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Determining the structure of a network is of central importance to understanding

its function in both neuroscience and applied mathematics. However, recovering the

structural connectivity of neuronal networks remains a fundamental challenge both

theoretically and experimentally. While neuronal networks operate in certain dynamical

regimes, which may influence their connectivity reconstruction, there is widespread

experimental evidence of a balanced neuronal operating state in which strong excitatory

and inhibitory inputs are dynamically adjusted such that neuronal voltages primarily

remain near resting potential. Utilizing the dynamics of model neurons in such a balanced

regime in conjunction with the ubiquitous sparse connectivity structure of neuronal

networks, we develop a compressive sensing theoretical framework for efficiently

reconstructing network connections bymeasuring individual neuronal activity in response

to a relatively small ensemble of random stimuli injected over a short time scale. By tuning

the network dynamical regime, we determine that the highest fidelity reconstructions

are achievable in the balanced state. We hypothesize the balanced dynamics observed

in vivo may therefore be a result of evolutionary selection for optimal information

encoding and expect the methodology developed to be generalizable for alternative

model networks as well as experimental paradigms.

Keywords: neuronal networks, balanced networks, signal processing, network dynamics, connectivity

reconstruction

1. INTRODUCTION

The connectivity of neuronal networks is fundamental for establishing the link between brain
structure and function (Boccaletti et al., 2006; Stevenson et al., 2008; Gomez-Rodriguez et al.,
2012); however, recovering the structural connectivity in neuronal networks is still a challenging
problem both theoretically and experimentally (Salinas and Sejnowski, 2001; Song et al., 2005;
Friston, 2011; Kleinfeld et al., 2011; Bargmann and Marder, 2013). Recent experimental advances,
such as diffusion tensor imaging (DTI), dense electron microscopy (EM), and highly resolved
tracer injections, have facilitated improved measurement of network connectivity, but constructing
complete neuronal wiring diagrams for networks of thousands or more neurons is currently
infeasible due largely to the small spatial scale and the dense packing of nervous tissue (Lichtman
and Denk, 2011; Sporns, 2011; Briggman and Bock, 2012; Markov et al., 2013). Likewise, modern
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mathematical approaches for recovering network connectivity
based on measured neuronal activity, such as Granger causality,
information theory, and Bayesian analysis, typically demand
linear dynamics or long observation times (Aertsen et al., 1989;
Sporns et al., 2004; Timme, 2007; Eldawlatly et al., 2010; Friston,
2011; Hutchison et al., 2013; Zhou et al., 2013b, 2014; Goñi
et al., 2014). Is it possible to achieve the successful reconstruction
of network connectivity from the measurement of individual
non-linear neuronal dynamics within a short time scale?

To address this central question, we develop a novel
theoretical framework for the recovery of neuronal connectivity
based on both network sparsity and balanced dynamics. Sparse
connectivity among neurons is widely observed on large (inter-
cortical) and small (local circuit) spatial scales (Mason et al., 1991;
Markram et al., 1997; Achard and Bullmore, 2007; He et al., 2007;
Ganmor et al., 2011), and, therefore, the amount of observed
activity required to reconstruct network connectivity may be
significantly smaller than suggested by estimates using only the
total network size. Compressive sensing (CS) theory has emerged
as a useful methodology for sampling and reconstructing sparse
signals (Candes et al., 2006; Donoho, 2006; Gross et al., 2010;
Wang et al., 2011b) and has primarily been utilized in estimating
the connectivity of linear or time-invariant network models
(Hu et al., 2009; Mishchenko and Paninski, 2012). In the case
of realistic neuronal networks, their non-linear dynamics in
time pose a major conceptual difficulty, particularly in isolating
the impact of direct network connections on recorded activity
from the effects of indirect neuronal interactions and the
external drive.

We demonstrate that the reconstruction of neuronal
connectivity based on compressive sensing of non-linear
network dynamics is indeed possible in an appropriately
balanced dynamical regime in which fluctuations in neuronal
input largely drive firing events. Numerous experimental studies
demonstrate that neuronal firing events are generally irregular,
with large excitatory and inhibitory inputs dynamically balanced
such that the voltage of a neuron typically resides near the resting
potential for a broad class of external stimulation (Britten et al.,
1993; Shadlen and Newsome, 1998; Compte et al., 2003; Haider
et al., 2006; Tan and Wehr, 2009; London et al., 2010; Runyan
et al., 2010; Isaacson and Scanziani, 2011; Xue et al., 2014).
Theoretical work corroborates the existence of this operating
regime for balanced network models in which neurons are
sparsely connected while strongly coupled, such that neuronal
activity is highly variable and heterogeneous across the network
(van Vreeswijk and Sompolinsky, 1996, 1998; Troyer and Miller,
1997; Vogels and Abbott, 2005; Miura et al., 2007; Mongillo et al.,
2012). Here, we utilize the same binary-state network model
as such previous studies and demonstrate that using a small
ensemble of random inputs and corresponding time-averaged
measurements of neuronal dynamics collected over a short
time scale, it is possible to achieve high fidelity reconstructions
of recurrent connectivity for sparsely connected networks of
excitatory and inhibitory neurons. We show that the quality
of this reconstruction improves as the network dynamics are
further balanced, expecting that for physiological networks, once
in the balanced state, CS-based estimates of network connectivity

are feasible. We hypothesize that the balanced operating regime
may have arisen in sensory systems from evolution as a means of
optimally encoding both connectivity and stimulus information
through network dynamics.

2. RESULTS

2.1. Compressive Sensing of Balanced
Dynamics
To investigate the reconstruction of neuronal network
connectivity in the balanced state, we consider a mechanistic
binary-state model with non-linear dynamics (van Vreeswijk
and Sompolinsky, 1996, 1998). The model network is composed
of N neurons, such that NE neurons are excitatory (E) and NI

neurons are inhibitory (I). The state of the ith neuron in the kth
population (k = E, I) at time t is prescribed by

σ i
k(t) = H

(

µi
k(t)− θk

)

, (1)

where H(·) denotes the Heaviside function and θk is the firing
threshold for the neurons in population k. The total synaptic
drive µi

k
(t) into the ith neuron in the kth population at time t is

µi
k(t) =

NE
∑

j=1

R
ij

kE
σ
j
E(t)+

NI
∑

j=1

R
ij

kI
σ
j
I (t)+ (Fp)ik, (2)

where R
ij

kl
denotes the connection strength between the ith post-

synaptic neuron in the kth population and the jth pre-synaptic
neuron in the lth population (l = E, I), and (Fp)i

k
is the total

external input into the ith neuron in the kth population. The

connection strength R
ij

kl
is chosen to be Rkl/

√
K with probability

K/Nl and 0 otherwise. In this case, the excitatory connection
strength RkE > 0 and the inhibitory connection strength RkI < 0.
Since each neuron is expected to receive projections from K
pre-synaptic excitatory neurons and K pre-synaptic inhibitory
neurons, sparse connectivity is reflected by the assumption that
K ≪ NE,NI . In advancing the model dynamics for each neuron,
the mean time between subsequent updates is τE = 10 ms
for excitatory neurons and τI = 9 ms for inhibitory neurons,
reflecting experimental estimates of cortical membrane potential
time constants (McCormick et al., 1985; van Vreeswijk and
Sompolinsky, 1996; Shelley et al., 2002). Based on the total
synaptic drive at each time the system is updated, a given neuron
is either in a quiescent (σ i

k
(t) = 0) or firing (σ i

k
(t) = 1) state.

To partition the model across the two subpopulations, the
neurons and their corresponding activity variables may also
be indexed from l = 1, . . . ,N, with the first NE indices
corresponding to neurons in the excitatory population and the
second NI indices corresponding to neurons in the inhibitory
population. Using this choice of indexing, R is the N × N
recurrent connectivity matrix and p is the N-vector of static
external inputs for the network. The external input p is selected
such that (Fp)i

k
isO(

√
K) for each neuron, thereby comparable to

the total synaptic drive from each population. Analogously, the
feed-forward connectivity matrix F is N × N and diagonal, such
that diagonal entries Fii = fE for i = 1, . . . ,NE and Fii = fI for
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FIGURE 1 | Balanced network dynamics. (A) Excitatory (blue), inhibitory (red), and net (green) inputs into a sample excitatory neuron in a balanced network. The

dashed line indicates the firing threshold. (B) The time-averaged state of the excitatory (blue) and inhibitory (red) population as a function of external input scaling

strength S. Inset: Probability density of the time-averaged ratio of excitatory and inhibitory inputs across the network. Unless otherwise specified, parameters utilized

are REE = RIE = 1,RII = −1.8,REI = −2,NE = 800,NI = 200, fE = 1.2, fI = 1,K = 0.03NE , θE = 1, and θI = 0.7. The external drive into a neuron in the kth population

is an excitatory constant current that is independently generated and identically uniformly-distributed with O(
√
K) magnitude scaled by fk .

i = NE+1, . . . ,NE+NI , thereby scaling the relative external input
strength for each respective population. Since the absolute scale
of the neuronal input is inconsequential in this non-dimensional
model, we assume connectivity parameters REE = RIE = 1,
so the primary parameters that determine the inhibition relative
to excitation are the post-synaptic connection strengths for the
inhibitory neurons and the external input strengths.

Since Rkl as well as θk are O(1) and the external drive
is O(

√
K), if the excitatory and inhibitory inputs are not

balanced, the total synaptic drive is O(
√
K) and thus each

neuron either fires with an excessively high rate or remains
nearly quiescent. In the balanced operating regime, however,
the excitatory and inhibitory inputs instead dynamically cancel
and produce physiological firing dynamics, leaving the mean
synaptic input nearly vanishing with relatively large O(1) input
fluctuations responsible for the exact timing of firing events and
their irregular distribution. This leads to theoretical conditions
on the connection strength parameters (van Vreeswijk and
Sompolinsky, 1996, 1998):

fE

fI
>

REI

RII
> 1. (3)

The net input into a representative neuron in the balanced state
is plotted in Figure 1A, demonstrating a dynamic tracking of
excitatory and inhibitory inputs such that the mean total input
is far below threshold. On the larger scale of the entire network,
an equilibrium between excitation and inhibition is also achieved
in the balanced regime, with the time-averaged mean of the ratio
between the excitatory and inhibitory input (E/I input ratio)
across the network narrowly distributed near−1.

While the sparsity of R in principle reduces the necessary
data for a successful reconstruction of the network connectivity,
compressive sensing theory generally only applies to the recovery
of sparse inputs into linear and time-invariant systems (Candes
et al., 2006; Donoho, 2006), rather than from measurements
of the non-linear and time-evolving dynamics of a neuronal

network. To overcome this theoretical challenge, it is important
to note that for a broad class of physiological neurons as well
as realistic neuron models, the neuronal firing activity exhibits
linear dependence on relatively strong external inputs in the
proper dynamical regime (Brunel and Latham, 2003; Rauch et al.,
2003; Fourcaud-Trocmé and Brunel, 2005; La Camera et al.,
2006; Barranca et al., 2014a). Considering the dynamic balance
between excitatory and inhibitory inputs facilitates a rapid
and robust linear response to external inputs (van Vreeswijk
and Sompolinsky, 1996, 1998), we hypothesize that balanced
neuronal network dynamics are critical to the efficient CS
reconstruction of sparse network connectivity.

For the binary-state balanced network model, the temporal
expectation of Equation (2) yields a natural linear input-output
mapping in response to a single input vector p

µ = Rx+ Fp, (4)

where µ is an N-dimensional vector denoting the time-averaged
total input into each neuron and x is an N-dimensional vector
denoting the time-averaged state of each neuron.

To demonstrate the generality of our network reconstruction
framework with respect to external inputs and to avoid
specializing their design, we drive the network with an
ensemble of r random input vectors with independent identically

uniformly distributed elements, denoted by
{

p(i)
}r

i=1
, and

measure the evoked time-averaged net input and state of the

neurons, denoted by
{

µ
(i)

}r

i=1
and

{

x(i)
}r

i=1
, respectively, over

a short time duration. From a physiological standpoint, on a
given trial, we inject into each neuron a distinct constant current
of magnitude determined by a uniformly distributed random
variable and measure the evoked dynamics across the network,
subsequently reconstructing the network connectivity from a
linear mapping relating these quantities. To facilitate efficient
recovery, the number of trials utilized r≪N2. Here theN2 entries
of R are to be recovered using only Nr state measurements,
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FIGURE 2 | CS network reconstruction and dynamical regime. (A) The connectivity matrix R for a 100 excitatory neuron subset of a balanced network with NE = 800,

NI = 200, and 0.05 connection density is depicted on the left. Existing connections are marked in black. On the right, errors in the CS reconstruction of R are marked

in black. The relative reconstruction error is ǫ = 0.14. (B) Difference in absolute value between the mean of the time-averaged ratio of excitatory and inhibitory input

across the network (E/I input ratio) and −1, the value expected in the balanced state, as a function of the quotients REI/RII and fE/fI. (C) Relative reconstruction error

of R as a function of REI/RII and fE/fI. In (B,C), red lines denote REI/RII = 1, fE/fI = 1, and REI/RII = fE/fI. (D) Statistics of the E/I input ratio across the network as a

function of REI/RII for fixed fE/fI = 1.2. Left ordinate axis: Difference in absolute value between the mean E/I input ratio and −1, Right ordinate axis: Standard deviation

of E/I input ratio. (E) Relative reconstruction error of R as a function of REI/RII for fixed fE/fI = 1.2. (F) Relative reconstruction error of R as a function of the exponent

α. Each reconstruction utilizes r = 900 inputs with 2.5 s observation time.

leading to a highly underdetermined inverse problem. However,
since R is sparse, CS may still potentially yield a successful
reconstruction (see the Methods section for details).

While conventional balanced network theory assumes a
constant and homogeneous excitatory external input is injected
into each population (van Vreeswijk and Sompolinsky, 1996,
1998), note that we choose the excitatory external input vector
p to be composed of independent and identically distributed
random variables. Even for these heterogeneous external inputs,
balanced dynamics are still well-maintained under population
scalings with fE > fI . The maintenance of balance across the
majority of the network can be seen in the inset of Figure 1B,
plotting the mean E/I input ratio across the network, which
closely resembles the distribution for the O(

√
K) constant

homogeneous input case in its narrow peak near −1 (van
Vreeswijk and Sompolinsky, 1996, 1998; Barranca et al., 2019).
To further probe the evoked network dynamics, we empirically
examine the response of the network to increasingly large
random external inputs in Figure 1B, adjusting scaled external
input SFp by increasing the scaling strength S. We observe that as
the external drive strength is increased, the time-averaged state of
both the excitatory and inhibitory populations intensifies linearly
with S for sufficiently large inputs, thereby demonstrating linear
gain in agreement with Equation (4) and as expected theoretically
in the large network limit in the case of homogeneous external
inputs (van Vreeswijk and Sompolinsky, 1996, 1998).

With linear input-output mapping (4), we obtain a system of
equations relating the network input, evoked dynamics, and the

connectivity structure of R. To recover the ith row of R in this
case, denoted Ri∗, it is necessary to utilize the full set of inputs,

P =
[

p(1) . . . p(r)
]

, the respective time-averaged inputs into

the ith neuron, Ui =
[

µ
(1)
i . . . µ

(r)
i

]

, and the respective evoked

time-averaged states of the ith neuron, Xi =
[

x
(1)
i . . . x

(r)
i

]

.

The resultant underdetermined linear system in recovering
the ith row, Ri∗ of the recurrent connectivity matrix is

Ri∗X = Ui − (FP)i∗. (5)

Since R is sparse and the respective average states in X

are approximately uncorrelated in the balanced regime (van
Vreeswijk and Sompolinsky, 1996, 1998), the optimal row
reconstruction is the solution to Equation (5) with minimal L1
norm (Candes et al., 2006; Donoho, 2006) in accordance with
CS theory. Considering the resultant L1 minimization problem
is solvable in polynomial time (Donoho and Tsaig, 2008) and
since Equation (5) represents a sequence of independent linear
systems with respect to the row index i, parallelization furnishes
a computationally efficient reconstruction of R.

In Figure 2A, we consider a sparsely connected network
with balanced dynamics and 0.05 connection density, and
reconstruct its connectivity matrix composed of N2 = 106

entries using Equation (5) for i = 1, . . . ,N, recording the
network response to r = 900 random inputs for 2.5 s
each. The connectivity matrix for a subset of 100 excitatory
neurons is depicted alongside the corresponding reconstruction
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error, demonstrating that the majority of connections, or lack
thereof, are indeed captured. Improving significantly upon
preexisting approaches for reconstructing network connectivity,
which commonly require long observation times and focus
primarily on excitatory networks (Timme, 2007; Eldawlatly et al.,
2010; Hutchison et al., 2013; Zhou et al., 2013b; Goñi et al.,
2014), this reconstruction framework successfully distinguishes
between excitatory and inhibitory connection types over short
observation times. Since the neuron types are not assumed to
be known a priori, we note that while there is no constraint
that excitatory and inhibitory connections are of the appropriate
sign directly enforced in solving optimization problem (5) via
L1 minimization, with sufficiently rich measurements of the
network dynamics, the connectivity reconstructions nevertheless
are generally able to successfully identify both connection signs
and magnitudes, as indicated by the small relative error obtained
in recovering the connectivity matrix.

To quantify the accuracy of the entire connectivity matrix
reconstruction, Rrecon, we measure the relative reconstruction
error, ǫ = ‖R− Rrecon‖/‖R‖, using the Frobenius norm, ‖R‖ =
√

∑

i

∑

j R
2
ij. In this particular case, utilizing significantly less

trials than entries in R, the network relative reconstruction error
is only ǫ = 0.14, yielding close agreement with the original
connection matrix. We remark that in this network the ratio
of excitatory to inhibitory neurons is chosen to be 4 : 1 in
agreement with estimates in the primary visual cortex (Gilbert,
1992; Liu, 2004; Cai et al., 2005; Zhou et al., 2013a), though this
framework is adaptable to other distributions of neuron types
corresponding to alternative cortical regions. While in this work
we specifically consider the role of balanced dynamics in the
context of an analytically tractable binary-state model setting,
the compressive sensing reconstruction framework naturally
generalizes to alternative model networks. In the case of the
integrate-and-fire model (Lapicque, 1907; Burkitt, 2006; Mather
et al., 2009; Barranca et al., 2014a), for example, rather than
requiring detailed knowledge of the networks’ inputs as in the
binary-state model, the network input-output mapping may
instead involve the time-averaged neuronal membrane potentials
and firing rates (Barranca et al., 2014b), yielding a framework that
is more amenable to experimental settings.

2.2. Balanced Network Characteristics for
Optimal Reconstruction
We posit that the network functioning in the balanced
operating regime is fundamental to the success of the CS
reconstruction and demonstrate that the relative reconstruction
error indeed increases as the network departs from the
balanced state. We confirm the central role of the balanced
state in network reconstruction by varying several network
connectivity parameters, which crucially determine the network
operating state, and examining the resultant impact on the CS
reconstruction of R.

For the network dynamics to be appropriately balanced
in the large K limit, Equation (3) gives restrictions on the
external and cortical input strengths for the network. These

parameter restrictions hold approximately for the sparsely-
connected networks of large yet finite size that we examine,
and we analyze the impact of these parameters on the
network reconstruction accuracy. Since we are considering the
connectivity reconstruction for networks composed of a finite
number of neurons and therefore Equation (3) only holds
approximately, inmany cases the dynamics may be well-balanced
even though the corresponding theoretical condition in the large
network limit is violated (van Vreeswijk and Sompolinsky, 1996;
Gu et al., 2018). For this reason, to gauge the degree to which
a finite-sized network exhibits balanced dynamics, we analyze
the absolute difference between the mean E/I input ratio for
all neurons and −1, the expected value for balanced dynamics,
as depicted in Figure 2B across network parameters. Here we
vary the quotients, REI/RII and fE/fI , which are each crucial to
Equation (3), observing a clear region of well-balanced dynamics.
Investigating the impact of the network dynamical regime on the
CS reconstruction of R, we plot in Figure 2C the corresponding
relative reconstruction error over the same parameter space. The
highest quality reconstructions are generally achieved when the
mean E/I input ratio is near−1, and the network is consequently
in the balanced operating regime, with degradation in accuracy
incurred as the mean E/I input ratio departs from−1.

Similarly, we examine a detailed one-dimensional slice of
these plots in Figures 2D,E, respectively, as we fix fE/fI =
1.2 and vary the quotient REI/RII . In particular, we plot
the absolute difference between the mean E/I input ratio
and −1 as well as the standard deviation of the E/I input
ratio across the network in Figure 2D to further classify the
network operating state. We observe that when Equation (3)
is approximately satisfied, the difference between the mean
E/I input ratio and −1 is small. In this same regime, the
standard deviation of the E/I input ratio is also near zero,
indicating a dynamic balance between the excitatory and
inhibitory inputs over the entire network. For nearly identical
parameter choices as those producing balanced dynamics, we
observe that the corresponding relative reconstruction error,
depicted in Figure 2E, is minimal. As the reconstruction accuracy
diminishes, increasingly large proportions of neurons remain
either active with unrealistically high firing rate or are completely
quiescent. Since the relatively rare and irregular threshold
crossings due to input fluctuations in the balanced regime largely
reflect the impact of the network connectivity on dynamics,
nearly frozen or excessively high neuronal activity results in
significantly diminished reconstruction quality.

Another crucial assumption in formulating the balanced
network model is strong synapses. Similar models could be
formulated with connection strengths of form Rkl/K

α . However,
the dynamics are only well-balanced in the large K limit for
α = 1/2. For 1/2 < α ≤ 1, the weaker synapse case, the
temporal input fluctuations decrease with K, scaling as K1/2−α ,
leading tomean-driven dynamics in the largeK limit. In contrast,
for 0 < α < 1/2, the stronger synapse case, input fluctuations
instead grow with K, and thus the net input wildly fluctuates well
above and below threshold.

Using our CS framework to reconstruct the network
connectivity R, we examine the reconstruction error achieved for
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FIGURE 3 | Efficiency and robustness of CS network reconstruction. (A) Relative reconstruction error as a function of the number of random input vectors r utilized.

Solid line depicts error using homogeneous thresholds θE = 1, θI = 0.7. Dashed line depicts error using inhomogeneous thresholds such that θ ik = θk + δ ik , where

inhomogeneities δ ik ∈ (0,d) are uniformly distributed random variables and d = 0.3. In each case, the observation time is 2.5 s. (B) Relative reconstruction error as a

function of observation time. In each case, 900 random input vectors are utilized.

the network model initialized across choices of α in Figure 2F

while fixing K and the remaining model parameters. The optimal
reconstruction is achieved near α = 0.5, when the network is in
the balanced operating regime, with error generally increasing as
α moves away from 0.5 and the mean E/I input ratio deviates
from balance. Note that while here we study the impact of α

for network realizations with a fixed and finite choice of K, the
theoretical considerations in the large network limit suggest that
these effects become more pronounced for larger networks with
correspondingly larger K. Considering that the reconstruction
error increases especially rapidly as α → 1, we hypothesize
that weaker synapses in non-balanced network models are
not conducive to the reconstruction of network connectivity,
particularly in themean-field limit.Whilemean-driven dynamics
generally well encode information regarding network inputs
and feed-forward connectivity (Barranca et al., 2016b), in this
case, we instead observe that the balanced dynamical regime
is better suited for encoding recurrent interactions in the
network dynamics.

2.3. Robustness of Connectivity
Reconstruction
For efficiency, it is desirable to achieve an accurate reconstruction
of the network connections using a relatively small number
of random inputs and also by collecting the evoked network
activity over a small observation time. In Figure 3A, we plot
the relative reconstruction error for R as the number of input
vectors is increased given a fixed observation time. Initially, as
the number of inputs is increased, the error rapidly decreases.
Once the number of inputs utilized is sufficiently large, near
∼800, more marginal improvements are garnered, at which point
additional experiments are of less utility. Hence, only a relatively
small number of trials are necessary to yield near-maximum
reconstruction quality.

Given a sufficient number of inputs such that the
reconstruction error saturates, we next examine the duration
of time over which data must be recorded for successful
connectivity reconstruction in Figure 3B. The relative

reconstruction error precipitously drops for small observation
times, leveling off for sufficiently large time durations over 2 s.
Thus, for each set of inputs utilized, it is only necessary to record
neuronal activity over a short time duration.

Similar dependence on input ensemble size and observation
time holds for networks of alternative sizes with analogous
connection density and architecture, yielding comparably
accurate reconstructions by using a relatively small number
of input vectors. As the irregular dynamics of neurons in the
balanced state is crucial to the success of the CS recovery
framework, we note that regardless of the observation time
and number of inputs utilized, reconstruction of R remains
intractable if the network dynamics are not sufficiently well-
balanced.

In our original binary-state model, we had assumed that
all excitatory neurons and inhibitory neurons are statistically
homogeneous. We now examine the effect of inhomogeneity in
the network on the reconstruction of R by varying the firing
threshold for each neuron. In this case, thresholds are chosen
such that the firing threshold for the ith neuron in the kth
population is θ i

k
= θk + δi

k
, with inhomogeneities prescribed by

identically uniformly distributed random variables δi
k
∈ (0, d). In

Figure 3A, we plot the reconstruction error dependence on the
number of random inputs for inhomogeneity strength d = 0.3 ≈
0.43θI , observing only a minor degradation in reconstruction
quality relative to the homogeneous threshold case. Thus, we
expect that even if a network is composed of neurons of many
types, as long as the neuronal dynamics are robustly balanced,
it is possible to still utilize our CS framework to reconstruct the
network connectivity.

3. DISCUSSION

Addressing the current theoretical and experimental difficulties
in measuring the structural connectivity in large neuronal
networks, we show that the high degree of sparsity in network
connections makes it feasible to accurately reconstruct network
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connectivity from a relatively small number of measurements
of evoked neuronal activity via CS theory. The success of
this reconstruction depends on the dynamical regime of
the network, with the balanced operating state facilitating
optimal recovery. Just as the connectivity matrix R may be
recovered from dynamical activity based on an underlying
linear mapping, such as Equation (4), unknown network feed-
forward connectivity as well as natural stimuli may analogously
be reconstructed (Barranca et al., 2016b). We have empirically
verified such reconstructions are also improved when the
network is in the balanced operating regime. In light of this,
we hypothesize that evolution may have fine-tuned much of the
cortical network connectivity to optimize both the encoding of
sensory inputs as well as local connectivity based on balanced
network dynamics.

It is important to note that while the compressive sensing
theory leveraged in this work is well-suited for the reconstruction
of sparse signals, the reconstruction of densely-connected
neuronal networks in the brain with potentially strongly
correlated dynamics remains a challenging area for future
investigation (Wang et al., 2011a; Markov et al., 2013; Yang et al.,
2017). Though we considered a balanced network model with
statistically homogeneous random connectivity among neuron
types, physiological neuronal circuits observed in experiment
typically exhibit a complex network structure (Massimini et al.,
2005; Bonifazi et al., 2009;Markov et al., 2013), whichmay induce
stronger correlations and oscillations in neuronal dynamics
(Honey et al., 2007; Wang et al., 2011a; Yang et al., 2017).
While prolonged synchronous dynamics may make it infeasible
to reconstruct network connections using our methodology,
intermixed periods of irregular dynamics may provide sufficient
neuronal interaction data or, otherwise, connections between
functional modules may be potentially identifiable. Recent
theoretical analysis demonstrates that even for networks with
small-world or scale-free structure, balanced dynamics can
persist in these neuronal networks with various types of single-
neuron dynamics, particularly in an embedded active core of
neurons hypothesized to play a key role in sparse coding (Gu
et al., 2018). For such a balanced core in a network with
heterogeneous connectivity, the primary dynamical assumptions
of our reconstruction framework hold as does compressive
sensing theory in the presence of mildly structured sampling
matrices (Elad, 2007; Barranca et al., 2016a; Adcock et al.,
2017), and thus it may be possible to extend our framework in
recovering connections within the balanced core.

While this work utilized specific modeling choices for which
the balanced state is well-characterized, in alternative settings,
a similar framework can potentially be utilized to reconstruct
sparse network connectivity as long as the dynamics are in the
balanced operating regime. Linear mappings in the balanced
state similar to Equation (4) have been well-established for
various classes of neuronal network models, including those
with more physiological dynamics (Brunel and Latham, 2003;
Fourcaud-Trocmé and Brunel, 2005; Barranca et al., 2014a,
2019; Gu et al., 2018), and experimental measurements of
neuronal firing-activity also generally exhibit a similar linear

dependence on input strength (Rauch et al., 2003; La Camera
et al., 2006). Advances in multiple neuron recording, such
as multiple-electrode technology, optical recording with fast
voltage-sensitive dyes, and light-fieldmicroscopy, have facilitated
the recording of increasingly large numbers of neurons
simultaneously (Stevenson and Kording, 2011; Prevedel et al.,
2014; Frost et al., 2015), and combined with new optogenetic
as well as optochemical techniques for precisely stimulating
specific neurons (Banghart et al., 2004; Rickgauer et al., 2014;
Packer et al., 2015), we expect the theoretical framework
developed to be generalizable by combining these techniques in
experiment. To circumvent potential experimental difficulties in
simultaneously stimulating specific neurons and recording their
evoked dynamics, we expect it to be also possible to extend
our theoretical framework by driving a subset of neurons and
recording the response of a random group of neurons in each
trial. Since a particular subnetwork of neurons in the brain
generally receives inhomogeneous and unknown input from
external neurons, the development and utilization of an accurate
input-output mapping involving only the recorded network
dynamics and applied drive in experiments marks a key area
for future exploration. While there are known mappings that
make no assumption of the detailed input into each neuron,
they do assume that external inputs are fully characterized.
Since such mappings are quite robust in the presence of noise
(Barranca et al., 2014b,c, 2016b), it may still be possible to well
discern recurrent connections even in the presence of unknown
external neuronal inputs for sufficiently strong forcing applied
in experiments.

4. METHODS

4.1. Compressive Sensing Theory
Compressive sensing theory states that for sparse data,
the number of measurements required for a successful
reconstruction in a static and linear system is determined
by the number of dominant non-zero components in the data
(Candes et al., 2006; Donoho, 2006). Using this reasoning,
optimally reconstructing sparse data from a small number
of samples requires selecting the sparsest reconstruction
consistent with the measured data, since such a signal is most
compressible. CS theory thus provides a significant improvement
in sampling efficiency from the conventional Shannon-Nyquist
theorem, which asserts that the sampling rate should instead be
determined by the full bandwidth of the data (Shannon, 1949).

The reconstruction of time-invariant data from a small
number of samples in a linear system can be considered an
underdetermined inverse problem. For an n-component signal,
y,m discrete samples of y can be represented byAy, whereA is an
m×nmeasurementmatrix composed of rows which are each a set
of measurement weights. This yields anm-component measured
signal, b. Reconstructing the true data y from the measured data
b is therefore equivalent to solving

Ay = b. (6)
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When the number of samples taken is significantly smaller than
the number of components in y, i.e., m ≪ n, the above system
is highly underdetermined with an infinite number of possible
solutions.While one approach to selecting the most compressible
solution is to choose the sparsest y satisfying Equation (6), this is
generally too computationally expensive for real-world signals.

For sufficiently sparse y and a broad class of measurement
matrices, CS theory shows that a viable surrogate is in fact

minimizing |y|L1 =
n

∑

i=1

|yi| (Candes and Wakin, 2008),

which is efficiently solvable in polynomial time using numerous
algorithms (Tropp and Gilbert, 2007; Donoho and Tsaig, 2008).
From an experimental standpoint, it is relatively straightforward
to devise sampling schemes such that the corresponding
measurement matrices are amenable to CS. Measurement
matrices exhibiting randomness in their structure are particularly
viable candidates (Baraniuk, 2007; Candes and Wakin, 2008;
Barranca et al., 2016a), and, consequently, the response matrix
X in the left-hand side of Equation (5) is suited for CS
reconstructions in the balanced regime since X demonstrates
little correlation among its entries.
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