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EQUIVALENCE BETWEEN
UNIFORM L () A-PRIORI BOUNDS
AND UNIFORM L*(2) A-PRIORI BOUNDS
FOR SUBCRITICAL ELLIPTIC EQUATIONS

ALFONSO CASTRO — NSOKI MAVINGA — RosA PARDO

ABSTRACT. We provide sufficient conditions for a uniform L2 (£2) bound
to imply a uniform L°°(£2) bound for positive classical solutions to a class
of subcritical elliptic problems in bounded C? domains in RY. We also
establish an equivalent result for sequences of boundary value problems.

1. Introduction

We consider the existence of L™(€1) a priori bounds for classical positive
solutions to the boundary value problem

(1.1) —Au = f(u), in Q, u=0, ondQ,
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14 A. CASTRO — N. MAVINGA — R. PARDO

where @ ¢ RY, N > 2, is a bounded domain with C? boundary 9€2. We provide
sufficient conditions on f for L?" () a priori bounds to imply L™(Q) a priori
bounds, where 2* = 2N /(N — 2) is the critical Sobolev exponent. The converse
is obviously true without any additional hypotheses.

The existence of a priori bounds for (1.1) has a rich history. In chronological
order, [18], [14], [17], [4], [15], [11], [10] and [2] are some of the main contributors
to such a development. We refer the reader to [6] where their roles are discussed.

The ideas for the proof of our main Theorem are similar to those used in
[6, Theorem 1.1]. In [6] we give sufficient conditions on the nonlinearity to
have L>(€) a priori bounds, while here we prove the equivalence between the
existence of L>(£2) a priori bounds and the existence of L2* () a priori bounds

For cobheritieal allintic armiatinng TToalila ¢ho neanf in 8] hora we din nat ven
: o N i Ly

Pohozaev or moving planes arguments.
Our main result is the following theorem.

THEOREM 1.1. Assume that the nonlinearity f: Rt — R is a locally Lip-
schitzian function that satisfies:
(H1) There exists a constant Cyy > 0 such that
1
liminf — min f > .
800 f(.‘i) [8/2.s]
(H2) There exists a constant Cy > 0 such that

lim sup

max f < C}.
s—o0  f(8) [0,3)

SORE i, o, # da subcritio
(F) ﬂl:!&w o 0; that is, f is subcritical.

Then the following conditions are equivalent:

(a) there exists a uniform constant C' (depending only on Q and f) such
that, for every positive classical solution u of (1.1),

lw]| o0y < C,

(b) there exists a uniform constant C (depending only on §} and f) such that
for every positive classical solution u of (1.1)

(1.2) [ 1PN+ ar <
Q

(¢) there emists a uniform constant C (depending only on @ and f) such
that, for every positive classical solution u of (1.1),

(1.3) llull g2+ () < C.

In [7] and [8] the associated bifurcation problem for the nonlinearity f(A,s) =
As + g(s) with g subcritical is studied. Sufficient conditions guaranteeing that
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either for any A < A; there exists at least a positive solution, or that there exists
a A* < 0 and a continuum (A, uy), A* < A < Ay, of positive solutions such that

“VUA”L?(Q) — 00, as A — A%,

are provided. See [8, Theorem 2]. In the case Q is convex, for any A < A
there exists at least a positive solution, see [7, Theorem 1.2]. In [9] the concept
of regions with convez-starlike boundary is introduced and sufficient conditions
for the existence of a priori bounds in such regions are established. In [16] the
existence of a priori bounds for elliptic systems is provided.

In this paper, we also provide sufficient conditions for the equivalence of
the existence of L' (Q) a priori bound with that of L>(Q) a priori bound for
sequences of boundary value problems. In fact, we prove the following theorem.

THEOREM 1.2. Consider the following sequence of BVPs
(1.3)% —Av = gi(v) inQ, v=0 ondQ,
with gr: BT — R locally Lipschitzian. We assume that the following hypotheses
are satisfied

(H1);, There erists a uniform constant C1 > 0, such that

li f >C
SR 2

(H2), There erists a uniform constant Ca > 0 such that

lim sup
s—+00 Qk(s)

Let {vy} be a sequence of classical positive solutions to (1.3)y for k € N. If
T 2F
B lim geloel)/ ol =0,

then, the following two conditions are equivalent:

m Qk<02

(a) there exists a uniform constant C, depending only on Q and the sequence
{gx}, but independent of k, such that for every vy > 0, classical solution
to (1.3)
limsup ||vk|| e () < C;
k—ro0

(b) there exists a uniform constant C, depending only on Q and the sequence
{gk}, but independent of k, such that for every v, > 0, classical solution
to (1.3)x
(1.4) lim sup f gk (vp) |2/ W+ dze < C.
k—o00 Q
(c) there exists a uniform constant C (depending only on 2 and the sequence

{gk}) such that for every positive classical solution v of (1.3);

(1.5) vkl (@) < C.
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Hypothesis (H1)y, and (H2), are not sufficient for the existence of an L™
a priori bound. Atkinson and Pelletier in [1] show that for f.(s) = s2'~1°¢
and  a ball in R3, there exists zp € {2 and a sequence of solutions u. such
that ;i_%us =0in C'(\ {z0}) and !E%ug(mg) = +400. See also Han [13], for
non-spherical domains.

Furthermore, hypotheses (H1)g, (H2)x, and (F)i, are not sufficient for the
existence of an L™ a priori bound. In fact, in Section 4 we construct a sequence
of BVP satisfying (H1)g, (H2)x, and (F)g, and a sequence of solutions vy such
that lerx;o lvk]loo = +00. Our example also shows the non-uniqueness of positive

solutions.

2. Proof ot L'heorems 1.1 and 1.2

In this section, we state and prove our main results that hold for general
bounded domains, including the non-convex case. We provide a sufficient condi-
tion for a uniform L2"(Q) bound to imply a uniform L>(£2) bound for classical
positive solutions of the subcritical elliptic equation (1.1). We also give sufficient
conditions such that the L>(€) bound of a sequence of classical positive solu-
tions of a sequence of BVPs (1.3); is equivalent to the uniform L?" () bound
of the sequence of reaction functions. The arguments rely on the estimation of
the radius R of a ball where the function u exceeds half of its L> bound, see
Figure 1.

All throughout this paper, we assume that ) C R is a bounded domain
with C? boundary, and C denotes several constants independent of u, where
u > 0 is any classical solution to (1.1).

lul

XOR

FIGURE 1. A solution, its L% norm, and the estimate of the radius R such
that u(z) > ||u|leo/2 for all z € B(zo, R), where zg is such that w(zo) =
o -
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REMARK 2.1. By (1.2), elliptic regularity and the Sobolev embeddings imply
that

1/2
(2.1) llll 22y < (/ |Vul? dﬂ?) <C.
Q
Hence, for any classical solutions to (1.1), we have
22) [ wrtw)ds = fullyq <.

PROOF OF THEOREM 1.1. Since € is bounded (a) implies (b) and (c). From
elliptic regularity and condition (1.2), we deduce that |lu|yz2v/viny < C. Tt
follows using twice the Sobolev embedding that a uniform bound in W22N/(N+2)
implies a uniform bound in H'(Q2) and a uniform bound in L?" (), that is,

(2.3) llullL2e () < C,

for all classical positive solution u of equation (1.1). Therefore, (b) implies (c).

Now, assume that (c) holds. It follows from the subcriticality condition (F)
that |f(s)[2N/(N+2) < %" for all s large enough. Thus, for any classical solution
to (1.1), we have

/ £ () 2N/ N+ gy < f 2N/ N2 g 4 € < C.
Q 9]

Thus (b) and (c) are equivalent.
Next, we concentrate our attention in proving that (b) implies (a). Since
2N/(N +2) =1+1/(2* — 1), the hypothesis (1.2) can be written

(2.4 ] F@)H/C D gg < .
193

Therefore,

(2.5) fﬂlf(tt(w))lqdws/{;If(u(a;))|‘+‘/(2‘-”|f(u(a:))|q—1—l(2‘-Ud;,,-
< Gl flal- Nl =1,

for any ¢ > N/2.
From the elliptic regularity (see [3] and [12, Lemma 9.17]), it follows that

(2:6) lullwza@) < ClAullLag) < C [1f(u(- )] V/o 1@ =D,

Let us restrict ¢ € (N/2, N). From the Sobolev embeddings, for 1/¢* = 1/¢g—1/N
with ¢* > N we can write

(2.7) lullwrer @) < Cllullwz.agay < CllF(u(-)||og /e /D0,

From Morrey’s Theorem, (see [3, Theorem 9.12 and Corollary 9.14]), there exists
a constant C' (depending only on Q, g and N) such that, for all z;,z; € 0,

(2.8) u(@1) — u(z2)| < Cler — 22| "M ull 100 ().
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Therefore, for all z € B(zx;, R) C Q,
(2.9) |u(z) — u(z1)| < CR* N4 ||uf| w2 (-

Now, we shall argue by contradiction. Suppose that there exists a sequence
{ux} of classical positive solutions of (1.1) such that

(2.10) lim ||ug|| = +oo, where ||ug| := ||ug]|oo-
k—roo

Let z; € Q be such that ug(zy) = IMax uy. Let us choose Ry such that By =
B(z, Ri) C 2, and

1
ug(x) > 5 |lug|| for any = € B(zy, Ri).
and there exists yr € 08(zk, ) such that
1
(2.11) uk(yk) = 5 llukll
Let us denote by

Mk =

o — min A = max [.
N T

Therefore, we obtain

(2.12) my < f(ug(zx)) if z € By, fuk(z)) < My for all z € Q.
Then, reasoning as in (2.5), we obtain

(2.13) /ﬂ | fde & @ MITSHED

From the elliptic regularity, see (2.6), we deduce

(2.14) lluk w20y < CMé—lfq—l/((z‘—l)q)_

Therefore, from Morrey’s Theorem, see (2.9), for any x € B(xx, Rx)
(2.15) fue(2) — uk(ze)| < C(Ry)2Napgh= o1/ =1a)

Taking x = yy, in the above inequality and from (2.11) we obtain

(2.16) € (Re)>NMaMiM V@00 5 ) () — wi(zk)| = %liukli,
which implies

- 1 [l
2-Nfg >
(2.17) (Ry) 250 M-V /(@ =D

or equivalently,

1/(2—N,
(2.18) R > ( i ] ) B /Q).

20 M;—l/q—l/((z-—nq)
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Consequently,

o rgi =
[ (Ghad) e
B(z,Ri)

where w = wpy is the volume of the unit ball in RY,

Due to B(xy, Rx) C £, substituting inequality (2.18), taking into account
hypothesis (H2), and rearranging terms, we obtain

2 N/(2-N/a)
.  _foag il 1 [
w72+ (@) *]Q”k 2 (5 luxll ) w{ 35 M@0

= l” I b o |k || 1/(2/N-1/q)
=—\2 Uk w 2C [f(“uk|[)]1_1/q_]/((2*—])q)

1/(2/N—-1
= Cllugl/® = [Nl 2N 1/ [ /(2/N~1/q)
) ; [F (| |)] 1= Y/a-1/((2* = Da)
||'uk 2" -1 ||uk[|1+2/N‘1/‘7 1/(2/N-1/q)
- e e

y |2 2*—1 HUk”(N+2)[1/N—1/((N+2)q)] 1/(2/N-1/q)
> ;
— Sl ([f(lluk||)i‘”‘”“’”“"‘”*"”“”)

Finally, from (2.10) and the hypothesis (F) we deduce

21 2" -1y (N=2)[1/N-1/((N+2)q)|(2/N—-1/q)
[ > ol (Ll )
) FCllrll) X FCllurll)
k) 1 14+(N=2)[1/N-1/((N+2)q)]/(2/N—1/q)
'3 ( F(llull) )
which contradicts (2.3). Thus (b) implies (a). O

— 00 as k — oo,

REMARK 2.2. One can easily see that condition (1.4) implies that there exists
a uniform constant C4 > 0 such that

(2.19) lim sup[ vk gk (vg) dr < Cy,
Q

k—o00

for all classical positive solutions {v;} to (1.3).

ProoOF OF THEOREM 1.2. Clearly, condition (a) implies (b) and (c). By
the elliptic regularity and condition (1.4), we have that ||vg|pw22n/(viz < C.
Therefore, |[vg||f1(n) < C. Hence, by the Sobolev embedding, we deduce that

(2.20) lvkll 2= @y < C  for all k.

Using similar arguments as in Theorem 1.1 and condition (F)g, one can show that
(b) and (c) are equivalent. We shall concentrate our attention in proving that (b)

implies (a). All throughout this proof C denotes several constants independent
of k.
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Observe that 1+ 1/(2* — 1) = 2N /(N + 2). From hypothesis (b), see (1.4),
there exists a fixed constant C' > 0, (independent of k) such that

21) [ lowo@)tde < [ lou(uu@)]*E Dlgr(un@nit ) de
Q
< Cllgi(or( )z,

for k big enough, and for any q > N/2. Therefore, from the elliptic regularity,
see [12, Lemma 9.17]

(2.22) lollweagy < Cll A Loy < C llge(wi( )]l /71 =10,

for k big enough.
T ot n1Q roctriet q- (Mn") AY Fram Sahnloyr f‘]n"\(‘!l(“ﬂlﬂ:k:_ for 1/a* — 1 f.r‘v 1/N

with ¢* > N we can write

(2.23) lokllwras ) < Cllvkllwzagay < C llgr(vi( - i1 /e-1/(@ =D,

for k big enough. From Morrey’s Theorem, (see [3, Theorem 9.12 and Corol-
lary 9.14]), there exists a constant C' only dependent on €2, ¢ and N such that

(2.24) [vi(z1) — vi(z2)] < Clzy — 22| M urllwre s
for all z,,z2 € Q and for any k. Therefore, for all z € Bz, R) C Q2
(2.25) vk (z) — ve(z1)| € C RPN ollw2a(0)

for any k.
From now on, we argue by contradiction. Let {vx} be a sequence of classical
positive solutions to (1.3)x and assume that

(2.26) lim |jug]| = +oo, where ||vg| := ||vk|loo-
k—00

Let z € Q be such that vg(zx) = max vk. Let us choose Ry such that By :=
B(xg, R) C £, and

1
() > 3 |vg]l for any z € Bi.
and there exists y, € OBy such that

1
(2.27) vk(ye) = 5 llowll-

Let us denote by

= min ; Mj, := max gg.
5 oty lonln 7 SR

Therefore, we obtain

(2.28) mi < ge(vi(z)) if z € By, gr(ve(x)) < My, forall z € Q.
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Then, reasoning as in (2.21), we obtain
(2.29) fn |gk(vx)|?dz < CM, T/,
From the elliptic regularity, see (2.22), we deduce
(2.30) lvkllwaay < CME™Ve Y@ -Na),
Therefore, from Morrey’s Theorem, see (2.25), for any = € By,
(2:31) [0k (=) — k()] < C(R)>Nlapgy=H/a=1/@ =00,
Particularizing = = y; in the above inequality and from (2.27) we obtain

- ~1/q— = 1

(232)  O(Ry*~ Mo~V ET0D > () — ()] = 3 sl

which implies

i 1 [[ox
2=N/lg ~. =
(2.33) (Rx) 2 5C M@ D)

or equivalently

)1/(2—N/q)

1 llvx||
(2-34) Hyt2 (— 1-1/g—1/((2*—1
2C pgl~V/a-1/(@ D)

Consequently, taking into account (2.28),

1
[ wlon(wldz > 5 lonlmueo (R,
Bi 2
where w = wy is the volume of the unit ball in R", see Figure 2 (b).

Due to By C 0, substituting inequality (2.34), and rearranging terms, we
obtain

1 1 o b
o =
L”‘“Ig’“(”’“)ld‘” =3 ””""m"“(zc M- a- /(@ Da)
k

S (e

1/(2/N-1/q)
M;—l/q—u((z*—l)q))

”,Uk”1+2/N71/q 1/(2/N—-1/q)
TE T ( 1=1/g-1/(" = 1) ))
M, .

o my ”Uk”1+2/N—1/q 1/(2/N—-1/q)
T My M;—2/N—1/((2‘—1)q)

At this moment, let us observe that from hypothesis (H1)x and (H2)j

(2.35) %ﬁ >C, for all k big enough.
k
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Hence, taking again into account hypothesis (H2), and rearranging exponents,
we can assert that

llol
M‘ —2/N=1/((*=Da)

1+2/N—1
C( flug || +2/N—1/a )1/(2/N=1/a)
Wi

V

|1+2/N 1/q 1/(2/N—1/q)
(2.36) / vi|gr (vr)| dz > )
Q

Vv

[gw(llvw )]} ~2/N=1/(2 =)

IV

C

[[og||(N+DO/N =1/ (N+2)a)] 1/(2/N—1/q)
L9k ([ox )| (N =2 1/N - 1/((N+z.)qn)

Finally, from hypothesis (F); we deduce

g (NN YNV NN 2N =1 )
/ vk|gk (vg )| dx > C(wk —3 00,
Q gr([lvkll)
as k — oo, which contradicts (2.19). O

3. Radial problems with almost critical exponent

In this section, we build an example of a sequence of functions {gx} growing
subcritically, and satisfying the hypotheses (H1)g, (H2)x, and (F)x, such that
the corresponding sequence of BVP

Awg + ge(wg) =0 in |z| < 1,

(3.1)
wi(xz) =0 for |z| = 1.

has an unbounded (in the L>(€)-norm) sequence {wy} of positive solutions.
As a consequence of Theorem 1.2, this sequence {wy} is also unbounded in the
L? (Q)-norm.

Let N > 3 be an integer. For each positive integer k > 2 let

P

0 for s <0,
S(N+2)/(N—2) for 5 € [0, K],
gr(8) = 4 N+2/(N=2) for s € [k, K(N+2/(N=2)]

RIN42)/(N=2) | (g — k(N+2)/(N=2))(N+1)/(N=2)

for all s > k(N+2)/(N=2)

\

For the sake of simplicity in notation, we write gx := g.
Let u; := u denote the solution to

N-1
s v +g(u) =0 forre (0,1],

(3.2) r
u(0) = kN/(N-2) for u/(0) = 0.
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Let r; = sup{r > 0 : ug(s) > kon [0,r]}. Since g > 0, u is decreasing,
consequently for 7 € [0,7], k < u(r) < kN/(N=2) and

3.: —r Nl (r) = rsN‘l u(s)) ds
(3.3) (") /ﬂ g(u(s)) d

N+2)/(N-2
0 N

SO

E(N+2)/(N-2)

(3.4) u'(r) = e
Hence
(N+2)/(N-2)
(3.5) u(r) = KN/N-2) _ LZN— r2,  for r € [0,7].

Thus, u(r) > kN (N=2/2 for all 0 < r < rp := VN/EYWN-2 and u(re) =
EN/N-2) Jg

By well established arguments based on the Pohozaev identity, see [5], we

have
(3.6) P(r):=rVE(r) + N2— 2 N w(r)u'(r) = /-r sV 1T (u(s)) ds,
0
where
Br) = j0/ 0P +G(u(r), T(e) = NG(s)~~ 2 sa(s), G(e) = [ (0.

For s € [k, kN/(N-2)],
(3.7) r(s) = - N F2 panyv-2 f V42 vayv-) 5
2 2 -
Hence
N+2 oni2)/(N-2 (N-2)/2
T(u(r)) > ——k (N=2) forallr <rg, k>4 .
Due to I'(s) = 0 for all s < k, (3.6) and (3.7), for r > ry,
N+2 N+2
> > (2N+2)/(N-2) N > (N=-2)/2 (N+2)/(N—2).
P(r) > Pro) > ~ X2 > N2 yov-apey

Due to (3.7), for r > 7y, we have

P(r) = P(ro) > e N(N=2)/2p.(N+2)/(N-2)
e - 8

From (3.5) u(r;) = k with

T1:J2N[(%)2/(N_2)ﬁ (£)4/(N—2)} _\/2_N(%)1/(1'«-2)+ 0((,16)1/(1\’_2))-
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From the definition of g, —u/(r;) = kN+2/(N=2) ¢ /N (see (3.4)), which implies

P(ry) > rfH2O(R2M+HD/N=2)) _ N O(R2N/IN-2))
> O(KN+D/(N-2)) _ o (kN/(N-D)) > O(k(N+2/(N=-2),

For r > rq,
38) - teVlure() 2 % u(r) u(r)N+2/(V=2)
= DB (eI = N Gl
This and Pohozaev’s identity imply
[(u!(r)12 > O(KN+2/(N=2)) i or  —al(r) > O(kNTD/N=2)) L
o WEEES:

Integrating on [ry,r| we have

1 1
u(r) < k — O(KN+D/(N-2) ( 1) )
( ) TEN_z)/Z r(N=2)/2

which implies that there exists ko such that if £ > ko then u(r) = 0 for some
r € (r1,2r,]. Since (3.8), r; = r1(k) =+ 0 as k — oo.

Let v := v denote the solution to
N-1

(3.9) v+ e o v +g(v) =0, re(0,1],

' 0(0) = K(N+2/(N=2), v/(0) = 0.

Let 71 = sup{r > 0 : vx(s) > k on [0,7]}. For v(r) > k, i ntegrating (3.4),
we deduce
(N +2)/(N-2)

(3.10) v(r) = kN+2/(N=2) _ o o r?, forr e [0,m],
(N+2)/(N-2)

{3:11) v(r) = kN+2/(N-2) _ k < Y

therefore

@12 (i (57>

therefore v(r) > k for all r € [0,1]. So, by continuous dependence on initial
conditions, there exists d € (kN/(N=2) (N+2)/(N=2)) guch that the solution
w = wy to
" ol
+ gk(w) =0, re€(0,1],
w(0) = dy, w'(0) = 0.
satisfies w(r) > 0 for all 7 € [0, 1], and w(1) = 0. Since k may be taken arbitrarily

large, and as a consequence of Theorem 1.2, we have established the following
result.



UniForM L2* (€2) A-PrIORI BOUNDS AND UNIFORM L°°(§2) A-PRIORI BOUNDS 55

COROLLARY 3.1. There exists a sequence of functions gr: R — R and a se-
quence {wr} of positive solutions to (3.1), such that each function gp grows
subcritically and satisfies the hypotheses (H1)g, (H2)x and (F)x of Theorem 1.2,
and the sequence {wy} of positive solutions to (3.1), is unbounded in the L>(£2)-
norm. Moreover, this sequence {wy} is also unbounded in the L ()-norm.

Let now v := v, denote the solution to

v + e 11;' +g(v) =0, re€(0,1],
o{@) =k, v'(0) = 0.

(3.13)

Since I'(s) = 0 for all s < k, and the solution is decreasing, by Pohozaev’s
identity

W) + 2 a2y B
Hence, if v(r) = 0 for some 7 € (0, 1], then v'(7) = 0 and the uniqueness of
the solution of the IVP (3.13), implies v(r) = 0 for all » € [0,1]. Since this
contradicts v(0) = k > 0 we conclude that v(r) > 0 for all r € [0,1]. Therefore,
by continuous dependence on initial conditions, there exists d}, € (k, RN 72))
such that the solution z = z; to

’v(r)v'(r) 0, forallr e [0,1].

N-1
2+ ——2 +gr(z) =0, re(0,1],
z(0) = di, 2'(0) = 0.
satisfies z(r) > 0 for all r € [0,1], and 2(1) = 0.

COROLLARY 3.2. For any k € N, the BVP (3.1) has at least two positive
solutions.
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