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ABSTRACT
We present a new method for using measured X-ray emission line fluxes from O stars to
determine the shock-heating rate due to instabilities in their radiation-driven winds. The high
densities of these winds means that their embedded shocks quickly cool by local radiative
emission, while cooling by expansion should be negligible. Ignoring for simplicity any non-
radiative mixing or conductive cooling, the method presented here exploits the idea that the
cooling post-shock plasma systematically passes through the temperature characteristic of
distinct emission lines in the X-ray spectrum. In this way, the observed flux distribution
among these X-ray lines can be used to construct the cumulative probability distribution of
shock strengths that a typical wind parcel encounters as it advects through the wind. We apply
this new method to Chandra grating spectra from five O stars with X-ray emission indicative
of embedded wind shocks in effectively single massive stars. The results for all the stars are
quite similar: the average wind mass element passes through roughly one shock that heats
it to at least 106 K as it advects through the wind, and the cumulative distribution of shock
strengths is a strongly decreasing function of temperature, consistent with a negative power
law of index n ≈ 3, implying a marginal distribution of shock strengths that scales as T−4, and
with hints of an even steeper decline or cut-off above 107 K.

Key words: hydrodynamics – line: profiles – shock waves – stars: massive – stars: winds, out-
flows – X-rays: stars.

1 IN T RO D U C T I O N

Embedded wind shocks (EWS) are the source of the ubiquitous soft
X-ray emission seen in O stars. This is confirmed by the significantly
Doppler-broadened X-ray emission lines observed with Chandra
and XMM–Newton (Cassinelli et al. 2001; Kahn et al. 2001; Kramer,
Cohen & Owocki 2003). The EWS are generally thought to be asso-
ciated with the line deshadowing instability (LDI) that is intrinsic to
any radiation-driven flow in which spectral lines mediate the trans-
fer of momentum from the radiation field to matter (Milne 1926;
Lucy & Solomon 1970; Owocki, Castor & Rybicki 1988). Indeed,
hydrodynamics simulations show numerous shocks and associated

� E-mail: cohen@hven.astro.swarthmore.edu

clumped structure in O-stars winds (Cooper 1994; Feldmeier, Puls
& Pauldrach 1997; Runacres & Owocki 2002). Modelling indicates
that the extent to which the instability is seeded by photospheric
variability and limb darkening (Feldmeier et al. 1997; Sundqvist &
Owocki 2013) can have a strong effect on the shock structure and
X-ray emission that is produced. Additionally, multidimensional ef-
fects (Dessart & Owocki 2003, 2005) could also have a significant
effect on the shock-heating and X-ray emission that thus far has
been explored numerically only in one-dimensional simulations.

Observed X-ray emission can in principle be used to provide
constraints on wind models and the physics of the LDI and the
associated EWS. However, the X-ray emission levels from EWS in
massive stars are affected both by the impulsive shock heating and
by the cooling of the post-shock plasma, which can be through both
radiative and non-radiative channels. The fundamental questions

C© 2014 The Authors
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3730 D. H. Cohen et al.

are about the efficiency and physics of the process heating the wind
plasma to X-ray emitting temperatures, so it is the nature of the
heating that we wish to use X-ray data to constrain.

When multiple cooling channels, including non-radiative ones,
contribute significantly, the various cooling processes as well as the
heating processes have to be modelled in order to compare theory
with observations. In the dense winds of many O stars, however,
the cooling by radiation is prompt and occurs locally – the cooling
lengths are short. This situation presents us with the opportunity to
parametrize the heating directly, which is the approach taken below.

However, a complication for our simple radiatively cooled picture
has been recently emphasized by Owocki et al. (2013). Such rapidly
cooling, radiative shocks are subject to thin shell instabilities which
can lead to mixing-related reductions in X-ray emission. Because
of possible mixing effects, the shock-heating rates we derive in
this paper under the assumption of pure radiative cooling represent
lower limits. But to the extent that mixing is negligible, then the
fact that radiative cooling is the dominant cooling mechanism en-
ables us to extract shock-heating constraints directly from observed
X-ray emission line spectra of O stars (Gayley 2014) by exploit-
ing the fact that the shock-heated wind plasma cools locally via
the emission of X-rays in different lines, each one with a different
temperature-dependent emissivity. It is from this X-ray emission
line spectrum that we can reconstruct the shock-heating rate and
also its temperature dependence.

The X-ray emitting wind plasma in massive stars is usually as-
sumed to be well described by the coronal approximation: statistical
equilibrium with collisional ionization from the ground state bal-
anced by radiative and dielectronic recombination, and collisional
excitation from the ground state balanced by spontaneous emission.
This gives rise to a spectrum dominated by emission lines from
modestly excited states to the ground state of highly ionized metals,
with a small contribution from bremsstrahlung and recombination
continuum emission. Each emission line has an emissivity that is
a relatively peaked, strong function of temperature, following the
temperature dependence of the ionization balance and excitation
rates. In this way, each line probes a relatively narrow range of
plasma temperatures.

The instantaneous X-ray luminosity from a coronal plasma is
simply equal to the combined emissivity of all the lines (and con-
tinuum processes) multiplied by the emission measure (EM), which
is the volume integral of the particle number density squared. This
particular dependence arises from the two-body nature of the ex-
citation process of the emission lines (and of the bremsstrahlung
and recombination). The temperature distribution of the plasma
has thus been traditionally characterized by a differential emission
measure (DEM), d EM

dT
, which can be described by a continuous

function or by a sum of isothermal components, perhaps taken to
approximate a continuous distribution with some structure. While
subject to various data and analysis constraints and ambiguities (see
e.g. Gayley 2014), techniques exist for determining a ‘best-fitting’
DEM from an observed spectrum (e.g. Kaastra et al. 1996; Liefke
et al. 2008). However, as noted above, such a plasma temperature
distribution combines both the desired information about shock-
heating rates and distributions with extraneous and often complex
and incomplete information about the cooling history of the hot
plasma.

The EM is problematic for another reason as well. Namely, the
density-squared dependence means that a given mass of heated
plasma will have a higher EM and radiate faster if it is confined to
a smaller volume. Therefore, the DEM of post-shock plasma will
depend not only on the heating rate and the cooling rate, but also

on the local post-shock density, seemingly causing free parameters
of any model that might be fit to data to proliferate. However,
a key insight about wind shock X-ray emission that makes the
analysis much simpler is that for radiative shocks, the total X-ray
fluence from the plasma heated by a shock of a given strength
as it cools back down to the ambient temperature depends on the
mass that traverses the shock rather than the EM behind the shock
at any given instant (Antokhin, Owocki & Brown 2004; Owocki
et al. 2013; Gayley 2014).

A related consequence is that the spectrum of X-ray photons emit-
ted by this radiatively cooled plasma from the time it is impulsively
heated until it returns to its pre-shock temperature is independent
of how rapidly the plasma cools (Antokhin et al. 2004; Zhekov &
Palla 2007). In fact, the luminosity of any particular X-ray emission
line is simply given by the energy injected into the plasma by its
passage across the shock front multiplied by the fraction of the total
plasma emissivity that is due to that line (Gayley 2014) – a result
we derive below in detail (and ultimately show in equation 7). We
note the similarity to the treatment of X-ray emission from cooling
flows in galaxy clusters (Peterson & Fabian 2006).

Furthermore, since plasma impulsively heated to a given temper-
ature as it crosses a shock front will radiate at that temperature and,
as time goes on, at every lower temperature until it is fully cooled,
an emission line that forms at a given temperature will probe shocks
of every higher temperature. And the contribution of a plasma mass
parcel to that line will not depend on the heating and cooling his-
tory of the parcel, aside from the requirement that the parcel was
heated to at least the characteristic temperature of the line. In this
way, we can use an ensemble of X-ray emission lines, each with
a different temperature-dependent emissivity, to derive not only an
overall shock-heating rate but also to derive the cumulative distri-
bution of shock temperatures. Gayley (2014) has recently presented
a comprehensive formalism for analysing such cumulative initial-
temperature distributions for any impulsively heated X-ray emitting
plasma within the context of simplified heuristic emissivity func-
tions, and we extend that approach here for detailed emissivities of
real lines seen in O-star winds.

In order to obtain the individual X-ray emission line luminosities
from the measured line fluxes, a crucial step is to correct not just for
the distance to the star, and for the effects of interstellar attenuation,
but also for wind attenuation of the emitted X-rays. At any given
instant only a small fraction of the wind is shock-heated, while
most of it is relatively cold and not highly ionized and so it can ef-
ficiently absorb X-rays. While accounting for this wind absorption
can be done via detailed modelling of the spatial distribution of the
X-ray emitting wind plasma and the radiation transport through the
absorbing wind simultaneously (e.g. Hervé et al. 2012), the proce-
dure is much more tractable when the wind absorption correction is
done separately for each line and independently of the modelling of
the heating and cooling. Here, we use the wind absorption optical
depths derived by Cohen et al. (2014) via X-ray line-profile fitting
to make this wind absorption correction.

In this paper, we apply the cumulative initial-temperature distri-
bution approach described by Gayley (2014) to the specific case
of the dense winds of O stars with radiative wind shocks driving
their EWS X-ray emission. Specifically, we analyse the line-rich
Chandra grating spectra of five OB stars (Cohen et al. 2014) in
order to derive the shock-heating rates in their winds. In Section 2,
we describe quantitatively how the measured line fluxes are related
to the wind shock-heating rate and we also describe the data used in
the analysis. In Section 3, we present the results for the programme
stars. And in Section 4 we discuss the implications of our results.

MNRAS 444, 3729–3737 (2014)
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2 T H E O RY A N D DATA A NA LY S I S

For radiative shocks with negligible mixing all the energy injected
into the flow as it crosses a shock front eventually appears as radi-
ated photons as the plasma cools from its initial high temperature
back down to the ambient wind temperature. While the plasma
remains hotter than about 106 K most of those photons will be
X-rays, whereas at lower temperatures, most of the radiation will
be in the EUV, FUV and UV, and will therefore not be observ-
able by Chandra or other X-ray telescopes. For coronal plasmas,
the emission strength of a given line, �, can be characterized by
a temperature-dependent emissivity, ��(T). The form of the tem-
perature dependence arises from the dependence of the ionization
balance on temperature and, to a lesser extent, from the excitation
rate’s temperature dependence. In Fig. 1, we show the emissivities
of the lines and line complexes we analyse in the O-star X-ray spec-
tra discussed in this paper. These lines span more than an order of
magnitude in temperature, but with a fair amount of overlap.

There are many additional weaker lines that contribute to
Chandra spectra along with continuum processes – bremsstrahlung
and recombination – which are relatively weak for plasmas with
temperatures below 10–20 million K. In Fig. 2, we show the total
line-plus-continuum emissivity for a coronal plasma, �(T), accord-
ing to ATOMDB (Foster et al. 2012), which is the same source we use
for the individual line emissivities. We note that the ATOMDB models
assume solar abundances (Anders & Grevesse 1989). More recent
re-evaluations of the solar abundance (e.g. Asplund et al. 2009), as
well as abundance variations among the specific programme stars,
would lead to factors generally of the order of tens of per cent ad-
justments to the line emissivities. We do not account for possible
differences in assumed solar abundances or specific star’s particular
abundances, except in a few cases, for which non-solar O and N
abundances are quite significant. In those cases, we simply scale the

Figure 1. The line emissivities from ATOMDB (Foster et al. 2012) for all
the lines measured in the programme stars. The four lines from each of the
helium-like complexes are combined together into a single emissivity for
each complex, and likewise the two components of the Lyα features are
combined together into a single emissivity function. Several important lines
at the extremes of the temperature distribution are labelled and the Fe XVII

lines are denoted by the dashed, black curves. The N VI line complex is
present in XMM–Newton spectra, but not Chandra spectra. We include it in
the analysis of ζ Pup only. Similarly, the dotted purple curve is for the S XVI

Lyα line that we include only in the ζ Pup analysis (it is not detected, but
provides an interesting upper limit, as discussed in Section 4).

Figure 2. The contribution of all emission lines (blue) to the total radiated
power (red), along with the contribution of continuum processes (green).

ATOMDB emissivities for the relevant lines according to the specific
element’s abundance. Note that traditionally in X-ray astronomy,
the quantity referred to as emissivity, �, has units of ergs cm3 s−1,
so that multiplying it by a number density squared gives the more
usual power per unit volume. The advantage of defining � in this
way is that it is independent of the plasma density.

With these emissivities in hand, we can compute the fraction of
the total radiated power that emerges from the plasma in a given line,
at a given temperature. As the hot, post-shock plasma cools back
down to its low, pre-shock value, the fraction of radiation emitted in
a given line � for a single shock with post-shock temperature Ts is
set by

f�(Ts) =
∫ Ts

0

��(T )

�(T )

dT

Ts
, (1)

where ��(T) is the line emissivity (the curves shown in Fig. 1) and
�(T) is the total emissivity [the upper (red) curve shown in Fig. 2].1

Note that it does not matter how quickly the plasma cools, as it will
emit the same amount of energy in cooling through some temper-
ature interval whether it does so slowly or rapidly. It is implicit in
our procedure that the stars being analysed have a large, statisti-
cal sample of shocks representing all stages of shock evolution and
therefore that a single X-ray observation is equivalent to completely
tracking the evolution of a representative ensemble of shocks.

Now, we consider the line emission from a distribution of shocks.
Let us suppose a typical fluid parcel undergoes N̄ shocks in advect-
ing out through the wind, with each shock having a cumulative
probability p(Ts) for a post-shock temperature at or above Ts, which
declines from unit normalization for very weak shocks, p(0) = 1.
Then for a wind with mass-loss rate Ṁ , the total luminosity in
the line is given by an integral over the differential distribution2 in

1 This approach is similar to the one described in section 2.3 of Kee, Owocki
& ud-Doula (2013) for computing the fractional power radiated by a hot
plasma into a particular X-ray bandpass.
2 The differential probability distribution, pd ≡ − dp

dTs
, represents the prob-

ability that a shock heats the plasma to a temperature between Ts and
Ts + δTs. Meanwhile, the cumulative probability distribution, p(Ts), repre-
sents the probability that a shock heats the plasma to a temperature of Ts or
lower. For example, if pd(Ts) is a delta function at Ts = To – representing an
impulsive isothermal heating event – then the cumulative shock distribution

MNRAS 444, 3729–3737 (2014)
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shock temperature, − dp
dTs

, multiplied by the energy associated with
the shocked wind mass at that temperature and the fraction of the
energy that is radiated in the line (given by equation 1),

L� = 5

2

N̄Ṁk

μmp

∫ ∞

0
−dp(Ts)

dTs
Tsf�(Ts) dTs . (2)

Here, the mean molecular weight μ is in units of the proton mass
mp and the post-shock enthalpy per unit mass3 is (5/2)kTs/μmp.
Integrating by parts and using equation (1) we have

L� = 5

2

N̄Ṁk

μmp

∫ ∞

0

��(Ts)

�(Ts)
p(Ts) dTs . (3)

This equation shows that the observed line luminosity, L�, de-
pends on the convolution of the actual shock distribution function,
p(Ts), with the emissivity ratio. For notational and conceptual clar-
ity, let us divide this convolution integral into two parts,

p̃� �T� =
∫ ∞

0

��(Ts)

�(Ts)
p(Ts) dTs, (4)

where p̃�, the normalized convolution of the cumulative shock distri-
bution, is the observationally derived quantity.4 The normalization
factor, �T�, is set by atomic physics,

�T� ≡
∫ ∞

0

��(T )

�(T )
dT , (5)

which represents the portion of the temperature change in the cool-
ing layer that is associated with a specific line. In an analogy with
spectral line equivalent width, this can be thought of as a ‘tempera-
ture equivalent width,’ in that it is the width a line emissivity curve
would have if it were rectangular in shape and accounted for all of
the radiated power, rather than just a fraction, over that temperature
range (Gayley 2014).

Within the assumed model, equation (3) is an exact integral ex-
pression for the line luminosity given emissivity functions of any
form. As Fig. 1 shows, the emissivity for each line has a distinct peak
at a specific temperature, and to the extent that these emissivities
are strongly peaked functions of temperature, the extraction of the
shock-heating rate from an ensemble of line luminosity measure-
ments is quite straightforward, as we will presently show. In Fig. 3,
the individual line emissivity functions are plotted as a ratio of the
total emissivity, normalized to have the same peak value, and shown
on a temperature scale based on each function’s maximum (defined
as T = T�). We also show these functions multiplied by a power law
of index n = 3 to approximate the integrand in equation (4), which
is the key quantity related to the observationally derived shock-
heating rate for each line, p̃�. Given that this key functional form
is quite narrow, and for conceptual and mathematical simplicity,5

function p(Ts) would be a step function with p(Ts) = 1 for Ts ≤ To and
p(Ts) = 0 for Ts > To.
3 By using the 5/2 enthalpy factor rather than the 3/2 appropriate for internal
energy, we are allowing for the possibility that the pdV work done on the
gas as it crosses the shock front could also contribute to the eventual X-ray
emission.
4 The quantity p̃� is equivalent to 〈p〉i defined in equation (18) of Gayley
(2014).
5 In Appendix A, we explore a ‘PLB’ model that accounts more realistically
for the broader and asymmetric form of the emissivities. A key result is that
there is still a direct connection between the observed p̃� for each line and
the shock distribution evaluated at the peak temperature, p(T�), differing
only by a normalization factor of order unity from the δ-function based
analysis presented in this section.

Figure 3. The individual line emissivity ratios, ��/�, plotted on a common
temperature scale based on each line’s T�, normalized to have the same
peak emissivity (left) and also multiplied by a power law of index n = 3
that we find, in the next section, is representative of our programme stars’
shock-heating rates, p(Ts) (right). The quantity in this right-hand panel
represents the key integrand in equations (3) and (4). The overlapping red,
dashed curves represent iron lines, the solid, black curves, He-like ions,
and the dotted, blue curves, H-like ions, with their stronger high-energy
tails. Note that the peaks are not at T = T� in the right-hand panel because
the multiplicative power-law factor affects the emissivity ratios differently
depending on their shapes.

here we treat the emissivity ratio as a δ-function,

��(Ts)

�(Ts)
= �T� δ(Ts − T�), (6)

from which we trivially find that p̃� = p(T�). Equation (3) then
becomes

L� = Ṁ
5k�T�

2μmp
N̄p(T�), (7)

from which can be obtained an empirically inferred N̄p(T�) in
terms of an observed set of line luminosities, L�, and the tabulated
emissivity functions that contribute to �T�,

N̄p(T�) = 2μmpL�

5Ṁk�T�

. (8)

The product N̄p(T�) is a unitless number describing the expectation
value of the number of shocks with temperature Ts ≥ T� that a mass
parcel traverses as it flows through the wind.

The X-ray spectral data we use to make the determination of
L� for use in equation (8) are the line fluxes measured with the
Chandra High Energy Transmission Grating Spectrometer
(Canizares et al. 2005). We supplement these with the N VI line
complex measured with XMM–Newton in ζ Pup (Leutenegger
et al. 2007) to provide information on the low-temperature end
of the p(Ts) distribution. To convert the measured line fluxes into
luminosities, L�, we apply corrections for (1) the inverse square law
via the distances to the programme stars; (2) the transmission of the
interstellar medium; and (3) the transmission of the stellar winds
themselves.

The bulk, cool component of massive-star winds is a source of
continuum bound-free opacity to the EWS X-rays. Not only does
this opacity lead to attenuation of the X-rays – which we must
correct for – but it also leads to a characteristic asymmetry of the
X-ray line profiles. The profile fitting of the observed X-ray emis-
sion lines that we use to find the line fluxes also provides information
about the wind optical depth at the wavelength of each line – via the

MNRAS 444, 3729–3737 (2014)
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parameter, τ∗ ≡ κṀ/4πR∗v∞ (Owocki & Cohen 2001). Here, κ is
the wavelength-dependent bound-free opacity at the wavelength of
the emission line, which is assumed to be independent of location
in the wind, Ṁ is the wind mass-loss rate, R∗ is the stellar radius,
and v∞ is the stellar wind terminal velocity.

From the fitted τ ∗ values, we can compute the transmission (de-
fined as the fraction of the emitted X-ray radiation that escapes the
wind) using the formalism of Leutenegger et al. (2010). We note that
this transmission value is not the usual exponential form due to a
slab of absorbing material between the observer and the source, but
rather is a more complicated function that accounts for the spatial
distribution of the emitting plasma embedded within the absorbing
wind. This wind transmission correction can be significant. Fig. 4
shows the transmission values, Tw, for each of the 16 lines measured
in the Chandra spectrum of ζ Pup, which is the star in our sample
with the most wind attenuation. Appropriate corrections are applied
to the other four stars, as well, with line optical depth values taken
from Cohen et al. (2014).

Given these considerations, the line luminosity, L� is computed
from the observed line flux, F� by

L� = 4πd2F�e
τism/Tw(τ∗), (9)

where d is the distance to the star, τism is the optical depth of the
interstellar medium, which we compute from the observed ISM
column densities and the TBABS ISM absorption model (Wilms,
Allen & McCray 2000), and Tw(τ∗) is the wind transmission. This
is denoted as T(τ ∗) in Leutenegger et al. (2010), but is slightly
relabelled here to better distinguish it from the temperature.

Our sample consists of the five massive stars with high quality
Chandra grating spectra in Cohen et al. (2014) that are not con-
taminated by colliding wind X-ray emission and that have winds
dense enough to be fully radiative out to large radii (which elim-
inated the weak-wind star ζ Oph). We also exclude the O2If*
star HD 93129A which has only a small number of lines visi-
ble in its Chandra spectrum. For each of the five stars analysed,
Table 1 lists the relevant stellar and wind parameters. This includes
the adiabatic radius, Ra, at which the radiative cooling length of a
1 keV shock equals the stellar radius (Owocki et al. 2013). Below
Ra, shocks cool primarily by radiation, while above it, adiabatic

Figure 4. The fraction of the emitted line photons that are transmitted
through the wind without being absorbed, for each line in the Chandra
spectrum of ζ Pup, as a function of each line’s characteristic optical depth
value, τ ∗, derived from fitting the line profile shapes (Cohen et al. 2014).

expansion dominates the cooling. The bulk of the X-ray emission
from EWS in massive stars comes from the first several stellar radii
of the wind according to both theoretical calculations (Feldmeier
et al. 1997) and observational constraints from line profiles and
forbidden-to-intercombination line intensity ratios measured via
X-ray spectroscopy (Leutenegger et al. 2006). Thus, the values
of Ra listed in the table justify the assumption of radiatively cooled
shocks in the programme stars.

3 R ESULTS

The shock-heating rates N̄p(T�) computed using equation (8) for
each emission line in each of the stars are plotted in Fig. 5 as a
function of the lines’ temperatures of peak emissivity, T�. The tem-
perature range for each line in that figure represents the full width at
half-maximum (FWHM) of the line emissivity ratio, ��(T)/�(T).
For each star, different lines that probe similar temperature ranges
give consistent results. And there is clearly a decreasing trend for
each star, consistent with the cumulative, monotonic nature of the
probability function, p(Ts). Note that this is not something imposed
by our method, but rather is a reassuring consistency check on it.
We note, also, that applying the wind and ISM transmission cor-
rections improved the consistency of the results, as did accounting
for lower oxygen and higher nitrogen abundances in ζ Pup (Bouret
et al. 2012; Leutenegger et al. 2013) and ξ Per.6

Uncertainties in the derived N̄p(T�) values come from several
different sources. The biggest uncertainties are in the stellar and
wind properties – the distances and mass-loss rates – however, those
errors will affect every line from a given star by the same amount
and so will simply scale up or down the overall shock-heating rate
for a given star. The sources of error that vary from line to line –
statistical error on the measured brightnesses of each line and the
ISM and wind transmission corrections – generally amount to a
few tens of per cent. Fig. 5 shows these latter errors, but not the
mass-loss rate and distance errors, as the vertical extent of the grey
boxes.

We fit a power law to each star’s cumulative shock-heating rate –
the ensemble of N̄p(T�) values – shown in each panel of Fig. 5 and
all together in Fig. 6. The power law has the simple form

N̄p(Ts) = No

(
T

106 K

)−n

. (10)

Table 2 lists the best-fitting power-law model parameters, No and
n. All of the measured lines have peak emissivity ratios at temper-
atures, T� > 106 K, so determining a value for No requires some
extrapolation. A less model-dependent statement can be made look-
ing at Fig. 6 – all the stars have N̄p(T ) values approaching 0.1 for
their coolest lines, which have peak temperatures, T�, between 2
and 4 × 106 K. For ζ Pup, the N VI complex observed with XMM–
Newton probes temperatures near 1.5 × 106 K and has an N̄p(T�)
value slightly above 0.1.

4 D I SCUSSI ON

The results for all five stars are quite similar, with the N̄p(T�)
shock-heating rate consistent with a power-law index of roughly
n = 3 and about 10 per cent of the wind mass passing through a

6 For this latter star, no nitrogen lines are used, and we make a factor of 1/3
correction to the oxygen abundance, which we base on visual inspection of
the X-ray spectrum.

MNRAS 444, 3729–3737 (2014)

 at Sw
arthm

ore C
ollege L

ibrary on M
arch 30, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


3734 D. H. Cohen et al.

Table 1. Stellar and wind properties.

Star Spectral type d R∗ v∞ Ṁ Ra NISM

(pc) (R�) (km s−1) (M�yr−1) (R∗) (1022 cm−2)

9 Sgr O4 V 1300a 12.4b 3100 3.7+1.0
−0.9 × 10−7 24 0.22

ζ Pup O4 If 460c 18.9d 2250 1.76+0.13
−0.12 × 10−6 103 0.01

ξ Per O7.5 III 382e 14.0f 2450 2.2+0.6
−0.5 × 10−7 16 0.11

ζ Ori O9.7 Ib 226e 22.1b 1850 3.4+0.6
−0.6 × 10−7 21 0.03

ε Ori B0 Ia 363g 32.9g 1600 6.5+1.1
−1.5 × 10−7 31 0.03

References: aTothill et al. (2008); bMartins, Schaerer & Hillier (2005); cMarkova et al. (2004);
dNajarro, Hanson & Puls (2011); evan Leeuwen (2007); fRepolust, Puls & Herrero (2004); gSearle
et al. (2008); all terminal velocities from hHaser (1995), all mass-loss rates from Cohen et al. (2014),
and all ISM column densities from Fruscione et al. (1994).

shock of Ts > 2 × 106 K. This temperature is roughly the minimum
plasma temperature that produces significant radiation in the X-ray
bandpass (ud-Doula et al. 2014), and so our values of No reveal that
much of the wind contributes to the observed X-ray emission from
these stars, although simulations and observations both show that,
at any given instant, only a small fraction of the wind mass is hot
enough to emit X-rays. This is, however, consistent with No ≈ 1
since the typical shock cooling time is much shorter than the wind
flow time.

If we consider the differential probability distribution of shock
strengths, rather than the directly derived cumulative one, then we
have an even steeper slope of T−4, implying that a shock is 104

times less likely to heat a mass parcel of wind plasma to within 1 K
of T = 107 K than it is to heat it to within 1 K of T = 106 K. If
we consider heating per decade then we are back to having a slope
of T−3; that is dN̄p

dlogT
∝ T −3. So a shock is 1000 times less likely to

heat a mass parcel to within a fixed fraction of T = 107 K as it is to
heat it to within that same fixed fraction of T = 106 K.

The lines from the hottest plasma tend to be weak, as the strongly
decreasing derived shock distributions indicate. We have little di-
rect information about plasma with temperature much in excess
of 107 K and, specifically, it is difficult to know whether there
is a high-temperature cut-off to the plasma temperature distribu-
tion. Bear in mind that the power laws we show in Fig. 6 are fits
to the data-derived shock-heating rates for each line, but we have
not attempted to show that the distributions truly are power laws.
Consulting Fig. 1, we can see that the Si XIV line complex near 6
Å does not have significant emissivity much below 107 K, though
that line is present in the high signal-to-noise spectrum of ζ Pup
only, while the Mg XII Lyα line, with a slightly lower temperature
response, is present in each of our programme stars. So, it does
seem safe to say that the shock-heating distribution reliably extends
to at least 107 K.

To further explore the constraints on the hottest plasma and the
strongest shocks, for the star ζ Pup we have extracted upper limits
for five high-temperature lines that should be at least moderately
strong in coronal plasmas with temperature in excess of 107 K.
We then compute upper limits on the quantity N̄p(T�) given the
measured upper limits for the line luminosities, L�. These five limits
are shown in the ζ Pup panel in Fig. 5 as downward facing arrows.
The lowest of these, from the S XVI Lyα line, probing temperatures
between about 15 and 50 million K, is interesting, lying about an
order of magnitude below the fitted power-law shock-heating rate,
N̄p(Ts). Similarly, the shock-heating rate derived from the measured
Si XIV line, lies substantially below the power-law fit. As we show
in the appendix, for hydrogen-like ions such as these, the empirical

shock-heating rate derived for a particular line using equation (4),
p̃�, may underestimate the true shock-heating rate for the line, p(T�),
by about a factor of 2. Correcting for this effect would still leave
those two points substantially below the power-law fit, suggesting
– but not providing conclusive evidence – that there is a strong
decline, or even a cut-off, in the shock-heating rate at temperatures
above about 107 K.

The results derived here for the shock-heating rates can be com-
pared to the results from the more traditional DEM approach
(Wojdowski & Schulz 2005) which finds d EM

dT
∼ T −2 for normal

O stars generally (and two of our programme stars, ζ Pup and ζ

Ori, specifically). The EMs reported on a line-by-line basis in Wo-
jdowski & Schulz (2005) show significantly more scatter than our
N̄p(T�) results do. This is likely due partially to those authors’ ne-
glect of wind absorption, which is difficult to account for in the
traditional DEM approach. And in the case of ζ Pup, it is also likely
due to the neglect of non-solar abundances in the DEM analysis.
Finally, the steeper slope we find for N̄p(Ts) can be reconciled with
the shallower overall trend Wojdowski & Schulz (2005) report for
the O-star DEMs because the DEM should approximate the ratio of
the heating rate to the cooling rate, and since radiative cooling in the
106 < T < 107 K range is a modestly decreasing function of tem-
perature, the heating rate should indeed have a steeper (negative)
slope than the EM.

Finally, we emphasize that our shock-heating rate approach pro-
vides a physically meaningful overall normalization, namely the
expectation value for the number of shocks a typical wind mass
parcel passes through, whereas the DEM provides only a snapshot
of the amount of wind material emitting X-rays at any given time.
Interpreting that quantity in terms of the physically more informa-
tive shock-heating rate would require modelling the cooling as well
as the heating, which depends on the assumptions that are made
about the local density in the post-shock X-ray emitting volumes
for this density-squared diagnostic.

Our new results present specific targets for simulations of EWS.
They imply an efficient shock-heating mechanism, but one that
is a strongly decreasing function of shock temperature and which
rarely produces shocks hotter than 107 K. And they also strongly
suggest that the shock-heating mechanism’s characteristics are not
too sensitive to stellar or wind parameters, as the results for our
programme stars are relatively uniform, despite a wide range of
spectral subtypes, wind mass-loss rates and terminal velocities. To
the extent that there are differences among the programme stars’
results, there appears to be a higher shock-heating rate for the stars
with earlier spectral subtypes. Fig. 6 shows that in the middle of the
temperature range sampled by the lines we observe, there is roughly
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O star wind shock-heating rate 3735

Figure 5. The shock-heating rate, N̄p(T�), is shown with the uncertainty on its value (vertical extent of each grey box) as well as the FWHM of the line
emissivity ratio, ��(T)/�(T) (horizontal extent, visually reinforced by the horizontal error bars). The points are at T� for each line. The best-fitting power law
to each set of values is shown as a blue line in each panel. For ζ Pup, the lowest temperature point corresponds to the N VI feature measured with XMM–Newton.
And for this star, upper limits are included for five additional lines, none of which are detected in the Chandra spectrum.

an order of magnitude range in the overall shock-heating rate levels
among the sample stars.

It will be interesting to see if the self-excited LDI can repro-
duce the observational results we have derived here or if pertur-

bations at the wind base and the associated clump–clump colli-
sions (Feldmeier et al. 1997; Sundqvist & Owocki 2013) will be
required to explain the results. Although there are few relevant
predictions in the current literature, numerical simulations of the
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Figure 6. The shock-heating rate, N̄p(T�), derived from each line of each of
our programme stars. These are the same results shown in Fig. 5 but simply
collected together to facilitate comparison. We do not show the uncertainties
on each point – corresponding to the vertical extent of the grey boxes – to
keep the plot from being too cluttered. Because the lower range of the x-axis
is T = 106 K, the power laws’ y-intercepts give the value of No for each star,
as defined in equation (10).

Table 2. Power-law fits to N̄p(T�)
values.

Star Spectral Type No n

9 Sgr O4 V 0.90 2.38
ζ Pup O4 If 0.26 2.20
ξ Per O7.5 III 0.50 3.02
ζ Ori O9.7 Ib 0.53 3.24
ε Ori B0 Ia 0.14 2.84

self-excited instability show velocity dispersions of a few
100 km s−1 (Runacres & Owocki 2002; Dessart & Owocki 2005),
representing how much variation the wind velocity shows at a given
radius over a long simulation run-time. This velocity dispersion is
largely due to shocks but its magnitude depends on the duty cycle
of shocks as well as their strengths, and so it is difficult to inter-
pret directly in terms of a shock-heating rate. The typical velocity
dispersion value corresponds to a shock temperature of roughly
106 K (Tshock ≈ 106(vshock/300 km s−1)2 K), consistent with the
dominance of weak shocks over strong shocks that we find in this
paper. In principle, for one-dimensional numerical simulations es-
pecially, it should be possible to track shock fronts and empirically
determine both the mass flux and the characteristic shock tempera-
ture for each shock and in that way compute the N̄p(Ts) predicted

by theory under various assumptions. We plan to examine this in
future work.
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A P P E N D I X A : PL B M O D E L FO R L I N E
E MISSION

To infer the wind shock distribution from observed X-ray emission
line fluxes, Section 2 assumes the emissivity ratio ��(T)/�(T) can
be modelled as a narrow, δ-function form about a peak emission
temperature T�. But the plot in Fig. 1 suggests instead that this
line emissivity has a sharp, exponential, Boltzmann-factor cut-off
at low T, and a more gradual power-law decline at high T. Let us
thus examine the effects of such a ‘Power-Law Boltzmann’ (PLB)
form for the line emissivity.

Specifically, for the case of a Boltzmann cut-off with an asymp-
totic power index q > 0 at high temperature, let us write

��(T )

�(T )
≈ C� e−qT�/T

(
T

T�

)−q

, (A1)

which has its peak at temperature T = T�, with C� a normalization
constant to be set below. For a shock distribution that is itself a pure
power law with index n, i.e.

p(Ts) =
(

Ts

To

)−n

, (A2)

the convolution integral in equation (3) takes the form
∫ ∞

0

��(Ts)

�(Ts)
p(Ts) dTs = C� T� q1−n−q(n + q − 1)

(
T�

To

)−n

(A3)

≡ C� T� Knqp(T�); n + q > 1 , (A4)

where  is the complete Gamma function, and the restriction
n + q > 1 is required to insure convergence of the integral. In
defining a constant factor Knq that depends on the power exponents
n and q, the latter equality (A4) shows that the convolution over
this more general PLB form for the emission still yields the original

shock distribution at peak emission temperature, p(T�), but now just
with a somewhat different normalization.

Note in particular that for n = 0 and thus q > 1, the integral (A3)
reduces to the definition (5), giving now �T� = C�T�K0q. For cases
with q > 1, we can use this to eliminate the normalization constant
C� in favour of �T�, yielding

p̃� ≡
∫ ∞

0

��(Ts)

�(Ts)
p(Ts)

dTs

�T�

(A5)

= (n + q − 1)

qn(q − 1)
p(T�) (A6)

≡ Knq

K0q

p(T�); q > 1 , (A7)

which thus provides a convenient notation for comparison with
results from Section 2.

Rather remarkably, we thus find that, for this PLB form for line
emission, the emission-weighted integration over the shock distri-
bution, p̃�, still reproduces the actual shock distribution, p(T�), with
now just an added renormalization factor.

Thus, at least in the case that the original shock distribution is
indeed a pure power law, all the previous results – derived under the
assumption that the emission has a narrow, δ-function form about
the peak – can still be retained for this more realistic PLB form, if
one simply makes a modest renormalization in the overall level of
the inferred distribution!

As a specific example, for He-like ions, like O VII or N VI, we find
q ≈ 3. For a typical inferred shock distribution power index n ≈ 3,
this gives

p̃� = 8

9
p(T�); n = 3, q = 3 , (A8)

showing that in this case the renormalization correction is just
slightly below unity.

For H-like ions like O VIII or Si XIV, we find q ≈ 1.7, giving,

p̃� = 0.65 p(T�); n = 3, q = 1.7 , (A9)

showing that in this case the renormalization correction is still just
moderately below unity.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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