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ABSTRACT

A historical problem for indirect exoplanet detection has been contending with the intrinsic variability of the host
star. If the variability is periodic, it can easily mimic various exoplanet signatures, such as radial velocity (RV)
variations that originate with the stellar surface rather than the presence of a planet. Here we present an update for
the HD99492 planetary system, using new RV and photometric measurements from the Transit Ephemeris
Refinement and Monitoring Survey. Our extended time series and subsequent analyses of the Ca II H&K emission
lines show that the host star has an activity cycle of ∼13 years. The activity cycle correlates with the purported
orbital period of the outer planet, the signature of which is thus likely due to the host star activity. We further
include a revised Keplerian orbital solution for the remaining planet, along with a new transit ephemeris. Our
transit-search observations were inconclusive.

Key words: planetary systems – stars: individual (HD 99492) – techniques: photometric – techniques:
radial velocities

1. INTRODUCTION

The radial velocity (RV) technique remains one of the most
successful methods for the discovery of exoplanetary systems.
At the present time, more than 500 exoplanets have been
discovered using the RV technique, including a vast range of
multi-planet systems and orbital configurations. The success of
this method is greatly dependent upon the ability to accurately
characterize the properties of the host star. In particular, the
evolution of star spots, magnetic fields, and pulsations have
well-studied effects on stellar RV variations (Saar &
Donahue 1997; Queloz et al. 2001; Desort et al. 2007; Hébrard
et al. 2014). There have been numerous recent cases where
stellar activity has posed a significant problem in correctly
interpreting RV data (Hatzes 2013; Robertson et al. 2014,
2015; Hatzes et al. 2015).

One source of activity-induced RV variations is due to stellar
activity cycles, analogous to the 11 year solar cycle. Dravins
(1985) predicted such a correlation, and Deming et al. (1987)
reported the detection of such a correlation in the solar CO lines
at 2.3 μm, and inferred an amplitude of 30m s−1 from the
effect. Wright et al. (2008) argued that experience with the
hundreds of Sun-like stars from the California Planet Survey
(CPS) showed that such effects are not so strong, and that
activity cycles were probably not to blame for a ∼15m s−1 RV
variation in phase with an activity cycle in HD154345. Similar
high-amplitude RV activity correlations in individual targets
have been reported by Moutou et al. (2011), Carolo et al.
(2014), and Robertson et al. (2013). Nonetheless, for most stars
such correlations are small or absent, as argued by Wright et al.
(2008) and Santos et al. (2010).

The star HD99492 is an early-K dwarf in a binary orbit with
HD99491 (also known as 83 Leonis B and A, respectively).
HD99492 has a parallax of 55.7±1.46 marcsec and a
distance of 17.96±0.47 pc (van Leeuwen 2007a, 2007b).
The mean angular separation of the stellar components is
40 76, leading to an average projected separation of ∼730au.
HD99492 was found to harbor a 0.1MJ planet in a 17 day
orbit by Marcy et al. (2005). The best-fit Keplerian orbital
solution at that time included a linear trend to account for a
possible second companion in the system. The orbital elements
were updated by Meschiari et al. (2011), who claimed to have
resolved the separate orbit of an outer planet with a period of
∼5000 days.
Here we present new results for the system that reveal an

activity cycle in the star and further show that stellar activity
amply explains the signature of the outer planet (c). Section 2
provides new fundamental stellar parameters, including
spectral analysis, discussion of element abundances, and
activity indices from the complete data set of 130 Keck/
HIRES spectra. Section 3 presents our revised Keplerian orbital
solution, including the correlation of the outer planet signature
with the activity indices. Section 4 includes photometry from
five observing seasons acquired over a span of 11 years. The
photometric data confirms the absence of brightness variations
in phase with the orbital period of planet b, thus confirming that
the RV variations in HD 99492 on a 17 day cycle are due to
planetary reflex motion. Our limited number of brightness
measurements near the predicted phase of planetary transit
show no evidence for a transit but fall short of ruling them out.
We provide concluding remarks in Section 5.
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2. STELLAR PROPERTIES

2.1. Fundamental Parameters

The fundamental properties of HD99492 have been
previously determined, for example, by Valenti & Fischer
(2005) and Takeda et al. (2007). We used an upgraded version
of the Spectroscopy Made Easy (SME) package to model a
Keck/HIRES spectrum of HD99492. Details of the SME
package may be found in Valenti & Piskunov (1996) and
Valenti & Fischer (2005). Briefly, SME uses an iterative
technique that combines a model atmosphere analysis with
Yonsei-Yale model isochrones (Demarque et al. 2004) that
utilize Hipparcos photometry and distances (van
Leeuwen 2007a, 2007b). This approach produces a self-
consistent convergence with the measured surface gravity
(Valenti et al. 2009).

The results of our analysis are shown in Table 1, including
values for the surface gravity log g, rotational velocity v sin i,
atmospheric abundance [Fe/H], effective temperature Teff, and
stellar isochrone solution (mass Må, radius Rå, and age). These
parameters are consistent with previous estimates of the stellar
properties and demonstrate that HD99492 is a late-G/early-K
dwarf with an age similar to the Sun.

2.2. Stellar Abundances

The element abundances of HD99492 have been measured
by only two groups to date, namely Valenti & Fischer (2005)
and Petigura & Marcy (2011). To correct for varying solar
abundance normalizations, per the analysis within the Hypatia
Catalog (Hinkel et al. 2014), each data set was re-normalized to
the Lodders et al. (2009) scale. The [Fe/H] measurement of
both groups is 0.40 dex, since Petigura & Marcy (2011)
adopted the stellar parameters and iron abundance from Valenti
& Fischer (2005) in their analysis. From Petigura & Marcy
(2011), [O/H] = 0.25 dex while Valenti & Fischer (2005)
determined [Na/H] = 0.41, [Si/H] = 0.34 dex,
[Ti/H] = 0.28 dex, and [Ni/H] = 0.38 dex. These results
reveal a star that is markedly super-solar in both the volatile
and refractory elements.

2.3. Stellar Activity

HD99492 has been spectroscopically monitored using the
HIRES echelle spectrometer (Vogt et al. 1994) on the 10.0 m
Keck I telescope as part of the CPS. For Keck/HIRES
instrument configuration details, see Wright et al. (2004) and
Howard et al. (2009). Our complete HIRES data set contains
130 measurements spanning over 18 years, extending the time
baseline of the data reported by Meschiari et al. (2011) by over
5 years. The pipeline that extracts the RVs from the spectra (see
Section 3) also extracts Ca II H&K line-profile variations and
provides an index of stellar activity (Noyes et al. 1984). These
data are calibrated to the Mt. Wilson S-values, defined as the
ratio of the sum of the flux in the H&K line cores to the sum of
the two continuum bands on either side (Wilson 1968). We
include data acquired both before and after the upgrade of the
HIRES CCD in 2004 August (Isaacson & Fischer 2010), taking
into account the offset between pre-2004 and post-2004
calibrated data sets.
The time series of S-values are shown in the left panel of

Figure 1. The periodic variation in S indicates that we have
observed just over one complete cycle of stellar activity in the
host star. To quantify the variation, we performed a Fourier
analysis of the time series, resulting in the periodogram shown
in the right panel of Figure 1. This analysis reveals a broad
peak in the power spectrum that lies between 3000 and 5000
days, with maximum power occurring at ∼3650days. The
S-value periodicity is thus consistent with the HD99492c
orbital period of 4970±744days determined by Meschiari
et al. (2011). We elaborate further on the correlation between
stellar activity and possible planetary signature in Section 3.

3. AN UPDATE TO THE PLANETARY SYSTEM

The RV measurements were extracted from the Keck/
HIRES data with the use of an iodine cell mounted at the
spectrometer entrance slit as a robust source of wavelength
calibration (Marcy & Butler 1992; Valenti et al. 1995). The
modeling procedure for the Doppler shift of each stellar
spectrum with respect to the iodine spectrum is described
further in Howard et al. (2009). The discovery orbital solution
for the HD99492 system by Marcy et al. (2005) included a
linear trend component. The 93 RV measurements utilized by
Meschiari et al. (2011) used a two-planet orbital solution to
account for the previously noted linear trend. A two-planet fit
to our expanded data set is able to recover an orbital solution
similar to that previously found by Meschiari et al. (2011).

Table 1
System Parameters

Parameter Value

HD99492

V 7.58
B−V 1.0
Distance (pc) 55.7±1.46
Teff (K) 4929±44
log g 4.57±0.06
v sin i (km s−1) 0.41±0.5
[Fe/H] (dex) 0.3±0.03
Må (Me) 0.85±0.02
Rå (Re) 0.78±0.02
Age (Gyr) 4.8±4.1

HD 99492 b

P (days) 17.054±0.003
Tc

a (JD–2,440,000) 17367.776±0.855
Tp

b (JD–2,440,000) 13776.317±3.392
e 0.07±0.06
ω (deg) 240.7±75.4
K (m s−1) 6.98±0.53
Mp sin i (MJ) 0.079±0.006
a (au) 0.123±0.001

System Properties

γ (m s−1) −1.49±0.37

Measurements and Model

Nobs 130
rms (m s−1) 4.33
cred

2 1.03

Notes.
a Time of mid-transit.
b Time of periastron passage.
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Considering the periodic stellar activity described in Section 2.3
as a source for the previously observed linear trend and
purported second planet, we performed a single-planet fit to our
data set of 130 RV measurements, both with and without a
linear trend included. These fits were carried out using RVLIN,
a partially linearized, least-squares fitting procedure described
in Wright & Howard (2009). The uncertainties in the resulting
orbital parameters were estimated using the BOOTTRAN
bootstrapping routines described in Wang et al. (2012). We
included a stellar jitter noise component of 4m s−1 in
quadrature with the measurement uncertainties (Wright 2005;
Butler et al. 2006). With our new data set and its increased
timespan, we find no evidence of a significant difference
between the orbital fits that do and do not include a linear trend.
We thus adopt the solution without the linear trend for which
the complete orbital solution is shown in Table 1 and in the top
panel of Figure 2. Note that the γ parameter shown in Table 1 is
the systemic velocity of the system with respect to the zero
point of the extracted RVs and thus is the systemic velocity
relative to the template spectrum. The complete RV data set of
130 measurements of HD99492 is listed in Table 2.

To investigate further the impact of stellar activity on a two-
planet solution (see Section 2.3), we compared the S-values
with the RV residuals of the single-planet solution shown in
Table 1. The resulting correlation diagram is shown in the
bottom panel of Figure 2. We quantified the significance of the
correlation using the Spearman rank correlation coefficient.
The Spearman coefficient lies in the range −1<rs<1, and,
in turn, gives the probability that the two quantities being
examined are not correlated. The Spearman coefficient for the
data shown in the bottom panel of Figure 2 is rs = 0.39,
indicative of a positive correlation. The corresponding prob-
ability that the residuals of the single-planet solution and the
S-values would produce the observed correlation if those
quantities were in fact uncorrelated is 1.2×10−5. We
conducted a further test via an extensive Monte-Carlo
simulation that performs a Fisher–Yates shuffle, randomizing
the order of the residual data values. For each realization, the
Spearman’s rank correlation coefficient and probability were
recalculated. This test resulted in a 0.5 probability of null
correlation, indicating that the correlation found above is
robust. This implies, in turn, that the second planet claimed by
Meschiari et al. (2011) is instead the result of stellar activity.

4. PHOTOMETRIC OBSERVATIONS

We observed HD99492 photometrically as part of the
Transit Ephemeris Refinement and Monitoring Survey (Kane
et al. 2009) with the T12 0.8 m Automatic Photoelectric
Telescope (APT), one of several automated telescopes operated
by Tennessee State University (TSU) at Fairborn Observatory
in southern Arizona. The T12 APT is equipped with a

Figure 1. Left: HD99492 S-values determined from the complete time series of Keck/HIRES spectra. Right: the periodogram resulting from a Fourier analysis of the
HD99492 S-values, revealing a broad peak between 3000 and 5000days.

Figure 2. Top: the complete 130 RV measurement data set phased on the best-
fit Keplerian orbital solution for a single-planet system (see Table 1). Bottom:
the residuals from the best-fit solution plotted against the activity indices
described in Section 2.3. Our analysis shows that the probability of no
correlation between the one-planet RV residuals and the S-values is
1.2×10−5.
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Table 2
HD99492 Radial Velocities

Date RV σ

(BJD–2,440,000) (m s−1) (m s−1)

10462.113958 −3.09 1.49
10546.987859 −3.70 1.62
10837.932535 −3.30 1.56
10862.898993 −6.29 1.57
10955.876644 −8.27 1.21
11172.101597 −2.40 1.62
11228.035903 −8.13 1.51
11311.816319 2.63 1.59
11544.172650 −8.38 1.39
11582.974942 −0.25 1.35
11704.805914 −2.63 1.62
11898.154005 −15.85 1.48
11973.053090 4.30 1.39
12095.752049 −3.42 1.63
12097.753715 −8.23 1.56
12333.139410 5.37 1.69
12334.079884 7.42 1.73
12334.968322 2.05 1.53
12364.068125 2.33 1.46
12445.768264 −7.95 1.40
12654.009595 5.07 1.70
12681.123484 −10.56 1.46
12711.858843 0.40 1.28
12804.765590 −7.83 1.43
12805.876296 4.73 1.68
12806.763634 −1.00 1.39
12989.171424 −16.78 1.60
13015.119444 11.38 1.59
13016.134363 6.20 1.59
13017.121921 8.51 1.38
13044.127569 −3.96 1.58
13045.999074 4.24 1.62
13071.870764 −4.13 1.51
13073.940752 −7.32 1.47
13076.983611 −5.70 1.42
13153.801470 −0.04 1.29
13153.804144 −0.48 1.28
13179.820787 −1.32 1.46
13179.824352 −1.33 1.57
13180.782037 7.05 1.78
13181.808171 2.02 1.35
13195.775914 −12.34 1.46
13196.794780 −5.61 1.47
13339.157731 5.37 0.89
13340.150718 3.85 0.95
13369.115093 3.54 0.92
13425.000741 1.95 0.97
13425.003310 1.67 1.02
13480.759734 −5.61 0.92
13480.761887 −6.24 0.90
13725.101748 −9.87 0.93
13725.104595 −9.46 0.91
13747.133588 7.52 1.77
13747.138218 4.20 1.10
13747.145174 5.65 0.98
13748.096169 7.62 0.91
13748.098819 8.29 0.92
13753.040035 −4.47 0.91
13753.043380 −3.48 0.92
13754.021562 −5.64 0.92
13754.024097 −5.80 0.96
13775.980868 −3.38 0.96
13775.983125 −2.44 0.93

Table 2
(Continued)

Date RV σ

(BJD–2,440,000) (m s−1) (m s−1)

13776.976910 2.23 0.91
13776.979213 3.52 0.90
13777.950347 2.20 0.95
13777.952720 0.03 0.94
13779.971238 5.97 0.99
13779.974155 3.50 1.00
13806.916794 −13.28 0.95
13806.918981 −14.02 0.95
13926.762188 −5.05 0.99
13926.768762 −5.12 0.98
13927.761840 −9.91 0.90
13927.764213 −10.64 0.82
14084.153623 2.60 1.02
14084.157870 3.07 0.94
14139.063102 2.72 0.86
14139.064722 1.83 0.92
14216.896134 −13.32 0.91
14216.899722 −11.04 0.99
14246.798900 0.92 0.85
14246.800718 4.41 0.75
14248.811678 1.16 0.87
14250.800613 −2.91 0.84
14251.804815 −2.25 0.82
14255.765556 −1.65 0.89
14255.766991 −2.77 0.90
14277.743067 5.72 0.85
14278.749942 6.86 0.83
14279.748507 3.12 0.82
14285.751910 −3.80 0.97
14294.758669 5.47 0.97
14300.738970 −2.54 0.96
14455.109028 −5.20 1.04
14455.110868 −5.48 1.06
14456.129444 −4.92 0.96
14456.131400 −7.51 0.92
14493.134583 −8.34 1.17
14544.982280 0.64 0.95
14546.963137 0.81 1.03
14547.871944 7.05 1.10
14548.847407 9.68 1.10
14635.754444 2.00 0.98
14638.750949 −5.25 0.86
14807.164861 0.91 1.08
14985.837363 −14.40 0.93
14986.825959 −9.95 1.00
14987.839171 −5.24 1.08
15016.744103 −8.88 0.93
15173.123927 −18.81 0.94
15190.171113 −15.69 1.05
15311.807895 −3.49 1.09
15313.781452 −0.95 0.97
15319.842967 0.77 1.23
15319.850617 1.65 1.11
15376.739902 −17.07 0.89
15400.735697 6.43 1.01
15635.955861 −11.51 0.94
15707.736240 7.18 0.95
15905.166211 −6.50 1.01
16111.736847 −6.40 0.95
16328.051766 −0.37 1.17
16614.127514 9.08 1.15
16639.094368 −4.03 0.91
16675.173277 −4.19 1.18
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precision, two-channel photometer that simultaneously mea-
sures the Strömgren b and y passbands using two EMI 9924QB
photomultiplier tubes. This makes T12 ideal for achieving high
photometric precision on relatively bright stars. The TSU APTs
and their precision photometers, observing strategy, data
reduction techniques, and photometric precision are described
in detail by Henry (1999).

The T12 telescope acquired 368 nightly observations of
HD99492 during the 2004, 2009, 2010, 2013, and 2014
observing seasons. These data are plotted against Heliocentric
Julian Date in the top panel of Figure 3. The observations are
insufficient to detect the long-term activity cycle described in
Section 2.3. Therefore, we removed very small season-to-
season variability in HD99492 and/or its comparison stars by
normalizing the final four observing seasons so their means
match the first season, indicated by the horizonal dotted line in
the top panel. This removal of seasonal variability allows a
more sensitive search for variability that might be due to
rotational modulation of star spots (e.g., Henry et al. 2013).
Marcy et al. (2005) estimated the rotation period of HD99492
to be around 45 days from the Ca II H and K emission strength.
Our nightly observations scatter about the mean with a standard
deviation of 0.00484mag, somewhat more than the typical
measurement precision. However, Fourier analyses of the
complete normalized data set and the individual observing
seasons did not reveal any significant periodicities between 1
and 100 days that might correspond to the star’s rotation
period.

We further examined publicly available photometric data
from the Hipparcos satellite to search for evidence of
periodicity in the light curve of HD99492 (Perryman
et al. 1997; van Leeuwen 2007a). The data were extracted
from the NASA Exoplanet Archive (Akeson et al. 2013),
including 71 measurements spanning a period of 1062 days and
with a standard deviation of 0.135mag. Our Fourier analysis of
Hipparcos did not reveal strong periodicity, with the possible
exception of a minor Fourier power at ∼15.8days.

The Keplerian orbital solution in Section 3 includes an
estimate of Tc, the predicted time of mid-transit should the
planetary orbital inclination be suitably close to edge-on. To
determine the remainder of the predicted transit parameters, we
adopted the SME stellar radius from Table 1 and an estimated
planetary radius of Rp=0.52 RJ using the mass–radius
relationship described by Kane & Gelino (2012). Taking into
account the orbital eccentricity from the Keplerian orbit (Kane
& von Braun 2008), the transit probability is 2.8% and the
predicted duration and depth for a central transit are0.181 days
and 0.54%, respectively.

The APT observations are replotted in the middle panel of
Figure 3. These data are phased with the orbital period and the
predicted transit time shown in Table 1. We use least-squares to

fit a sine curve to the data, also phased on the 17.054 day
orbital period. This yields a formal semi-amplitude of the sine
curve of just 0.00041±0.000033 mag. The relatively small
amplitude confirms that the observed RV variations are due to
the presence of a planet rather than intrinsic stellar brightness
variations.
The APT observations within ±0.06 phase units of the

predicted transit time are shown in the bottom panel of
Figure 3. The solid curve for the predicted transit signature
includes the predicted mid-transit at phase 0.0, the transit depth
(0.5%), and transit duration (±0.005 phase units). The vertical
dashed lines represent the uncertainty in our new time of
transit. We find no evidence for transits, although our data do
not rule them out completely. Monitoring observations were
made on the night of 2016 January 31 UT, during a predicted
transit, with the T12 APT and with the 0.6 m telescope at
Swarthmore’s Peter van de Kamp Observatory. The night was
marginally photometric at both sites; again, no evidence for
transits was seen but we are still not able to completely rule
them out.

Table 2
(Continued)

Date RV σ

(BJD–2,440,000) (m s−1) (m s−1)

16827.757817 3.70 1.03
17065.116057 −7.00 1.02
17203.750309 4.08 1.01
17217.748571 −3.38 1.02

Figure 3. Top: nightly photometric observations of HD99492 from the 2004,
2009, 2010, 2013, and 2014 observing seasons acquired with the T12 0.8m
APT. The final four seasons have been normalized so their seasonal means
match the 2004 season. Middle: the APT observations phased with an orbital
period of 17.054days. A sine fit to the phased observations yields a semi-
amplitude of 0.00041±0.00033mag. This is consistent with the absence of
light variability on the radial velocity period and also consistent with planetary
reflex motion of the star as the cause of the RV variations. Bottom: the APT
observations within ±0.06 phase units of the predicted transit time. The solid
curve for the predicted transit shows the predicted mid-transit at phase 0.0, the
transit depth (0.5%), and the duration (±0.005 phase units) for a central transit
of planet b. The vertical dashed lines represent the uncertainty in the time of
transit. Our photometry shows no evidence for transits but cannot rule them out
completely.
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5. CONCLUSIONS

The presence of stellar activity presents continuing chal-
lenges to exoplanet detection and characterization. RV
exoplanet survey targets are usually chosen for their low
chromospheric activity, leading to a bias against activity in the
sample of bright planet-host stars. HD99491 is an evolved star
and has been known to exhibit chromospheric activity for some
time (Zarro 1983; Wright et al. 2004). It is thus quite interesting
to find that the companion star, HD99492, exhibits similar
behavior over long timescales. It is hoped that continued
photometric monitoring will help to resolve the complete
magentic cycle of the star, such as those found for HD192263
(Dragomir et al. 2012), although the target is very difficult to
observe due to the small angular separation of the binary
components.

The update to the parameters for the HD99492 system
presented here refines the stellar and planetary orbital
parameters for the system. The update shows that the
∼5000day RV signal is due to stellar activity rather than a
planet. However, there are likely other planets of smaller mass
and/or larger separation that lie beneath the current noise floor.
As the exploration of exoplanetary systems forges onward to
ever smaller planets, a careful examination of stellar activity is
becoming more relevant than ever before.
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