈Q+

ht(µ)<ht(λ)

m
−1
µ (5.4)

has coefficient 0 at λ. The second factor here is assumed known by induction.

Because (5.4) has 0 as the coefficient of eλ, the coefficient of eλ in the product
∏

µ∈Q+

ht(µ)<ht(λ)

m
−1
µ

is a polynomial in t equal to m(λ, 0) +m(λ, 1)t + · · · +m(λ,Nλ)t
Nλ . Thus we have computed mλ

inductively.
Note that each mλ is a power series unit in Ω1, with constant coefficient 1, and is regular at t = 0.

Any finite product of mλ factors retains these properties. The infinite product m =
∏

λ∈Q+

im

mλ

also has a well-defined power series expansion because only finitely many factors contribute to each
coefficient. It is a power series unit in Ω1, with constant coefficient 1, and is regular at t = 0. It
satisfies equation (3.11), which defines m uniquely by Proposition 2.1.

The algorithm as described above produces a W -invariant series m. Since we know a priori that
m is W -invariant we can exploit this fact to make the algorithm more efficient. If the imaginary
vectors λ and λ′ lie in the sameW -orbit, thenm(λ′, n) = m(λ, n) for all n. We need only to compute
m(λ, n) by the above algorithm for λ of minimal height, i.e. in the antidominant subcone of Q+

im.

The remaining factors of m can be deduced from the fact that every λ′ ∈ Q+
im is W -equivalent to

an antidominant λ.

6. The Generalized Berman-Moody Formula

We adapt the method of Berman and Moody [BM79] to give formulas for m(λ, n). Our starting
point is equation (3.10). Set:

Σ = P (t)−1
∑

w∈W

tℓ(w)
∏

α∈Φ(w−1)

1− t−1eα

1− teα
=

∆re

m∆t,re
(6.1)

The series coefficients on the left side are ratios of power series in t, but since the right-hand side
lies in Ω1, they simplify to polynomials in t. Let Pλ(t) denote the coefficient of λ in Σ.

We may specify these coefficients using the expansion:

1− t−1eα

1− teα
=

(

1 + (1− t−2)

∞
∑

k=1

tkekα

)

(6.2)

For λ ∈ Q+, let K(λ) denote the set of real Kostant partitions of λ. That is, an element k ∈ K(λ)
is a collection of nonnegative integers kα indexed by α ∈ Φ+

re, all but finitely many of which are
0, with

∑

kαα = λ. Let |k| =
∑

kα, supp(k) = {α ∈ Φ+
re|kα 6= 0}, and let |supp(k)| denote

the cardinality of supp(k). A w-summand in Σ contributes to the coefficient of λ only if there
exists a real Kostant partition k of λ such that supp(k) ⊂ Φ(w−1). In particular, w−1(λ) ∈ Q−.
The contribution corresponding to a certain w ∈ W and k ∈ K(λ) with supp(k) ⊂ Φ(w−1) is

P (t)−1tℓ(w)(1− t−2)|supp(k)|t|k|. Therefore the full coefficient of λ can be expressed as:

Pλ(t) = P (t)−1
∑

k∈K(λ)

t|k|(1− t−2)|supp(k)|Psupp(k)(t) (6.3)
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where Psupp(k)(t), an analogue of P (t), is defined as:

Psupp(k)(t) =
∑

w∈W
supp(k)⊂Φ(w−1)

tℓ(w) (6.4)

For example, when λ ∈ Q+
im, (6.3) implies that Pλ(t) = 0, since there is no w ∈ W with

w−1(λ) < 0. When αi is a simple root, it follows from (6.3) that Pnαi
(t) = tn(1 − t−1). We do

not see a direct way to argue that Pλ(t) is a polynomial from equation (6.3), without using the
generating function Σ.

We introduce additional notation. For λ ∈ Q+, let Par(λ) be the set of vector partitions of λ. An
element of Par(λ) is an unordered tuple λ = (λi) of nonzero vectors in Q+ such that λ =

∑

λi. Let
|λ| denote the number of components in the partition. We caution the reader that vector partitions
and Kostant partitions both appear in the sequel, though we have endeavored to keep the two
concepts separate. Roughly, our formula is indexed by vector partitions of λ, and then Kostant
partitions of each component λi.

We also introduce the set OPar(λ) of ordered partitions of λ. If λ ∈ Par(λ) consists of r1 copies
of λ1, r2 copies of λ2, etc., and r components total, then the number of distinct orderings is the
multinomial coefficient r!

r1!···rk!
, which we will abbreviate, following Berman and Moody, as B(λ).

For κ, λ ∈ Q+, if λ = kκ, we will write κ|λ and λ
κ = k. Let µ denote the Möbius function. Recall

that mλ(t) =
∑Nλ

n=0m(λ, n)tn. The main theorem of this section is the following:

Theorem 6.5. For all λ ∈ Q+, we have the following:

mλ(t) =
∑

κ|λ

µ (λ/κ)

(

λ

κ

)−1
∑

κ∈Par(κ)

(−1)|κ|
B(κ)

|κ|

|κ|
∏

i=1

Pκi
(tλ/κ) (6.6)

This generalizes [BM79, Theorem 2], and recovers this theorem at t = 0. Before commencing
the proof, we state a version of (6.6) where the sum is over ordered partitions. We have:

mλ(t) =
1

ht(λ)

∑

κ|λ

µ(λ/κ)
∑

κ∈OPar(κ)

(−1)|κ|ht(κ1)

|κ|
∏

i=1

Pκi
(tλ/κ) (6.7)

The fact that formulas (6.6) and (6.7) are equivalent follows by counting possible orderings. If the
unordered partition κ consists of r1 copies of κ1, r2 copies of κ2, etc., and r components total,

then the number of orderings with κi first is
(r−1)!

r1!···(ri−1)!···rk!
= ri

r B(κ). The sum of ht(κ1) over all

orderings is
∑

riht(κi)
r B(κ) = ht(κ)B(κ)

|κ| , which yields the equivalence. Therefore it suffices to prove

the ordered version (6.7).

Proof. We have:

Σ =
∏

λ∈Q+

Nλ
∏

n=0

(1− tneλ)m(λ,n) (6.8)

By taking the logarithm of both sides, and then applying the differential operator D =
∑

i e
αi ∂

∂eαi

we obtain:

D(Σ)

Σ
=
∑

λ∈Q+

Nλ
∑

n=0

−m(λ, n)ht(λ)

∞
∑

k=1

tknekλ (6.9)

We now compute D(Σ)
Σ in terms of the coefficients Pλ(t). It is clear that:

D(Σ) =
∑

λ∈Q+

−ht(λ)Pλ(t)e
λ (6.10)
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Also, Σ−1 can be expanded as a geometric series:

1

Σ
=

1

1 +
∑

λ∈Q+\{0} Pλ(t)eλ
(6.11)

=

∞
∑

k=0

(−1)k





∑

λ∈Q+\{0}

Pλ(t)e
λ





k

(6.12)

=
∑

λ∈Q+

∑

λ∈OPar(λ)

(−1)|λ|





|λ|
∏

i=1

Pλi
(t)



 eλ (6.13)

The term
(

∑

λ∈Q+\{0} Pλ(t)e
λ
)k

expands as a sum of ordered partitions into k components. We

can expand the quotient D(Σ)
Σ in terms of ordered partitions as well, where each ordered partition

is weighted by the height of its first entry:

D(Σ)

Σ
=
∑

λ∈Q+

∑

λ∈OPar(λ)

(−1)|λ|ht(λ1)





|λ|
∏

i=1

Pλi
(t)



 eλ (6.14)

Note that the λ = 0 term here is 0.
Comparing the coefficient of eλ in our two formulas for D(Σ)

Σ we have:

∑

κ|λ

Nκ
∑

n=0

m(κ, n)ht(κ)tnλ/κ =
∑

λ∈OPar(λ)

(−1)|λ|ht(λ1)





|λ|
∏

i=1

Pλi
(t)



 (6.15)

We would like to isolate the κ = λ terms on the left side. A change of variables and Möbius
inversion yields the expression:

Nλ
∑

n=0

m(λ, n)tn =
1

ht(λ)

∑

κ|λ

µ

(

λ

κ

)

∑

κ∈OPar(κ)

(−1)|κ|ht(κ1)





|κ|
∏

i=1

Pκi
(tλ/κ)



 (6.16)

This is (6.7), and (6.6) follows. �

By definition of m(t, λ), equation (6.6) must yield 1 − t when λ ∈ Φ+
re. Furthermore, when

λ ∈ Q+ \ Q+
im and λ is not a root, equation (6.6) must yield 0. We do not see a direct argument

for this result from the formula. The situation with λ ∈ Q+
im is of greatest interest. All κ dividing

λ will belong to Q+
im as well. Notice, however, that the vector partitions of κ which contribute

nontrivially to the formula are only those with κi /∈ Q+
im for all i, so that Pκi

(t) does not vanish.
The sum is over partitions of imaginary vectors into real vectors. This will be of use in the proof
of Theorem 7.6.

6.1. Some explicit computations in rank 2. In this section we will compute some examples of
the polynomials Psupp(k)(t) in rank 2 root systems. These can be used to compute Pλ(t) by (6.3)
and then mλ(t) by (6.6). In type A2, for i = 1, 2, we have:

P (t) = 1 + 2t+ 2t2 + t3

P{αi}(t) = t+ t2 + t3

P{α1+α2}(t) = 2t2 + t3

P{αi,α1+α2}(t) = t2 + t3

P{α1,α2}(t) = P{α1,α2,α1+α2}(t) = t3
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For example, when λ = α1 + α2, there are two Kostant partitions of λ. By (6.3), we can compute:

Pλ(t) =
t2(1− t−2)2t3

1 + 2t+ 2t2 + t3
+

t(1− t−2)(2t2 + t3)

1 + 2t+ 2t2 + t3
= t2 − t (6.17)

Note that the sum is a polynomial in t, but the individual summands are not.
In all infinite rank 2 Kac-Moody root systems, the Weyl group can be presented as W = 〈s1, s2 |

s21 = s22 = 1〉, yielding:

P (t) =
1 + t

1− t
(6.18)

The positive real roots can be partitioned into two sets:

Φ+
re = {α1, s1α2, s1s2α1, s1s2s1α2, . . .} ⊔ {α2, s2α1, s2s1α2, s2s1s2α1, . . .} (6.19)

and each set Φ(w) for w ∈ W is contained in one of the two components. Thus if some supp(k)
has non-empty intersection with both components, Psupp(k) = 0. If supp(k) is contained in one
component, suppose that the highest root in supp(k) is a product of N − 1 simple reflections
applied to a simple root. Then we have:

Psupp(k)(t) =
tN

1− t
(6.20)

In this case the individual summands of (6.3) will be polynomials.

7. Properties of m

In this section we prove certain fundamental properties of m, generalizing statements of §4 to
arbitrary Kac-Moody type. We begin with two propositions describing the behavior of m with
respect to particular root subsystems.

Proposition 7.1. Let Φ1 be a root subsystem of Φ corresponding to a subset of vertices in the

Dynkin diagram. Let Q1 ⊂ Q be the corresponding root sublattice. Let m1 and m be defined as in

(3.5) for the root systems Φ1 and Φ respectively. Then:

m|Q1
= m1 (7.2)

Proof. We will use the characterization of m and m1 from (3.11). Since m
−1 is the inverse of ∆re

∆t,re

relative to the cone Q+
im and since restriction to the sublattice Q1 is a ring homomorphism, we have

that (m|Q1
)−1 is the inverse of ∆re

∆t,re
|Q1

with respect to the cone Q+
im ∩ Q1. Since the roots of Φ1

are precisely those roots of Φ which lie in Q1,
∆re

∆t,re
|Q1

is equal to the corresponding ratio for the

root system Φ1. Thus it suffices to prove that Q+
im ∩Q1 = Q+

1,im.

Recall that Q+
im is the set of vectors in Q+ all of whose Weyl group translates also lie in Q+.

Since the Weyl group of Φ1 is a subgroup of the Weyl group of Φ, a vector in Q+
im ∩Q1 must lie in

Q+
1,im. To prove the opposite inclusion, we use [Kac90, Theorem 5.4]. A positive imaginary vector

of Q1 is conjugate under the Weyl group of Φ1 to a positive antidominant vector in Q1, which is
either an imaginary root or a sum of imaginary roots. This vector is still positive and antidominant
in Q, so it is still either an imaginary root or a sum of imaginary roots in Q. Thus Q+

1,im ⊂ Q+
im. �

Proposition 7.3. Let Φ be a reducible root system and let Φ1, Φ2 be root subsystems corresponding

to a partition of the simple roots of Φ into mutually orthogonal subsets. Let m1, m2, and m be defined

as in (3.5) for the root systems Φ1, Φ2, and Φ respectively. Then:

m = m1m2 (7.4)
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Proof. In this case, theWeyl group of Φ decomposes as a direct product, and therefore the imaginary
cone Q+

im = Q+
1,im ⊕ Q+

2,im. Further, each real root of Φ is either a real root of Φ1 or Φ2, so
∆re

∆t,re

can be factored into a product over Φ1,re and a product over Φ2,re. Since m1 is the inverse of the
first product relative to the cone Q+

1,im, and m2 is the inverse of the second product relative to the

cone Q+
2,im, m1m2 is the inverse of ∆re

∆t,re
relative to Q+

im. �

With these propositions in hand it is possible to prove that m can always be expressed as a
product over positive imaginary roots, as in Theorem 4.2.

Theorem 7.5. For λ ∈ Q+ not a root, and n ∈ Z, we have m(λ, n) = 0.

Proof. For λ /∈ Q+
im, this is clear from the construction of m. For λ ∈ Q+

im not a root, by [Kac90,
Theorem 5.4], λ is W -conjugate to some antidominant vector whose support is disconnected in the
Dynkin diagram of Φ. Thus it suffices to consider prove the statement when λ has disconnected
support. By Proposition 7.1, m(λ, n) does not change if we restrict to the root subsystem corre-
sponding to Supp(λ). By Proposition 7.3, the series m on this root subsystem is a product with no
factors at the vector λ. Thus, m(λ, n) = 0. �

The following theorem generalizes (4.4) to assert that the generating polynomial mλ(t) =
∑Nλ

n=0m(λ, n)tn is divisible by (1− t)2.

Theorem 7.6. For all nonzero λ ∈ Q+, mλ(t) has a root at t = 1. For nonzero λ ∈ Q+
im, this is a

double root.

Proof. We first show that for all nonzero λ ∈ Q+, the polynomial Pλ(t) has a root at t = 1. If we
evaluate Σ at t = 1, we have:

m|t=1 =
∑

λ∈Q+

Pλ(1)e
λ (7.7)

The left side is supported on Q+
im, but on the right we have Pλ(t) = 0 for all nonzero λ ∈ Q+

im.
Therefore Pλ(1) = 0 for all nonzero λ ∈ Q+.

Next, we apply formula (6.6):

mλ(t) =
∑

κ|λ

µ (λ/κ)

(

λ

κ

)−1
∑

κ∈Par(κ)

(−1)|κ|
B(κ)

|κ|

|κ|
∏

i=1

Pκi
(tλ/κ) (7.8)

As we have shown, each Pκi
(tλ/κ) will have a root at t = 1, so the full expression has a root at

t = 1. Moreover, if λ is an imaginary vector, then each κ dividing λ is imaginary as well. The only
vector partitions of κ which contribute to the formula are partitions into vectors outside the cone
Q+

im. In particular, such partitions must have at least two components. Therefore each product
∏|κ|

i=1 Pκi
(tλ/κ) must have at least a double root at t = 1, so the full expression has a double

root. �

Therefore, for each imaginary root λ, we can define χλ = mλ(t)
(1−t)2 , which by Theorem 7.6 is an

element of Z[t]. We believe that χλ is the more fundamental object, as in the affine case. Some
examples of this polynomial are tabulated in Appendix A.
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Appendix A. Examples of the polynomial χλ

At the end of §7 we set χλ(t) =
mλ(t)
(1−t)2

for imaginary roots λ. Theorem 7.6 tells us that χλ ∈ Z[t].

In this section we tabulate certain polynomials χλ(t), computed with the algorithm of §5.

For the rank 2 hyperbolic root system with Cartan matrix





2 −3

−2 2



, we have:

λ χλ

(1, 1) 1
(2, 2) −t+ 1
(3, 2) t2 + 2
(3, 3) −t3 − 2t+ 2
(4, 3) t4 − t3 + 2t2 − 3t+ 3
(4, 4) −t5 + t4 − 2t3 + 3t2 − 6t+ 3
(5, 4) t6 − 2t5 + 4t4 − 6t3 + 9t2 − 9t+ 6
(5, 5) −t7 + t6 − 4t5 + 6t4 − 10t3 + 13t2 − 13t+ 7
(6, 4) t6 − 4t5 + 5t4 − 8t3 + 11t2 − 13t+ 6
· · · · · ·

(10, 9) t16−7t15+29t14−91t13+248t12−584t11+1197t10−2170t9+3505t8−5039t7+6437t6−
7253t5 + 7042t4 − 5618t3 + 3405t2 − 1372t + 272

For the symmetric rank 2 hyperbolic root system with Cartan matrix





2 −3

−3 2



:
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λ χλ

(1, 1) 1
(2, 2) −2t+ 1
(2, 3) t2 − t+ 2
(3, 2) t2 − t+ 2
(3, 3) −2t3 + 3t2 − 4t+ 3
(3, 4) t4 − 3t3 + 6t2 − 6t+ 4
(4, 3) t4 − 3t3 + 6t2 − 6t+ 4
(4, 4) −2t5 + 7t4 − 12t3 + 17t2 − 16t+ 6
(4, 5) t6 − 5t5 + 15t4 − 26t3 + 30t2 − 23t+ 9
(4, 6) t6 − 8t5 + 19t4 − 31t3 + 36t2 − 28t+ 9
(5, 4) t6 − 5t5 + 15t4 − 26t3 + 30t2 − 23t+ 9
(5, 5) −2t7 + 9t6 − 30t5 + 58t4 − 82t3 + 77t2 − 50t+ 16
(6, 4) t6 − 8t5 + 19t4 − 31t3 + 36t2 − 28t+ 9
· · · · · ·

(10, 9) t16 − 15t15 + 135t14 − 811t13 + 3535t12 − 11729t11 + 30615t10 − 64282t9 + 110096t8 −
154852t7 + 178868t6 − 168420t5 + 127110t4 − 74539t3 + 32094t2 − 9070t + 1267

For the Feingold-Frenkel rank 3 hyperbolic root system with Cartan matrix











2 −2 0

−2 2 −1

0 −1 2











:

λ χλ

(1, 1, 0) 1
(2, 2, 0) 1
(2, 2, 1) 2
(3, 3, 0) 1
(3, 3, 1) −t+ 3
(3, 4, 2) −2t+ 5
(4, 4, 0) 1
(4, 4, 1) −2t+ 5
(4, 4, 2) −t2 − 6t+ 7
(4, 5, 2) t3 + t2 − 9t+ 11
(5, 5, 0) 1
(5, 5, 1) −5t+ 7
(5, 5, 2) 2t3 + 2t2 − 17t+ 15
(5, 6, 2) −t4 + 3t3 + 6t2 − 26t+ 22
(5, 6, 3) −3t4 + 6t3 + 13t2 − 43t+ 30
(6, 6, 0) 1
(6, 6, 1) t2 − 8t+ 11
(6, 6, 2) −2t4 + 5t3 + 11t2 − 43t+ 30
(6, 6, 3) −6t4 + 8t3 + 23t2 − 65t+ 42
(6, 7, 2) −5t4 + 6t3 + 22t2 − 63t+ 42
(7, 7, 0) 1
(7, 7, 1) 2t2 − 15t+ 15
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Notice that the phenomenon of χλ = 1 for λ = (n, n, 0) is an instance of Proposition 7.1 and

Theorem 4.2, as these are roots of the embedded affine root subsystem A
(1)
1 .
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